CN108604958A - 用于调度子帧和混合自动重复请求(harq)反馈的方法、系统和装置 - Google Patents

用于调度子帧和混合自动重复请求(harq)反馈的方法、系统和装置 Download PDF

Info

Publication number
CN108604958A
CN108604958A CN201780009173.1A CN201780009173A CN108604958A CN 108604958 A CN108604958 A CN 108604958A CN 201780009173 A CN201780009173 A CN 201780009173A CN 108604958 A CN108604958 A CN 108604958A
Authority
CN
China
Prior art keywords
harq
wtru
tti
subframe
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780009173.1A
Other languages
English (en)
Inventor
珍妮特·A·斯特恩-波科维茨
阿夫欣·哈吉卡特
李文
李文一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Priority to CN202111431874.9A priority Critical patent/CN114172622A/zh
Publication of CN108604958A publication Critical patent/CN108604958A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1838Buffer management for semi-reliable protocols, e.g. for less sensitive applications such as streaming video
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

所提供的是用于与不同传输时间间隔(TTI)长度相对应的混合自动重复请求(HARQ)进程的方法、系统和装置。无线发射/接收单元(WTRU)可以链接第一HARQ进程和第二HARQ进程。该WTRU可以使用相链接的第一HARQ进程和第一HARQ缓冲器来传送第一传输块(TB)。该WTRU可以接收上行链路(UL)许可,并且可以确定所接收的UL许可针对的是用于相链接的第二HARQ进程的新的传输。该WTRU可以以确定所接收的UL许可针对的是用于相链接的第二HARQ进程的新的传输为基础而释放第一HARQ缓冲器。并且,该WTRU可以生成用于所述新的传输的第二TB,并且可以将所述新的TB保存在第一HARQ缓冲器中。该WTRU可以使用相链接的第二HARQ进程和第一HARQ缓冲器来传送第二TB。

Description

用于调度子帧和混合自动重复请求(HARQ)反馈的方法、系统 和装置
相关申请的交叉引用
本申请要求享有2016年2月3日提交的美国临时申请62/290,770以及2016年5月11日提交的美国临时申请62/334,759的权益,所述申请的内容在此引入以作为参考。
背景技术
随着诸如报警记录、汽车安全和工厂工艺控制之类的用于蜂窝技术的新应用的出现,包括机器类型通信(MTC)在内的低时延蜂窝通信的重要性快速增长。举例来说,在先进长期演进(LTE-A)系统中,典型的1毫秒时间间隔(TTI)和相关联的时延可能已不再满足需要。诸如游戏之类的现有应用以及借助LTE的语音传输(VoLTE)和视频电话/会议之类的实时应用同样会从减小的时延中受益,例如在所感知的体验质量提升方面。
对于所连接的无线发射/接收单元(WTRU)来说,其总的端到端延迟有可能是由一个或多个分量贡献的。举例来说,这些分量可以包括调度许可捕获时间、TTI、处理时间以及混合自动重复请求(混合ARQ或HARQ)往返行程时间(RTT)中的一项或多项。如果缩短这其中的一个或多个分量,那么将可以减小总的端到端时延。
发明内容
这里提供的是用于包括混合自动重复请求(HARQ)传输在内的与不同传输时间间隔(TTI)长度相对应的上行链路(UL)和下行链路(DL)传输的方法、系统和装置。举例来说,该传输可以以配置一个被多个HARQ进程所共享的缓冲器为基础,所述HARQ进程至少对应于具有正常传输时间间隔(nTTI)长度的nTTI以及具有短于nTTI长度的短TTI(sTTI)长度的sTTI。
在一个示例中,无线发射/接收单元(WTRU)可以链接第一HARQ进程和第二HARQ进程,其中所述第一HARQ进程与第一HARQ缓冲器以及第一TTI长度相关联,并且第二HARQ进程与第一HARQ缓冲器以及第二TTI长度相关联。该WTRU可以使用相链接的第一HARQ进程和第一HARQ缓冲器来传送第一传输块(TB)。更进一步,该WTUR可以接收UL许可。并且,该WTRU可以确定所接收的UL许可是否针对的是与相链接的第二HARQ进程有关的新的传输。然后,该WTRU可以以确定所接收的UL许可针对的是与相链接的第二HARQ进程有关的新的传输为基础而释放第一HARQ缓冲器。此外,该WTRU可以生成用于所述新的传输的第二TB,并且可以将所述新的TB保存在第一HARQ缓冲器中。更进一步,该WTRU可以使用相链接的第二HARQ进程和第一HARQ缓冲器来传送第二TB。
在一个示例中,第一TB和第二TB可以是媒介接入控制(MAC)协议数据单元(PDU)。更进一步,第一TB可以包含与第一TTI相关联的数据,并且第二TB可以包含与第二TTI相关联的数据。
在一个附加示例中,WTRU可以将第一HARQ进程和第二HARQ进程相链接,其中第一HARQ进程与第一HARQ缓冲器以及第一TTI长度相关联,并且第二HARQ进程与第一HARQ缓冲器以及第二TTI长度相关联。更进一步,该WTRU可以使用相链接的第一HARQ进程和第一HARQ缓冲器来接收关于第一TB的数据。该WTRU还可以接收DL许可。然后,该WTRU可以确定所接收的DL许可针对的是接收与相链接的第二HARQ进程有关的新的传输。更进一步,该WTRU可以以确定所接收的DL许可针对的是接收与相链接的第二HARQ进程有关的新的传输为基础来释放第一HARQ缓冲器。并且,该WTRU可以使用相链接的第二HARQ进程和第一HARQ缓冲器来接收关于所述新传输的第二TB的数据。更进一步,该WTRU可以用所接收的关于第二TB的数据来替换第一HARQ缓冲器中的数据。
在另一个示例中,HARQ缓冲器可以用于软合并。举例来说,第一HARQ缓冲器可以用于软合并处理。在一个附加示例中,HARQ缓冲器可以位于软缓冲存储器中。举例来说,第一HARQ缓冲器可以位于软缓冲存储器中。
在一个附加示例中,WTRU可以接收时分双工(TDD)UL/DL子帧配置。更进一步,该WTRU可以接收带有为物理上行链路控制信道(PUCCH)传输使用特殊子帧的指示的DL许可。然后,该WTRU可以动态确定哪一个子帧切换到特殊子帧。该WTRU可以将所述子帧切换到特殊子帧。更进一步,该WTRU可以确定关于所确定的特殊子帧的特殊子帧配置。并且,该WTRU可以确定用于PUCCH的所确定的特殊子帧的资源。
然后,WTRU可以确定用于PUCCH的PUCCH资源和PUCCH设计参数。更进一步,该WTRU可以使用所确定的PUCCH资源和PUCCH设计参数而在位于具有所确定的特殊子帧配置的所确定的特殊子帧的所确定的资源的UL部分的PUCCH上传送HARQ反馈。
附图说明
更详细的理解可以从以下结合附图举例给出的描述中得到,其中:
图1A是可以实施所公开的一个或多个实施例的例示通信系统的系统图示;
图1B是可以在图1A所示的通信系统内部使用的例示无线发射/接收单元(WTRU)的系统图示;
图1C是可以在图1A所示的通信系统内部使用的例示无线电接入网络和例示核心网络的系统图示;
图2是示出了时分双工(TDD)上行链路(UL)/下行链路(DL)配置示例的表格。
图3是示出了特殊子帧配置示例的表格。
图4是示出了以符号为单位的特殊子帧配置示例的表格;
图5A是示出了用于以时隙为基础的传输时间间隔(TTI)的UL-DL配置示例的表格;
图5B是示出了在支持短TTI(sTTI)的配置中在被切换的特殊子帧上发送混合自动重复请求(HARQ)反馈的示例的图示;
图6是示出了在特殊子帧的上行链路导频时隙(UpPTS)中具有和不具有短物理上行链路控制信道(sPUCCH)传输的HARQ反馈时延的示例的表格;
图7A是示出了在位于具有所确定的特殊子帧配置的所确定的特殊子帧的所确定的资源的UL部分中的物理上行链路控制信道(PUCCH)上传送HARQ反馈的示例的图示;
图7B是示出了用于HARQ反馈的保护波段物理资源块(PRB)配置的示例的图示;
图8是示出了以用于系统带宽PRB(S-PRB)的TDD配置为基础的用于保护波段PRB(G-PRB)的TDD配置示例的图示;
图9是示出了S-PRB与G-PRB之间的定时偏移的示例的图示;
图10是示出了HARQ反馈资源确定处理示例的图示;
图11是示出了用于两个TTI长度的分离的HARQ进程和HARQ缓冲器的示例的图示;
图12是示出了用于两个TTI长度的分离的HARQ进程和HARQ缓冲器的另一个示例的图示;
图13是示出了在两个TTI长度之间链接或共享HARQ进程、HARQ缓冲器或是所有这二者的示例的图示;
图14是示出了关于多个TTI长度使用情况的例示时间线的图示;
图15是示出了可被链接、共享或重叠的HARQ进程、缓冲器或是所有这二者的另一个示例的图示;
图16是示出了链接、共享或重叠HARQ进程、缓冲器或所有这二者的另一个示例的图示;
图17是示出了链接、共享或重叠HARQ进程、缓冲器或所有这二者的再一个示例的图示;
图18是示出了利用动态指示来链接、共享或重叠HARQ进程、缓冲器或所有这二者的另一个示例的图示;以及
图19是示出了被不同HARQ进程所共享的HARQ缓冲器的示例的图示。
具体实施方式
图1A是可以实施所公开的一个或多个实施例的例示通信系统100的图示。通信系统100可以是为多个无线用户提供语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100可以通过共享包括无线带宽在内的系统资源来允许多个无线用户访问这些内容,作为示例,该通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d,无线电接入网络(RAN)104,核心网络106,公共交换电话网络(PSTN)108,因特网110以及其他网络112,然而应该了解,所公开的实施例可以设想任意数量的WTRU、基站、网络和/或网络部件。每一个WTRU 102a、102b、102c、102d可以是被配置成在无线环境中工作和/或通信的任何类型的设备。例如,WTRU 102a、102b、102c、102d可被配置成发射和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、消费类电子设备等等。
通信系统100还可以包括基站114a和基站114b。每一个基站114a、114b都可以是被配置成通过与至少一个WTRU 102a、102b、102c、102d进行无线对接来促使其接入一个或多个通信网络的任何类型的设备,该网络可以是核心网络106、因特网110和/或其他网络112。作为示例,基站114a、114b可以是基地收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、站点控制器、接入点(AP)、无线路由器等等。虽然将每个基站114a、114b描述成单个部件,然而应该了解,基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 104的一部分,并且该RAN还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可被配置成在名为小区(未显示)的特定地理区域内部发射和/或接收无线信号。小区可以进一步分割成小区扇区。举例来说,与基站114a关联的小区可分成三个扇区。由此,在一个实施例中,基站114a可以包括三个收发信机,也就是说,每一个收发信机对应于小区的一个扇区。在另一个实施例中,基站114a可以使用多输入多输出(MIMO)技术,并且由此可以为小区中的每个扇区使用多个收发信机。
基站114a、114b可以通过空中接口116来与一个或多个WTRU 102a、102b、102c、102d进行通信,该空中接口可以是任何适当的无线通信链路(例如射频(RF)、微波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口116可以用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信系统100可以是一个多址接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。作为示例,RAN 104中的基站114a与WTRU 102a、102b、102c可以实施诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,该技术可以使用宽带CDMA(WCDMA)来建立空中接口116。WCDMA可以包括诸如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。
在另一个实施例中,基站114a与WTRU 102a、102b、102c可以实施演进型UMTS陆地无线电接入(E-UTRA)之类的无线电技术,该技术可以使用长期演进(LTE)和/或先进LTE(LTE-A)来建立空中接口116。
在其他实施例中,基站114a和WTRU 102a、102b、102c可以实施IEEE 802.16(全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM增强数据速率演进(EDGE)、GSM EDGE(GERAN)等无线电接入技术。
作为示例,图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以使用任何适当的RAT来促成营业场所、住宅、交通工具、校园等局部区域中的无线连接。在一个实施例中,基站114b与WTRU 102c、102d可以通过实施诸如IEEE 802.11之类的无线电技术来建立无线局域网(WLAN)。在另一个实施例中,基站114b与WTRU 102c、102d可以通过实施诸如IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在再一个实施例中,基站114b和WTRU 102c、102d可以通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直接连接到因特网110。由此,基站114b无需经由核心网络106来接入因特网110。
RAN 104可以与核心网络106通信,该核心网络可以是被配置成为一个或多个WTRU102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议的语音(VoIP)服务的任何类型的网络。举例来说,核心网络106可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或执行诸如用户验证之类的高级安全功能。虽然图1A中没有显示,然而应该了解,RAN 104和/或核心网络106可以直接或间接地和其他RAN进行通信,并且这些RAN既可以使用与RAN 104相同的RAT,也可以使用不同的RAT。例如,除了与使用E-UTRA无线电技术的RAN 104连接之外,核心网络106还可以与另一个使用GSM无线电技术的RAN(未显示)进行通信。
核心网络106还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用公共通信协议的全球性互联计算机网络设备系统,并且该协议可以是TCP/IP网际协议族中的传输控制协议(TCP)、用户数据报协议(UDP)和网际协议(IP)。网络112可以包括由其他服务供应商所有和/或运营的有线或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个核心网络,所述一个或多个RAN可以使用与RAN 104相同的RAT或不同的RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包含多模能力,换言之,WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络进行通信的多个收发信机。例如,图1A所示的WTRU 102c可被配置成与使用基于蜂窝的无线电技术的基站114a进行通信,以及与可以使用IEEE 802无线电技术的基站114b进行通信。
图1B是一个例示WTRU 102的系统图。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、数字键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136以及其他周边设备138。应该了解的是,在保持与实施例相符的同时,WTRU 102还可以包括前述部件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)、状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120则可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成是独立组件,然而应该了解,处理器118和收发信机120也可以集成在一个电子组件或芯片中。
发射/接收部件122可被配置成经由空中接口116来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个实施例中,发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。作为示例,在另一个实施例中,发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在再一个实施例中,发射/接收部件122可被配置成发射和接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
此外,虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU 102可以包括任何数量的发射/接收部件122。更具体地说,WTRU 102可以使用MIMO技术。因此,在一个实施例中,WTRU 102可以包括两个或多个经由空中接口116来发射和接收无线电信号的发射/接收部件122(例如多个天线)。
收发信机120可被配置成对发射/接收部件122所要发射的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助诸如UTRA和IEEE 802.11之类的多种RAT来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合到扬声器/麦克风124、数字键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、数字键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从诸如不可移除存储器130和/或可移除存储器132之类的任何适当的存储器中存取信息,以及将信息存入这些存储器。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他实施例中,处理器118可以从那些并非实际位于WTRU 102的存储器存取信息,以及将数据存入这些存储器,作为示例,此类存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可被配置分发和/或控制用于WTRU102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当设备。例如,电源134可以包括一个或多个干电池组(如镍镉(NiCd)、镍锌(NiZn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池、燃料电池等等。
处理器118还可以与GPS芯片组136耦合,该芯片组可被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以经由空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持与实施例相符的同时,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118还可以耦合到其他周边设备138,这些设备可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,周边设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器等等。
图1C根据一实施例的RAN 104和核心网络106的系统图示。如上所述,RAN 104可以使用E-UTRA无线电技术而在空中接口116上与WTRU 102a、102b、102c进行通信。并且RAN104还可以与核心网络106进行通信。
RAN 104可以包括e节点B 140a、140b、140c,然而应该了解,在保持与实施例相符的同时,RAN 104可以包括任何数量的e节点B。每一个e节点B 140a、140b、140c都可以包括在空中接口116上与WTRU 102a、102b、102c通信的一个或多个收发信机。在一个实施例中,e节点B 140a、140b、140c可以实时MIMO技术。由此举例来说,e节点B 140a可以使用多个天线来向WTRU 102a发送无线信号以及接收来自WTRU 102a的无线信号。
每一个e节点B 140a、140b、140c都可以关联于一个特定的小区(未显示),并且可被配置成处理无线电资源管理判定、切换判定、上行链路和/或下行链路的用户调度等等。如图1C所示,e节点B 140a、140b、140c彼此可以在X2接口上进行通信。
图1C所示的核心网络106可以包括移动性管理网关(MME)142、服务网关144以及分组数据网络(PDN)网关146。虽然前述的每一个部件都被描述成了核心网络106的一部分,然而应该了解,这其中的任一部件都可以由核心网络运营商之外的实体所拥有和/或运营。
MME 142可以经由S1接口连接到RAN 104中的每一个e节点B 140a、140b、140c,并且可以充当控制节点。举例来说,MME 142可以负责验证WTRU 102a、102b、102c的用户,执行承载激活/去激活处理,在WTRU 102a、102b、102c的初始附着过程中选择特定的服务网关等等。该MME 142还可以提供一个用于在RAN 104与使用GSM或WCDMA之类的其他无线电技术的其他RAN(未显示)之间进行切换的控制平面功能。
服务网关144可以经由S1接口连接到RAN 104中的每个e节点B 140a、140b、140c。该服务网关144通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。并且该服务网关144可以执行其他功能,例如在e节点B间的切换过程中锚定用户平面,在下行链路数据可供WTRU 102a、102b、102c使用时触发寻呼处理,管理并存储WTRU 102a、102b、102c的上下文等等。
服务网关144还可以连接到PDN网关146,所述PDN网关可以为WTRU 102a、102b、102c提供针对因特网之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
核心网络106可以促成与其他网络的通信。例如,核心网络106可以为WTRU 102a、102b、102c提供针对PSTN 108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统的陆线通信设备之间的通信。例如,核心网络106可以包括一个IP网关(例如IP多媒体子系统(IMS)服务器)或与之进行通信,并且该IP网关可以充当核心网络106与PSTN 108之间的接口。此外,核心网络106可以为WTRU 102a、102b、102c提供针对网络112的接入,该网络可以包括其他服务供应商所拥有和/或运营的其他有线或无线网络。
其他网络112还可以进一步连接到基于IEEE 802.11的无线局域网(WLAN)160。该WLAN 160可以包括接入路由器165。该接入路由器165可以包含网关功能。并且该接入路由器165可以与多个接入点(AP)170a、170b进行通信。接入路由器165与AP 170a、170b之间的通信可以借助有线以太网(IEEE 802.3标准)或是任何类型的无线通信协议来进行。AP170a通过空中接口与WTRU 102d进行无线通信。
对于所连接的无线发射/接收单元(WTRU)来说,其总的端到端延迟有可能是由一个或多个分量贡献的。举例来说,这些分量可以包括调度许可捕获时间、传输时间间隔(TTI)、处理时间以及混合自动重复请求(HARQ)往返行程时间(RTT)中的一项或多项。
请求、许可、HARQ反馈和/或数据可以在诸如子帧之类的具有固定或已知持续时间(例如1毫秒)的块或组块的定时中和/或依照所述定时来进行传输。该固定持续时间可被称为TTI。
处理时间可以是或者可以包括在诸如WTRU和/或e节点B上或者由其处理(例如编码和/或解码)数据和/或控制信令或信息所需要或使用的时间。数据处理时间可以与数据的传输块(TB)大小成比例。
HARQ RTT可以取决于以下的一项或多项:调度许可与发送方执行的相关传输(例如被调度的传输)之间的时间关系,发送方执行传输与接收方传送HARQ反馈(例如应答(ACK)、否定应答(NACK)或重传请求)的时间之间的时间关系;以及接收方传送HARQ反馈的时间与发送方执行重传之间的时间关系。作为示例,对于采用频分双工(FDD)的上行链路(UL)传输来说,关于e节点B在子帧n中接收的分组的HARQ应答可以是在子帧n+4中报告的。作为示例,如果WTRU需要重传,那么可以在子帧n+8中发送所述重传。这样做可以对应于大小为8毫秒的HARQ RTT。对于使用了时分双工(TDD)的系统来说,HARQ RTT可以取决于TDD配置(例如UL/下行链路(DL)配置),并且可以是至少8毫秒。对于LTE DL传输来说,HARQ方案可以是异步的。在子帧n+k上可以提供HARQ反馈,其中对于FDD来说,k可以是4,而对TDD来说,依照TDD配置,所述k至少是4。在子帧n+k+k1或更晚的子帧可以调度重传。在这种情况下,对于FDD来说,k1可以是4,而对TDD来说,作为示例,依照TDD配置,所述k至少是4。
图2是示出了TDD UL/DL配置的示例的表格。对于TDD来说,多个TDD UL/DL子帧配置210是可以支持的,并且在e节点B中可以使用至少一个配置。每一个TDD UL/DL子帧配置都可以包含一个或多个下行链路子帧“D”、上行链路子帧“U”以及特殊子帧“S”。在表200中显示了例示的TDD UL/DL子帧配置210,其中该子帧配置包含了子帧编号230列举的子帧类型以及下行链路到上行链路切换点周期220。特殊子帧可以包括DL部分、UL部分以及介于DL与UL部分之间的保护时段,其中作为示例,所述保护时段提供的是从DL转换到UL的时间。特殊子帧可被称为混合子帧,并且这些术语在这里是可以交换使用的。
图2所述的子帧可以具有大小为1毫秒的持续时间。然而应该理解,子帧并不局限于这种持续时间,并且可以依照设计选择而使用任何时间长度来实施。在这里,上行链路-下行链路子帧配置与上行链路-下行链路配置是可以交换使用的。在这里使用了子帧作为时间单元的非限制性示例。其他任何时间单元都可以替换子帧,并且仍旧与本公开相符合。一些例示的时间单元包括符号、时槽、时隙等等。
图3是示出了特殊子帧配置示例的表格。如表300所示,每一个特殊子帧配置310都可以使用下行链路320中的正常循环前缀或是下行链路360中的扩展循环前缀。特殊子帧的下行链路部分可被称为下行链路导频时隙(DwPTS),并且特殊子帧的上行链路部分可被称为上行链路导频时隙(UpPTS)。所述特殊子帧还可以包括保护时段(GP)。
特殊子帧的这些部分的长度可以依据采样时间(Ts)来给出。举例来说,该采样时间可以是(10毫秒)/307,200。然而应该了解,采样时间并不局限于此,并且其他时间长度也可用于Ts。在表300所示的示例中,当在下行链路320中使用正常循环前缀时,特殊子帧配置310可以使用DwPTS 330和UpPTS 340,当在下行链路360中中使用扩展循环前缀时,该特殊子帧配置可以使用DwPTS 370和UpPTS 380。更进一步,当在下行链路320中使用正常循环前缀时,特殊子帧配置310可以与上行链路345中的正常循环前缀或是上行链路350中的扩展循环前缀结合使用,而在下行链路360中使用扩展循环前缀时,该配置可以与上行链路385中的正常循环前缀或是上行链路390中的扩展循环前缀结合使用。在表300中显示了特殊子帧的相应部分中的一些部分的例示长度。更进一步,在表300显示的示例中,特殊子帧配置8和9不会与下行链路360中的扩展循环前缀结合使用,然而在其他示例中,特殊子帧配置8和9可以与下行链路中的扩展循环前缀结合使用。
图4是示出了以符号为单位的特殊子帧配置的示例的表格。作为示例,在每一个1毫秒的子帧上可以使用14个符号。举例来说,所述符号可以是正交频分复用(OFDM)或SC-FDMA符号。如表400所示,对于每一个特殊子帧配置410,该特殊子帧中的部分的长度可以用采样420或符号460表示。特殊子帧配置可以与正常循环前缀(CP)结合使用。举例来说,如表400所示,对于每一个特殊子帧配置410,特定子帧的DwPTS 430、GP 450和UpPTS 440可以用采样420表示。并且如表400所示,对于每一个特殊子帧配置410,该特殊子帧的DwPTS 470、GP 490和UpPTS 480的长度可以以符号460表示。符号的长度可以是一个近似值。
在这里提供了不同的TDD配置。在TDD系统中,在一个小区中可以使用一个或多个UL-DL配置。该配置可以包括可以是小区专用的配置(ConfigCell)。所述Configcell可被一些WTRU用于子帧定向、调度定时和/或HARQ定时中的一项或多项(作为示例,或者是全部)。对于一些WTRU来说,ConfigCell可被用于UL调度定时和/或UL HARQ定时。UL调度定时可以是或者可以包括UL许可接收与UL传输之间的关系。举例来说,UL调度定时可以是或者可以包括在哪一个UL子帧中可以使用哪一个DL子帧的标识来调度传输。UL HARQ定时可以是或者可以包括UL传输与DL中的HARQ反馈传输(例如在物理HARQ指示符信道(PHICH)上)之间的关系和/或DL中的HARQ反馈与UL中的重传之间的关系中的至少一个。这里使用的术语关系可以是指定时关系。小区可以在广播信令(例如在SIB1之类的系统信息块(SIB))中指示ConfigCell。
所述配置可以包括可以是WTRU专用的配置(ConfigHARQD)。ConfigHARQD可被一些WTRU用于DL HARQ定时。所述DL HARQ定时可以是或者可以包括DL中的接收与UL中的HARQ反馈传输(例如在物理上行链路控制信道(PUCCH))之间的关系。在WTRU中可以借助专用信令来配置ConfigHARQD。
ConfigCell和ConfigHARQD中的子帧方向未必是相同的。例如,ConfigCell中的一些UL子帧可被指示成是ConfigHARQD中的DL或特殊子帧。在ConfigCell和ConfigHARQD中处于不同方向的这些子帧可被称为灵活子帧。所述配置可以包括可用于指示诸如供灵活子帧使用的子帧方向的另一个配置(例如ConfigDir)。作为示例,ConfigDir可以在采用下行链路控制信息(DCI)格式的动态信令中提供。所述ConfigDir可被周期性地提供给WTRU。
通过将三种配置(即ConfigCell、ConfigHARQD和ConfigDir)一起使用,可以动态改变用于至少一些WTRU的一些子帧的方向(例如从UL到DL)。所述配置可以由eNode-B提供或传送。WTRU可以接收和/或使用这些配置。
保留子帧也是可以提供和/或使用的。在WTRU可以配置专供至少一些特定用途使用的子帧。此类子帧可被称为保留子帧。举例来说,LTE系统中的子帧可被配置和/或保留用于多媒体广播多播服务(MBMS)。这些子帧可被称为多播广播单频网络(MBSFN)子帧。诸如图2所示的子帧3、4、7、8和/或9之类的子帧可被配置和/或标识成MBSFN子帧。
DL保留子帧或MBSFN子帧可以包括DL控制区域和数据区域。DL控制区域可以包括指示DL控制区域中的符号数量的信道(例如物理控制格式指示符信道(PCFICH))。DL控制区域可以包括能为DL数据或UL数据提供许可的一个或多个DL控制信道(例如物理下行链路控制信道(PDCCH))。DL控制区域可以包括能为探测参考信号(SRS)或信道状态信息(CSI)反馈传输提供触发或请求的一个或多个DL控制信道(例如PDCCH)。所述DL控制区域可以包括能在DL中用于指示用于UL数据接收的ACK和/或NACK的一个或多个HARQ反馈信道(例如PHICH)。该控制区域可以包括小区专用的参考信号(CRS)。作为示例,如果在数据区域中没有数据传输,那么该数据区域不会包括CRS。
诸如MBSFN子帧子类的保留子帧可被用于其他目的。在这里的示例中可以将MBSFN子帧用作保留子帧的非限制性示例。
一些WTRU可以在保留子帧中执行盲解码。举例来说,WTRU可以监视保留子帧的DL控制区域中的DL控制信道(例如PDCCH)。WTRU可以在保留子帧的数据区域中监视DL控制信道(例如增强型PDCCH(EPDCCH))。作为示例,在WTRU成功解码了信道的时候,该WTRU可以依照DL控制信道(例如PDCCH或EPDCCH)来执行操作。
节点(例如e节点B)或设备(例如WTRU)可以具有至少一个媒介接入控制(MAC)实体。WTRU或MAC实体可以具有至少一个HARQ实体。举例来说,在用于服务小区(例如用于每一个服务小区)的MAC实体上都可以具有(例如一个)HARQ实体。对于UL(例如对于UL方向)来说,在用于配置了UL的(例如每一个)服务小区的MAC实体将会存在(例如一个)HARQ实体。服务小区可以是能与WTRU通信的小区和/或能与WTRU相连的小区。
WTRU、MAC实体或HARQ实体可以保持多个并行的HARQ进程。WTRU、MAC实体或HARQ实体可以保持用于诸如UL、DL或侧链路(SL)之类的至少一种传输类型或方向的多个并行的HARQ进程。在一个或多个实施例中,用于某个传输方向的HARQ进程的非限制性数量可以是8个。应该理解的是,对于传输方向来说,包括零个在内的其他数量也是可以使用的,并且对于不同的传输方向来说,HARQ进程的数量可以是不同的。
通过使用并行的HARQ进程,能够在等待与先前传输的成功或不成功接收相关的HARQ反馈的同时继续进行传输。
在这里,WTRU、MAC实体和HARQ实体是可以互换使用的。在这里描述的一个或多个实施例以及示例之中,MAC实体和HARQ实体可被用作是可以维护、包括、包含或管理HARQ进程和/或HARQ处理的实体的非限制性示例。传输类型和传输方向同样是可以互换使用的。在这里描述的一个或多个实施例以及示例之中,UL、DL和SL可被用作传输方向或类型的非限制性示例。UL、DL和SL可以进一步指代为UL、DL或SL传输建立或使用的UL、DL或SL信道。在这里描述的一个或多个实施例以及示例之中,UL、DL和SL是可以相互替换的,并且仍旧与这里提供的实施例相符合。
此外,HARQ进程可以与HARQ进程标识或标识符相关联,作为示例,所述HARQ进程标识或标识符可被称为HARQ进程ID。HARQ进程可以与HARQ缓冲器相关联。缓冲器(例如HARQ缓冲器)可以是或者可以包括软缓冲器。
来自关于TB或数据的一次或多次重复或重传的编码比特可以用软缓冲器来执行软合并。举例来说,在诸如第三代合作伙伴计划(3GPP)LTE蜂窝通信系统之类的无线通信系统中,与所接收的一个或多个消息相关联的数据可被保存在所谓的软缓冲存储器中,所述软缓冲存储器可以用于存储与所接收的比特相关联的所谓的软信息,其中所述比特也可以被称为软比特。所接收的比特的软信息可以包含所述比特的最有可能的取值和/或其可靠性的量度(例如与噪声水平相对的接收信号能量估计)。术语“软信息”或“软比特”通常是指不对解调和/或输入到解码器的过程中的比特取值做出硬判决,而这也可以被称为软判决。这些可靠性量度可以用于增强解码性能。举例来说,已被解码的接收分组及其支持数据(例如软比特)通常可以保存在软缓冲存储器中,以便在确定用于先前传输或先前重传的分组接收出现错误的情况下适于将数据与重传数据相结合。HARQ信号可请求进行数据重传,以例如使得重传的数据在接收机内与原始接收的分组相结合。
TB的重传可以包括与TB的初始(例如新的)传输或另一次重传相同或不同的编码比特。缓冲器可以是或者可以代表存储器,例如以比特或字节为单位(denomination)的存储器总量。缓冲器的存储器可以包括相邻和/或不相邻的存储片或存储块。
作为示例,通过使用较短的TTI,可以减小用于所连接的WTRU的总的端到端延迟和/或减小时延。然而,由于HARQ RTT有可能会在端到端的时延中起到重要作用,因此,仅仅缩短TTI有可能无法满足需要。为了缩短HARQ RTT,有可能需要更早地提供用于反馈和重传的资源(例如早于常规、旧有或或更长的TTI)。在可以为UL和DL使用单独的载波频率的系统(例如FDD系统)中,HARQ定时不会受到用于反馈和重传的资源的可用性的影响。举例来说,用于应答DL接收的UL资源是很容易即可提供的。在可以为UL和DL这二者使用相同载波频率的系统(例如TDD系统)中,缩短HARQ定时的能力有可能会受用于反馈和重传的资源的可用性的影响。举例来说,如果希望在DL数据传输之后的n(例如,4)倍的TTI上在UL中执行HARQ反馈,那么在UL中,在这n倍的TTI中可能无法使用载波。作为示例,载波可用性可以取决于TTI以及上行链路-下行链路配置。
对于以使用一个或多个新的特殊子帧配置为基础的调度和HARQ反馈定时来说,所述调度和HARQ反馈定时可以减小先进LTE系统中的时延。新的特殊子帧配置可以提供以下的一项或多项。新配置可以在特殊子帧的UL中提供PUCCH传输和/或物理上行链路共享信道(PUSCH)传输。并且,新的配置可以在特殊子帧中提供多个DL和UL部分。此外,新的配置可以在相同子帧中提供DL许可和HARQ反馈。另外,新的配置可以在相同的子帧中提供UL许可和UL数据传输。
特殊子帧可以是混合的UL/DL子帧。特殊子帧可以是具有至少一个UL部分和至少一个DL部分的子帧。在这里,术语部分、部位和区域是可以互换使用的。特殊子帧可以是包含了能为UL和/或DL配置和/或使用的部分和/或时间单元(例如时间采样、符号、时隙等等)的集合。所述配置可以是半静态或动态的。
作为示例,特殊子帧可以与基于短TTI(sTTI)或时隙的传输结合使用。特殊子帧(例如附加的特殊子帧)可被用于HARQ反馈。通过使用特殊子帧(例如附加的特殊子帧),可以减小HARQ反馈的时延。
基于时隙的传输可以是一种缩短TTI(例如从基于子帧的传输开始)的方式,然而,作为示例,对于减小TDD系统中的时延来说,缩短(作为示例,或者仅仅缩短)TTI未必可以满足需要。
图5A是示出了用于以时隙为基础的TTI的UL-DL配置示例的表格。如表500中的示例所示,每一个UL-DL配置510都可以包括一个或多个DL或D时隙以及一个或多个UL或U时隙515。举例来说,在这里可以存在编号为0至6的七个(7个)配置,以及编号为0到19的二十个(20个)时隙。如图4所示,这些子帧可以具有一个大小为多个时间采样或符号的保护时段,由此不会在DL和/或UL中充分使用时隙。在图5A中,对于在配置4的时隙9中进行的DL传输来说,其反馈将会在下一次出现时隙3或4的时候传送。因此,UL-DL配置有可能会对时延的减小构成限制。
作为示例,特殊子帧可以被替换成UL和/或DL子帧来发送HARQ反馈。特殊子帧可以包括至少一个DL部分以及至少一个UL部分。特殊子帧可以包括至少一个GP或间隙。GP。在这里,GP、间隙和间隙时段是可以互换使用的。间隙可以具有大小为0的长度或是大于0的长度。间隙可以用时间单位来表示,例如T或符号。
作为示例,通过将特殊子帧替换为DL和/或灵活子帧,可以启用用于UL传输的附加时机。在这里提供了关于替换特殊子帧的示例。特殊子帧可被替换成以下的一项或多项。特殊子帧可被替换成在ConfigCell(例如用于某个小区)中被指示作为UL子帧的子帧。并且,特殊子帧可被替换成在由一个或多个WTRU配置或接收的ConfigHARQD中被指示成DL子帧的子帧。更进一步,特殊子帧可被替换成在可以由一个或多个WTRU配置或接收的ConfigDir中被指示成DL子帧的子帧。此外,特殊子帧可被替换成是被一个或多个WTRU视为灵活子帧的子帧。在另一个示例中,特殊子帧可被替换成在诸如小区中被指示或配置成MBSFN子帧的子帧。此外,特殊子帧还可以被替换成是可以借助广播或专用信令指示或配置成MBSFN子帧的子帧。
具有第一配置的特殊子帧可被替换成具有第二配置的特殊子帧。所述第一配置与第二配置可以具有相同的间隙,或者第一配置用于第二配置相比可以具有相对较小的间隙或是相对较大的间隙。作为示例,第二配置可以是在诸如SIB之类的小区专用的广播信令中提供的。第一配置则可以在专用和/或动态信令中提供。所述第一配置可以具有大于第二配置的UL区域。与第二配置相比,第一配置可以具有更大的DL区域。与第二配置相比,第一配置可以具有更多的DL和/或UL区域。
举例来说,第二特殊子帧配置、小区专用的特殊子帧配置和/或可在SIB中提供的特殊子帧配置可以是具有很大的间隙的特殊子帧配置,例如图4所示的特殊子帧配置0或5,其中所述配置分别显示了具有10个符号和9个符号的间隙。作为示例,在不需要很大间隙的小区中可以指示具有很大间隙的配置。该间隙可以用于顾及延迟或定时提前。在大型小区中可能会需要或使用很大的间隙。作为示例,通过在小型小区中指示或使用具有很大间隙的配置,能够使得理解新的子帧(例如具有更大的UL和/或DL区域)的WTRU使用特殊子帧来取代由SIB配置的特殊子帧。
所述替换可以依照一种配置执行,其中所述配置可被广播,可以是WTRU专用的和/或可以是WTRU群组专用的。e节点B或小区可以提供一种配置。配置可以借助物理层信令来提供,例如在DCI格式中提供。配置可以借助高层信令来提供,例如借助无线电资源控制(RRC)信令或广播信令来提供。
特殊子帧可以包括和/或可以始于DL部分。DL部分可以包括DL控制区域的至少一部分。在DL控制区域中可以包含PCFICH、PHICH、PDCCH、EPDCCH和/或CRS中的一个或多个。在DL部分之后可以跟随UL部分。作为示例,在DL部分与UL部分之间可以存在一个不执行传输的间隙。DL部分可以包括DL数据区域。更进一步,在DL数据区域中可以包含EPDCCH和/或物理下行链路共享信道(PDSCH)中的一个或多个。
e节点B可以在DL部分中执行传输。e节点B可以在DL控制区域中执行传输。e节点B可以在DL部分和/或DL控制区域中传送PCFICH、PHICH、PDCCH、EPDCCH和/或CRS中的至少一个。e节点B可以在DL数据部分和/或DL数据区域中传送EPDCCH和/或PDSCH。
WTRU可以在DL部分中执行接收。WTRU可以在DL控制区域中执行接收。WTRU可以在DL部分和/或DL控制区域中监视和/或接收PCFICH、PHICH、PDCCH、EPDCCH和/或CRS中的至少一个。WTRU可以在DL数据部分和/或DL数据区域中监视和/或接收EPDCCH和/或PDSCH。
UL部分可用于携带诸如PUCCH之类的UL控制信息。UL部分可用于携带诸如PUSCH之类的UL数据。PUCCH和/或PUSCH设计可以基于特殊子帧配置而被适配,例如基于特殊子帧的UL部分。
WTRU可以在UL部分中执行传输。WTRU可以在UL部分中传送PUCCH和/或PUSCH中的至少一个。e节点B可以在UL部分中执行接收。e节点B可以在UL部分中接收PUCCH和/或PUSCH中的一个或多个。
在图4所示的关于特殊子帧配置的示例中,UL部分可被局限于1或2个符号。为了将特殊子帧用于PUCCH和/或PUSCH,UL部分有可能会更大。在表400所示的例示配置中,间隙大小可以高达10个符号。很大的符号数量可以对应于大到100千米的小区。然而,如此大量的间隙符号不会被用于较小的小区。
其他特殊子帧配置也是可以使用的。举例来说,特殊子帧配置可以包含以下的至少一项或多项。在一个例示配置中,特殊子帧可以包含UL部分,其后跟随的是DL部分,作为示例,在UL与DL部分之间是没有间隙的。
并且,在一个例示配置中,特殊子帧可以包含处于UL部分之前的间隙。处于UL部分之前的间隙可以始于特殊子帧开端,例如在特殊子帧跟随DL子帧的时候或者在特殊子帧跟随子帧且所述子帧的至少一部分可以是DL部分的时候。
此外,在一个例示配置中,特殊子帧可以包含跟随有间隙的DL部分。跟随有间隙的DL部分可以位于特殊子帧末端,例如在下一个子帧可以是UL子帧的时候,或者在下一个子帧的第一部分可以是UL部分的时候。
特殊子帧可以包括DL部分、间隙以及UL部分的多个实例。举例来说,特殊子帧可以具有或者可以包括DL部分、间隙和UL部分的两个实例。在一个示例中,至少一个DL部分可以包括控制区域。在进一步的示例中,所有的DL部分都可以包括控制区域。
特殊子帧可以用于创建自包含子帧。在一个示例中,举例来说,自包含子帧可以可供WTRU在该子帧的DL部分接收DL许可和/或DL数据以及可供WTRU在该子帧的UL部分传送关于DL许可和/或DL数据的HARQ反馈的子帧。HARQ反馈可以在该子帧的UL部分中在PUCCH信道上传送。
在进一步的示例中,作为示例,自包含子帧可以是可供WTRU在该子帧的DL部分中接收UL许可的子帧,并且所许可的资源可以是该子帧的UL部分。在另一个示例中,举例来说,自包含子帧可以是可供WTRU在该子帧的DL部分中接收UL许可以及可供WTRU在该子帧的UL部分进行UL传输的子帧。
这里的示例还描述了为WTRU配置特殊子帧的处理。作为示例,WTRU还可以确定何时为诸如PUCCH或PUSCH传输之类的UL传输使用特殊子帧。举例来说,许可(例如DL许可或UL许可)中的动态指示可以指示使用特殊子帧(例如用于PUCCH或PUSCH传输),并且WTRU可以基于诸如与许可相关的定时来确定将哪一个特殊子帧用于UL传输。
作为示例,特殊子帧可被配置和/或用于PUCCH、PUSCH和/或HARQ反馈的UL传输。在这里可以提供和/或使用关于一个或多个特殊子帧配置的集合。作为示例,该集合可以借助RRC专用或广播信令之类的高层信令来提供。
特殊子帧配置可以指示用于特殊子帧的以下的一项或多项信息:特殊子帧中的DL、UL和/或间隙部分的数量;特殊子帧内部的DL、UL和/或间隙部分的定位或位置;特殊子帧中的DL、UL和/或间隙部分的大小;用于特殊子帧配置或者与之关联的索引或其他标识符;特殊子帧中的一个或多个DL部分可用于的用途;和/或特殊子帧中的一个或多个UL部分可以用于的用途。
作为示例,特定子帧中的UL和/或DL部分可被用于的用途可以与特殊子帧配置分开指示。
所提供的配置(例如ConfigSF)可以指示哪些子帧可被用作特殊子帧。ConfigSF可以指示所指示的子帧(例如所指示的每一个子帧或是所指示的所有子帧)可被用于的用途,例如UL用途。UL用途可以是HARQ反馈、PUCCH传输、PUSCH传输和/或SRS传输中的至少一个。作为示例,ConfigSF可以通过其标识符来指示所述ConfigSF所指示的一个或多个(例如每一个或全部)子帧的特殊子帧配置。
ConfigSF还可以指示哪些子帧可被用作DL子帧。在一个示例中,ConfigSF可以或者还可以指示哪些子帧可被完全用作DL子帧。被指示成DL子帧的子帧可以是ConfigCell中的UL或特殊子帧。
ConfigSF可以借助高层信令来配置,例如RRC信令、广播信令或所有这二者。ConfigSF可以借助物理层信令来配置,例如采用DCI格式。所述信令可以是小区专用的、WTRU专用的和/或WTRU群组专用的。ConfigSF可被周期性地配置和/或更新。
作为示例,第一ConfigSF可以借助高层信令和/或以半静态的方式配置。在一个示例中,举例来说,第一ConfigSF可以是借助高层信令和/或以半静态的方式通告的基准ConfigSF。第二ConfigSF则可以是以动态和/或周期性的方式用信号通告的。所述第二个ConfigSF可以覆盖第一ConfigSF。
第二ConfigSF可以在一个时间长度(例如特定的时间长度)上是适用和/或有效的。WTRU至少可以使用ConfigSF来确定哪些子帧至少可被偶尔用作特殊子帧。
作为示例,DL和/或UL许可可以指示WTRU将特殊子帧用于UL传输或是接收DL传输。该特殊子帧可以在ConfigSF中指示。UL传输可以是或者可以包括UL中的HARQ反馈传输、PUCCH传输和/或PUSCH传输。DL传输可以是或者可以包括DL(例如PHICH上)的HARQ反馈传输、PDCCH和/或EPDCCH传输、和/或PDSCH传输。
举例来说,DL许可可以指示是否能将特殊子帧用于PUCCH传输和/或针对DL传输的HARQ反馈(例如在UL和/或PUCCH中)。举例来说,WTRU可以以接收将特殊子帧用于PUCCH和/或HARQ反馈的指示为基础而在特殊子帧中传送PUCCH和/或HARQ反馈。
作为示例,用于UL传输、PUCCH传输和/或用于HARQ反馈的子帧或特殊子帧可以依照以下的一项或多项而被指示给WTRU和/或由WTRU确定:所述子帧或特殊子帧可以是在ConfigSF中指示的;在DL许可中可以使用将哪一个子帧用作特殊子帧;该特殊子帧可以是在诸如ConfigCell中被指示成MBSFN子帧的子帧;该特殊子帧可以是满足判据的下一个特殊子帧或或者在ConfigSF中指示的满足判据的下一个子帧,其中所述判据可以是特殊子帧的开端或是特殊子帧的一部分(例如UL部分)在接收DL许可或DL数据的时间(例如子帧、TTI、符号、时间采样、时隙等等)之后超出了阈值时间量(例如以子帧、TTI、符号、时间采样、时隙等等为单位);可供使用的特殊子帧可以始于在接收DL许可或DL数据的的子帧之后的至少多个(例如n个)TTI;可供使用的特殊子帧的UL部分可以处于在接收DL数据的时隙开始之后至少多个(例如n个)TTI开始的时隙之中;特殊子帧与接收DL许可的子帧可以是相同的子帧,例如当前的特殊子帧;作为示例,如果当前子帧满足判据,那么特殊子帧可以是当前的特殊子帧,其中所述判据可以是当前特殊子帧的UL部分的开端(或是一部分)超出了接收DL许可或DL数据的时间(例如TTI、符号、时间采样、时隙等等)之后的阈值时间量(例如以TTI、符号、时间采样、时隙等等为单位);和/或作为示例,如果UL部分始于接收DL许可或DL数据的时间之后的至少多个(例如n个)TTI、符号和/或时间采样,那么可以使用当前特殊子帧的UL部分。
TTI的时间单位可以采用子帧、TTI、符号、时间采样和/或时隙中的至少一个。DL许可可以指示可用于PUCCH和/或HARQ反馈的特殊子帧的特殊子帧配置。
特殊子帧可被用于PUCCH和/或HARQ反馈传输。举例来说,如果WTRU在DL许可中接收到可将特殊子帧用于PUCCH传输和/或HARQ反馈(例如在UL和/或PUCCH)的指示,那么WTRU可以在特殊子帧中传送PUCCH和/或HARQ反馈。所述特殊子帧可以是这里描述的特殊子帧。举例来说,该特殊子帧可以是在ConfigSF中指示的子帧。该特殊子帧可以是满足判据的下一个特殊子帧或者在ConfigSF中指示的满足判据的下一个特殊子帧。所述判据可以如上所述。作为示例,如果当前特殊子帧满足如这里描述的判据,那么该特殊子帧可以是当前的特殊子帧。
这里的示例中使用的替换和切换是可以互换使用的。在一个示例中,作为示例,特殊子帧可被替换成UL和/或DL子帧,以便发送HARQ反馈。相应地,在一个示例中,UL和/或DL子帧可被切换到特殊子帧。在另一个示例中,两个DL子帧可被切换到特殊子帧。在另一个示例中,两个UL子帧可被切换到特殊子帧。在进一步的示例中,两个以上的UL和/或DL子帧可被切换到特殊子帧。在一个示例中,切换到特殊子帧的一个或多个子帧可被用于发送HARQ反馈。更进一步,所述替换可以借助于所广播的、WTRU专用的和/或WTRU群组专用的配置来进行。该配置可以由e节点B或小区来执行。该配置可以通过诸如DCI格式之类的的物理层信令来进行。此外,该配置还可以借助诸如RRC信令或广播信令之类的高层信令来进行。
WTRU可以在特殊子帧的UL部分中传送PUCCH和/或HARQ反馈,例如依照该子帧的特殊子帧配置来传送。作为示例,PUCCH和/或HARQ反馈在时间和/或频率上的位置可以取决于TTI、DL许可的位置和/或DL数据传输的位置。
对于可供WTRU传送PUCCH和/或HARQ反馈的特殊子帧来说,WTRU可以为其使用其在诸如高层信令、ConfigSF、相关联的DL许可和/或这里的示例中描述的其他方式中接收的特殊子帧配置。举例来说,如果WTRU在DL许可中接收到可以将特殊子帧用于PUCCH传输和/或HARQ反馈(例如在UL和/或PUCCH中)的指示,那么WTRU可以在可供其传送PUCCH和/或HARQ反馈的特殊子帧的DL部分中监视、尝试接收和/或接收DL传输。
图5B是示出了采用支持sTTI的配置而在被切换的特殊子帧上发送HARQ反馈的示例的图示。如图5B的示例所示,在使用具有TDD UL/DL子帧配置的旧有TTI时,WTRU可以在诸如子帧520之类的DL子帧上接收DL数据。所述TTI和子帧在时间上可以具有相同的长度,例如1毫秒。在一个示例中,TDD UL/DL子帧配置可以是TDD UL/DL子帧配置2。于是,WTRU可以在诸如子帧530之类的的UL子帧上发送针对子帧520的HARQ反馈。在图5B所示的另一个示例中,诸如子帧520之类的子帧可以对应于一个旧有TTI和两个sTTI,例如sTTI 540和541。WTRU可以在一个sTTI(例如sTTI 540)中接收DL数据。然后,该WTRU可以在与UL子帧相对应的sTTI(例如与UL子帧530相对应的sTTI 560)上传送关于sTTI 540的HARQ反馈。作为可以与子帧和/或旧有的、长或正常TTI相对应的sTTI的数量的非限制性示例,在这里使用了两个sTTI。WTRU不会在诸如特殊子帧557之类的特殊子帧上发送关于sTTI 540的HARQ反馈,作为示例,其原因在于作为旧有特殊子帧的特殊子帧557的UL部分558的长度不足以支持HARQ反馈传输。
为了改善时延,WTRU可以将DL子帧切换到特殊子帧。在图5B显示的示例中,与DLsTTI 550和555相对应的DL子帧525可被切换到特殊子帧580。该特殊子帧580可以至少包括UL部分585以及间隙部分583。WTRU可以在一个sTTI(例如sTTI 750)中接收DL数据。然后,WTRU可以在特殊子帧580的UL部分585传送关于sTTI 570的HARQ反馈。在图5B中可以看出,由于与在UL sTTI 560中发送HARQ反馈相比,WTRU可以更早地在特殊子帧580的UL部分585发送HARQ反馈,因此可以采用这种方式来改善时延。如图5B中的实施例进一步显示的那样,HARQ反馈可以在与接收到相应DL数据之后的至少四个sTTI最为接近的UL位置发送,例如在可以支持HARQ反馈传输的最接近的位置发送。
PUSCH传输可以使用特殊子帧。这里描述的将特殊子帧用于PUCCH传输的示例可被应用于将特殊子帧用于PUSCH传输的处理。举例来说,这里描述的涉及PUCCH传输的DL许可可以被涉及PUSCH传输的UL许可所取代。
举例来说,UL许可可以指示是否能将特殊子帧用于PUSCH传输。该特殊子帧可以是满足判据的下一个特殊子帧,或者是在ConfigSF中指示的满足判据的下一个特殊子帧。所述判据可以具有针对PUCCH传输所描述的形式,其中UL许可被DL许可所取代。
作为示例,所述判据可以是特殊子帧的开端或是特殊子帧的一部分(例如UL部分)在接收到UL许可的时间(例如子帧、TTI、符号、时间采样、时隙等等)之后超出阈值时间量(例如以子帧、TTI、符号、时间采样、时隙等等为单位)。
特殊子帧与接收UL许可的子帧(例如当前的特殊子帧)可以是相同的子帧。举例来说,如果当前特殊子帧满足判据,那么所述特殊子帧可以是当前特殊子帧。所述判据可以具有针对PUCCH传输所描述的形式,其中UL许可被DL许可所取代。
作为示例,所述判据可以是当前特殊子帧的UL部分的开端(或是其一部分)在接收到UL许可的时间(例如TTI、符号、时间采样、时隙等等)之后超出了阈值时间量(例如以TTI、符号、时间采样、时隙等等为单位)。
举例来说,如果WTRU在UL许可中接收到表明可以将特殊子帧用于PUSCH传输的指示,那么WTRU可以在特殊子帧中传送PUSCH。该特殊子帧可以是这里描述的特殊子帧。举例来说,该特殊子帧可以是满足判据的下一个特殊子帧或是在ConfigSF中指示的满足判据的下一个特殊子帧。所述判据可以如上所述。作为示例,如果当前特殊子帧满足如这里所述的判据,那么该特殊子帧可以是当前特殊子帧。
WTRU可以在特殊子帧的UL部分传送PUSCH,例如依照该子帧的特殊子帧配置来传送。举例来说,PUSCH在时间和/或频率上的位置可以取决于TTI和/或UL许可位置。作为示例,如果WTRU在UL许可中接收到表明可以将特殊子帧用于PUSCH传输的指示,那么该WTRU可以在可供其传送PUSCH的特殊子帧的DL部分中监视、尝试接收和/或接收DL传输。在将特殊子帧用于PUSCH传输的时候,举例来说,来自e节点B的DL中的HARQ反馈可以依照某种配置或规则而在特殊子帧的DL子帧或DL部分提供。UL许可(或是采用DCI格式且包含了UL许可的其他信息)可以包括或者标识所要使用的配置或规则。举例来说,如果接收到NACK或者没有接收到ACK,WTRU的重传可以依照配置或规则来进行。所述配置或规则可以在UL许可中或是与之一起指示。
PUCCH传输可以使用特殊子帧UL符号。举例来说,PUCCH传输可以使用可以与特殊子帧的UpPTS符号或是特殊子帧的UpPTS部分相对应的特殊子帧的UL符号和/或时间采样。作为示例,特殊子帧可以包括多个符号(例如NS符号)或者以之为结束,其中所述多个符号可以是UL符号或UpPTS符号。作为示例,如图4中依照UpPTS所示,所述符号的数量(该数量可被描述成是以符号为单位的长度)可以是1或2。一个或多个NS符号可被用于(例如通常被用于或者保留给)SRS传输。SRS传输可以由e节点B触发。所述SRS传输可以用于UL信道测量,例如偶尔的UL信道测量。作为示例,NS符号中可用的资源至少有时不会被使用。所述NS符号中的可用资源可以用于在TDD特殊子帧中创建附加的PUCCH传输时机,例如短或缩短的PUCCH(sPUCCH)传输时机。特殊子帧配置中的sPUCCH传输时机可以与特殊子帧配置无关。举例来说,sPUCCH传输时机可以用于HARQ反馈,以便减小RTT时延。
作为示例,当可用于UL传输的符号少于旧有PUCCH使用的符号时,这时可以使用sPUCCH。在一个示例中,在使用UL sTTI来传送诸如HARQ反馈之类的UL控制信息时,这时可以使用sPUCCH。在另一个示例中,在特殊子帧中可用的UL符号可被限制在某个数量,例如1或2个符号,而这对于旧有的PUCCH设计而言有可能会太短。由此可以改为使用sPUCCH。
图6是示出了在特殊子帧的UpPTS中具有和不具有sPUCCH传输的HARQ反馈时延示例的图示。如图示600中的示例所示,TDD UL/DL配置2可以与旧有的PUCCH传输610一起使用,并且可以与UpPTS 660中的sPUCCH传输一起使用。在特殊子帧(例如特殊子帧的UpPTS)中可以允许执行sPUCCH传输。HARQ反馈可以用sPUCCH来传送。在该示例中,对于PDSCH接收的至少一些实例(例如HARQ反馈延迟>4个子帧或TTI的实例)来说,DL接收与HARQ反馈传输之间的时延可以减少1个子帧或TTI。在图6显示的示例中,k可以是PDSCH和与之对应的HARQ反馈之间的以子帧数量为单位的时间距离。通过在特殊子帧(例如UpPTS)中使用sPUCCH,可以将平均值k从6.25个子帧或TTI减少到5.5个子帧或TTI。
在图6显示的示例中,依照与旧有PUCCH传输610一起使用的TDD UL/DL配置2,WTRU可以在DL子帧0中接收PDSCH 620,以及在特殊子帧1中接收PDSCH 630。然后,WTRU可以在接收到PDSCH之后且经过了4个子帧的下一个可用UL子帧传送针对PDSCH的HARQ反馈,例如ACK或NACK,其中作为示例,所述下一个可用UL子帧可以是UL子帧7。这样一来,WTRU可以在UL子帧7中传送针对PDSCH 620的ACK或NACK 625以及针对PDSCH 630的ACK或NACK 635。
更进一步,依照与UpPTS 660中的sPUCCH传输一起使用的TDD UL/DL配置2,WTRU可以在DL子帧0中接收PDSCH 670,在特殊子帧1中接收PDSCH 680。然后,WTRU可以在接收到PDSCH之后且经过了4个子帧的下一个可用的特殊子帧或UL子帧中传送HARQ反馈,例如ACK或NACK,其中所述子帧可以是特殊子帧6。这样一来,WTRU可以在特殊子帧6中传送针对PDSCH 670的ACK或NACK 675以及针对PDSCH 680的ACK或NACK 685。结果,通过使用UpPTS660中的sPUCCH传输而不是旧有的PUCCH传输610,可以将反馈延迟减小1个子帧。
对于在(或者至少在)SRS资源上进行的sPUCCH传输来说,WTRU可被配置成具有一组参数。在一个示例中,该参数可以是或者可以包括为SRS定义、配置和/或使用的参数集合。在另一个示例中,该参数可以是或者可以包括为SRS定义、配置和/或使用的参数集合的子集。所述参数可以包括与资源位置有关的信息或是用以确定位置信息的信息。该位置信息可以包括频率资源、带宽和/或资源块(RB)。SRS可以包括周期性和/或非周期性的SRS。SRS可以包括触发类型0和/或类型1的SRS。该参数集合可以是或者可以包括与SRS(类型0和/或类型1)参数无关的一个或多个参数。举例来说,该组参数可以是或者可以包括与SRS(类型0和/或类型1)参数无关的所有参数。
多个参数集合可被配置和/或使用。不同的WTRU或是WTRU群组可被配置单独的参数和/或可以使用单独的参数。作为示例,参数集合的数量(例如三个)与被配置成用于SRS触发类型1和/或DCI格式4的参数集合的数量(例如三个)可以是相同的。WTRU可使用哪个参数集合可以用半静态的方式(例如由通过高层信令)或者用动态的方式(例如通过物理层信令)配置或指示。
用于sPUCCH传输的特殊子帧资源的可用性可以通过高层信令或物理层信令(例如借助DL控制信道或DCI格式)而被配置、指示和/或许可。特殊子帧资源的可用性可以在与该指示相同的子帧中或是稍后的特殊子帧中立即生效,例如在可用于sPUCCH的下一个特殊子帧或下一个特殊子帧生效。特殊子帧资源可以是或者可以包括UL符号或资源,UpPTS符号或资源和/或SRS符号或资源。
用于sPUCCH传输的特殊子帧资源的可用性和/或用法可以取决于帧配置(例如TDDUL/DL配置)。例如,特殊子帧资源可被提供用于和/或可以用于与所有PDSCH接收事件或是其子集有关的sPUCCH传输。特定子帧资源可被提供用于和/或可以用于与相应的HARQ反馈可能遭遇很长延迟(例如大于4或5个子帧)的所有PDSCH事件或是其子集相关的sPUCCH传输。该延迟可以取决于帧配置。WTRU可以在不需要任何附加信令的情况下确定用于sPUCCH传输的资源(例如特殊子帧资源)的可用性或不可用性。例如,对于图6所示的UL/DL配置2,特殊子帧的可用性和/或用法可以应用于(例如仅仅应用于)与子帧4中的PDSCH 640、690的接收以及子帧9中的PDSCH 650、669的接收相对的HARQ反馈。在使用旧有PUCCH的情况下,子帧4和9中的PDSCH 640、650的接收有可能遭遇到最长的HARQ反馈延迟,例如分别遭遇到HARQ反馈645和HARQ反馈655的最长延迟。在使用sPUCCH的情况下,子帧4和9中的PDSCH690、691的接收遭遇到的是较短的HARQ反馈延迟,例如分别遭遇到HARQ反馈695和HARQ反馈696的较短延迟,比方说1个子帧或1毫秒。
SRS可被配置成在频率上跨越作为若干个RB的倍数的RB(例如4个RB)。此外,SRS可被配置成在频率上跨越作为若干个RB的任意倍数的RB。所述sPUCCH还可以跨越可被SRS配置允许的若干个RB的(例如任何)倍数(例如4个RB)。举例来说,如果在指定配置中提供了单个UL符号的可用性,那么SRS带宽可被配置成与sPUCCH传输所需要的带宽一样大。作为示例,所传送的sPUCCH块可以在若干个RB上执行速率匹配或重复,以便实现更高的编码增益。
sPUCCH传输可以与SRS传输同时传送。SRS映射可以在子载波的子集(例如,每第二个子载波)上完成。未被使用的资源可以用于携带sPUCCH。作为示例,由于可以使用SRS来执行与PUCCH解调有关的信道估计,因此,sPUCCH传输不会附带(例如任何)UL DMRS。作为示例,如果同时传送SRS和sPUCCH,那么可以将一些SRS功率转移到到sPUCCH。这种转移将可以提升性能。
WTRU可以使用MBSFN子帧作为特殊子帧。在一个示例中,举例来说,至少一些WTRU可以在小区中将MBSFN子帧用作特殊子帧。在将DL子帧用作特殊子帧时,通过将可被用作特殊子帧的DL子帧配置成MBSFN子帧,可以允许向后兼容旧有WTRU。WTRU可以接收关于哪些MBSFN子帧可被用作特殊子帧的配置或指示。
在这里描述的示例中,术语MBSFN子帧可以替代术语特殊子帧,反之亦然,并且这仍然是与这里提供的示例相符的。
对于一些WTRU(例如旧有WTRU)来说,其不会在MBSFN子帧中预期得到DL许可、DL数据和/或CRS。作为示例,在未被用于DL控制的子帧的区域中可以使用MBSFN子帧来执行UL传输。作为示例,MBSFN子帧可以在不影响旧有WTRU的情况下被用于UL传输。
一些WTRU(例如LTE R10WTRU)可以盲解码MBSFN子帧中的DL控制信道,但是不会在MBSFN子帧的数据区域中期待CRS(举例来说,如果WTRU没有在该子帧中接收到许可)。作为示例,MBSFN子帧可以在影响诸如这些WTRU的情况下被用于UL传输。
WTRU可以在MBSFN子帧中监视和/或接收DL控制信道。所述DL控制信道可以指示是否可以将MBSFN子帧用作DL子帧或特殊子帧。
WTRU可以在UL许可和/或DL许可中接收关于是否可以将即将到来(或当前)的MBSFN子帧用作特殊子帧和/或用于UL传输的指示。如果WTRU确定即将到来的(或当前的)MBSFN子帧可被用作特殊子帧和/或可以用于UL传输,那么该WTRU可以依照判据来确定哪一个MBSFN子帧可以执行该处理。如果WTRU确定即将到来的(或当前的)MBSFN子帧可被用作特殊子帧和/或用于UL传输,那么WTRU可以在该子帧中执行UL传输。
作为示例,DL许可可以指示是否能将MBSFN子帧用作特殊子帧。DL许可可以用于指示是否能将MBSFN子帧用于PUCCH传输和/或针对DL传输的HARQ反馈(例如在UL和/或PUCCH上)。作为示例,如果WTRU基于DL许可中的指示确定可以将MBSFN子帧用于PUCCH传输和/或用于HARQ反馈,那么WTRU可以在所确定的子帧中传送PUCCH和/或HARQ反馈。
以下例示过程可以依照将MBSFN子帧用作特殊子帧的设计来使用。举例来说,在DL许可中可以指示将要使用哪一个MBSFN子帧。并且,DL许可和/或其他配置可以指示用于MBSFN子帧的特殊子帧配置。在另一个示例中,MBSFN子帧可以是满足判据的当前或下一个MBSFN子帧。所述判据可以是MBSFN子帧的开端或是MBSFN子帧的一部分(例如UL部分)(例如依照MBSFN子帧的特殊子帧配置)在接收DL许可或DL数据的时间之后超出阈值时间量。作为示例,所述阈值时间量可以用子帧、TTI、符号、时间采样、时隙等等来表述。并且作为示例,接收DL许可或DL数据的时间可以用子帧、TTI、符号、时间采样、时隙等等来表述。
在另一个示例中,可被使用的MBSFN子帧可以始于接收DL许可或DL数据的子帧之后的至少多个TTI,例如n个TTI。在一个附加示例中,可被使用的MBSFN子帧的UL部分(例如依照MBSFN子帧的特殊子帧配置)可以处于在接收DL数据的时隙开始之后且经过了至少多个(例如n个)TTI时开始的时隙。
更进一步,作为示例,如果当前的MBSFN子帧满足判据,那么MBSFN子帧可以是当前特殊子帧。所述判据可以是当前MBSFN子帧的UL部分(例如依照MBSFN子帧的特殊子帧配置)的开端(或一部分)在接收DL许可或DL数据的时间之后超出阈值时间量。作为示例,所述阈值时间量可以用子帧、TTI、符号、时间采样、时隙等等来表述。并且作为示例,接收DL许可或DL数据的时间可以用子帧、TTI、符号、时间采样、时隙等等来表述。在另一个实施例中,举例来说,如果当前特殊子帧的UL部分是在接收DL许可或DL数据的时间之后经过了至少多个(例如n个)TTI、符号和/或时间采样的时候开始的,那么可以使用所述UL部分。
作为示例,这里描述的在被配置成MBSFN子帧的子帧中进行的PUCCH传输的示例可被应用于在被配置成MBSFN子帧的子帧中实施的PUSCH传输。在这些示例中,在不丧失功能的情况下,DL许可可被替换成UL许可。
在这里提供了用于特殊子帧和可变大小的UL传输区域的UL信道设计示例。特别地,在这里提供了依照UL区域大小且关于所要传输的可变大小的UL区域的PUCCH和PUSCH设计示例。PUCCH和/或PUSCH可以依照可用于信道传输的时间来设计。所述信道设计可以包括时间和/或频率上的资源分配。
举例来说,特殊子帧中的PUCCH和/或PUSCH可以根据处于特殊子帧的UL部分之中(或是其中可用)的时间采样数量、符号、物理资源块(PRB)和/或资源元素(RE)中的至少一个来设计。此外,处于另一个时间跨度的PUCCH和/或PUSCH可以依照可用于该另一时间跨度的UL部分中(或者是其中可用)的时间采样数量、符号、物理资源块(PRB)和/或资源元素(RE)中的至少一个来设计。
特殊子帧中的PUCCH和/或PUSCH可以根据该特殊子帧中可用于UL传输的时间采样数量、符号、PRB和/或RE中的至少一个来设计。此外,另一时间跨度中的PUCCH和/或PUSCH可以依照所述另一个时间跨度中可用于UL传输的时间采样数量、符号、PRB和/或RE中的至少一个来设计。
特殊子帧中的PUCCH和/或PUSCH可以依照该特殊子帧中的PRB的频率位置和/或可用于UL传输的RE中的至少一个来设计。此外,另一个时间跨度中的PUCCH和/或PUSCH可以依照所述另一个时间跨度中的PRB的频率位置和/或可用于UL传输的RE中的至少一个来设计。
PUCCH的设计参数可以包括以下的PUCCH的一个或多个特性:频率位置;TTI;RE数量;PRB数量;跳频的使用;和/或诸如该子帧内部的起始符号、时间采样或其他时间单位。PUSCH的设计参数可以包括以下的PUSCH的一个或多个特性:TTI;跳频的使用;诸如该子帧内部的起始符号、时间采样或其他时间单位;UL参考信号(RS)(例如解调参考信号(DM-RS))的位置;和/或传输块大小(TBS)。
在特殊子帧中,PUCCH和/或PUSCH的一个或多个设计参数可以以特殊子帧的配置为基础或依据该特殊子帧的配置,例如可以或者预期传送PUCCH和/或PUSCH的特殊子帧的配置。WTRU可以基于或者依照特殊子帧配置来确定特殊子帧中的PUCCH和/或PUSCH的一个或多个设计参数。
特殊子帧配置可以包括以下的至少一项:以时间采样、符号和/或其他时间单元为单位的DL部分的大小;以时间采样、符号和/或其他时间单元为单位的UL部分的大小;和/或以时间采样、符号和/或其他时间单元为单位的间隙的大小。
特殊子帧配置可以包括该特殊子帧中的PUCCH资源分配。举例来说,特殊子帧配置可以包括该特殊子帧的一个或多个UL部分中的PUCCH资源分配。
在一个示例中,子帧可以具有多个可以用于UL传输(例如PUCCH和/或PUSCH传输)的符号数量S1。所述子帧可被配置和/或确定成占用或者被分配了C1个子载波。另一个子帧可以具有可用于UL传输(例如用于PUCCH和/或PUSCH传输)的符号数量S2。所述子帧可被配置和/或确定成占用或者被分配来了C2个子载波。如果S1<S2,那么C1有可能大于C2。诸如时间采样或时隙之类的别的时间单位可被这里描述的示例中的符号取代。用于UL传输的更多符号可以对应于用于UL传输的更少的子载波或RE。
WTRU可以基于为PUCCH分配的符号数量而被配置成具有PUCCH分配。该处理可以是基本的PUCCH分配方式。WTRU可以基于所述基本的PUCCH分配方式来确定在子帧中将多个(例如不同数量的)符号分配给PUCCH的PUCCH分配方式。所述基本分配方式可以使用S1个符号和C1个载波。WTRU可以确定使用了S2个符号的用于别的子帧的分配方式。用于其他子帧的分配方式可以包括子载波的数量,例如C2,和/或频率中的分配位置。用于其他子帧的分配方式可以依照S1、S2、C1和/或基本分配方式中的频率位置中的至少一个来确定。
在这里描述的实施例和示例中,PUSCH可以被PUCCH取代,反之亦然,并且仍旧与这里提供的示例相符合。应该了解的是,在一个或多个实施例和示例中可以使用所公开的特征/组件的任何组合。
图7A是示出了在具有所确定的特殊子帧配置的所确定的特殊子帧的所确定的资源的UL部分中的PUCCH上传送HARQ反馈的示例的图示。如图7A中的示例所示,WTRU可以接收时分双工(TDD)上行链路(UL)/下行链路(DL)子帧配置710。更进一步,WTRU可以接收具有关于为PUCCH传输使用特殊子帧的指示的DL许可715。然后,WTRU可以动态确定将哪一个子帧切换到特殊子帧,并且可以将所述子帧切换到特殊子帧720。更进一步,WTRU可以确定关于所确定的特殊子帧的特殊子帧配置725。并且,WTRU可以确定被确定用于PUCCH的特殊子帧的资源730。
然后,WTRU可以确定用于PUCCH的PUCCH资源和PUCCH设计参数735。更进一步,WTRU可以使用所确定的PUCCH资源和PUCCH设计参数而在具有所确定的特殊子帧配置的所确定的特殊子帧的所确定的资源的UL部分中的PUCCH上传送HARQ反馈740。
在一个示例中,WTRU还可以在DL子帧中接收DL数据。然后,WTRU可以在DL子帧之后且经过了至少四个sTTI时的所确定的特殊子帧中传送HARQ反馈。
在这里提供的示例中可以使用LTE保护波段。特别地,保护波段可被配置用于、确定用于和/或用于UL资源和/或DL资源。保护波段可被配置用于、被确定用于和/或被用于用以执行UL和/或DL中的HARQ反馈传输。保护波段可被配置用于、被确定用于和/或被用于用以执行HARQ反馈传输的UL资源和/或DL资源。
在这里,术语HARQ反馈、HARQ-ACK、HARQ指示以及ACK/NACK指示是可以互换使用的。此外,保护波段、辅载波、扩展载波以及第二频段在这里也是可以互换使用的。
图7B是示出了用于HARQ反馈的保护波段PRB配置的示例的图示。如图示700中的示例所示,在这里可以配置和/或使用保护波段A中的PRB 760和PRB 770以及保护波段B中的PRB 780和PRB 790。所述保护波段PRB配置和/或保护波段PRB的使用并不仅限于HARQ反馈传输。
在这里提供的示例中可以提供和/或使用保护波段PRB配置。保护波段中的PRB可被称为G-PRB,而系统带宽中的PRB则可以被称为S-PRB。术语PRB、PRB配对以及RB是可以互换使用的,并且仍旧与这里提供的实施例相符合。
一个G-PRB集合可以与一个S-PRB集合接近或相邻(例如在频率或PRB上)。在一个示例中,S-PRB的数量可以基于源自广播信道的指示(例如主信息块(MIB)或SIB)而被确定,并且G-PRB的数量可以基于以下的至少一项来确定:来自高层信令的指示;一个或多个系统参数(例如物理小区ID、系统带宽等等);和/或载波频率。
一个或多个G-PRB可被用于某种传输方案(或模式)配置。举例来说,如果WTRU被配置成具有短TTI传输方案(或模式),那么可以使用G-PRB。用于短TTI传输方案的高层信令可以包括关于G-PRB的全部或部分配置信息。
作为示例,基于对来自同步信道的物理小区ID(PCI)的检测和/或从广播信道获取的一个或多个系统参数,WTRU可以确定G-PRB配置。
一个或多个G-PRB可以位于紧接着最低S-PRB索引、紧接着最高S-PRB索引或是同时紧接着最低和最高S-PRB索引的位置。
在这里提供的示例中,TDD子帧配置可被提供给和/或用于保护波段PRB。在一个示例中,用于S-PRB以及用于一个或多个G-PRB的TDD配置(例如UL/DL子帧配置)可以独立配置的。在另一个示例中,用于一个或多个G-PRB的TDD配置可以是基于用于S-PRB的TDD配置来确定的。
图8是示出了以用于S-PRB的TDD配置为基础的用于G-PRB的TDD配置示例的图示。在图示800显示的示例中,第一TDD配置810可以用于S-PRB,第二TDD配置860可以用于一个或多个G-PRB,反之亦然。举例来说,第一TDD配置810可以是依照WTRU所接收的指示的TDDUL/DL配置0。第一和第二TDD配置可以用一个偏移来指示。举例来说,第一TDD配置可以从在一个或多个S-PRB中传送的广播信道(例如MIB)来指示,并且第二TDD配置可被指示成是与第一TDD配置的偏移。
第二TDD配置860可以基于第一TDD配置810来确定。由此可以应用以下的一个或多个示例。对于DL子帧或UL子帧,基于第一TDD配置,在第二TDD配置中可以使用相反方向的子帧。举例来说,如果子帧n在第一TDD配置中是DL子帧,那么该子帧n在第二TDD配置中是UL子帧。如图8中的示例所示,第一TDD配置810中的DL子帧811、816可被用作第二TDD配置860中的UL子帧861、866。并且,第一TDD配置810中的UL子帧813、814、815、818、819、820可被用作第二TDD配置860中的DL子帧863、864、865、868、869、860。在另一个示例中,第一TDD配置中用于子帧n的特殊子帧可以在第二TDD配置860中被UL子帧取代。在一个附加示例中,第一TDD配置中用于子帧n的特殊子帧可以在第二TDD配置中被用作特殊子帧。举例来说,第一TDD配置810中的特殊子帧812、817可被用作第二TDD配置860中的特殊子帧862、867。更进一步,对于第一TDD配置和第二TDD配置(例如DwPTS、UpPTS和/或Gap)来说,一个或多个特殊子帧属性可以是不同的。与第一TDD配置中的特殊子帧的UL部分相比,第二TDD配置中的特殊子帧的UL部分可以具有数量更多的上行链路符号(例如SC-FDMA符号)。
图9是示出了S-PRB与G-PRB之间的定时偏移示例的图示。在图示900显示的示例中,用于一个或多个G-PRB 960的TDD子帧的定时可以以用于一个或多个S-PRB 910的TDD子帧的定时为基础而被确定、配置或指示。
作为示例,通过使用定时偏移(Toffset),可以基于一个或多个S-PRB 910的定时(例如,用于S-PRB的子帧的定时)来确定或配置一个或多个G-PRB 960的定时(例如,用于G-PRB的子帧的定时)。定时偏移可以通过以下一个或多个示例而被确定或配置。Toffset可以基于短TTI的处理时间而被确定。所述短TTI的处理时间可以在广播信道、高层信令以及WTRU能力指示中的至少一个中指示。Toffset可以基于短TTI长度来确定。如果短TTI长度是Nshort[ms],那么Toffset可以是Nshort x Noffset[ms]。在一个示例中,Toffset可以通过高层信令来配置。在进一步的示例中,Toffset可以大于子帧长度,例如1毫秒。在另一个示例中,WTRU可以盲检测Toffset。举例来说,同步信号可以在预定时间位置的一个或多个G-PRB中发送。WTRU可以使用在G-PRB中传送的同步信号,并且可以可选的使用在S-PRB中传送的同步信号来确定Toffset。
在这里提供的示例中,HARQ反馈可以使用保护波段PRB。在S-PRB中可以传送PUSCH、PDSCH或是所有两者,并且在G-PRB中可以传送相关联的HARQ反馈。
一个或多个G-PRB可以用于PUCCH传输,其中作为示例,所述PUCCH传输可以携带或者包括与一个或多个S-PRB中的PDSCH传输相关联的HARQ反馈。更进一步,一个或多个G-PRB可以用于EPDCCH传输,其中作为示例,所述EPDCCH传输可以携带或者包括与一个或多个S-PRB中的PUSCH传输相关联的HARQ反馈。在这里,术语EPDCCH、机器类型通信(MTC)PDCCH(M-PDCCH)、短PDCCH(S-PDCCH)以及窄带PDCCH(NB-PDCCH)是可以交换使用的。与一个或多个UL传输相关联的HARQ反馈可以经由E-PDCCH来传送。举例来说,所传送的可以是带有群组无线电网络临时标识符(RNTI)的DCI,其中所述DCI可以携带与一个或多个UL传输相关联的HARQ反馈。一个或多个G-PRB可被用于PDSCH传输,其中作为示例,所述PDSCH传输可以携带或者包括与S-PRB中的PUSCH传输相关联的HARQ反馈。
图10是示出了HARQ反馈资源判定示例的图示。基于一个或多个S-PRB中的HARQ反馈资源可用性,可以将一个或多个G-PRB中的子帧子集用于HARQ反馈。作为示例,对于PDSCH(或PUSCH)传输来说,如果相关联的HARQ反馈资源在某个时间窗口内部的一个或多个S-PRB中可用,那么可以在一个或多个S-PRB中传送与PDSCH传输相对应的HARQ反馈。否则可以在一个或多个G-PRB传送相关联的HARQ反馈。
所述特定时间窗口可以是预先定义的。举例来说,如果在子帧n中使用一个或多个S-PRB来传送PDSCH,并且HARQ反馈资源在子帧n+k上的一个或多个S-PRB中是可用的,那么可以在一个或多个S-PRB中传送相关联的HARQ反馈。如果HARQ反馈资源在子帧n+k上的一个或多个S-PRB中不可用,那么可以在一个或多个G-PRB中传送相关联的HARQ反馈。在这里,k可以是一个正整数。此外,该特定时间窗口可以基于TTI长度来确定,例如基于短TTI长度来确定。在图示1000的示例中,k可以是1。如图示1000所示,WTRU可以接收和/或使用用于S-PRB 1010的TDD UL/DL子帧配置。作为示例,依照WTRU接收的指示,该配置可以是TDD UL/DL配置0。更进一步,WTRU可以在一个或多个G-PRB 1060中传送与S-PRB相关联的HARQ反馈。WTRU可以在DL子帧(例如DL子帧1015)中的S-PRB上接收PDSCH。处于DL子帧1015之后的一个子帧的S-PRB可以是没有足以携带HARQ反馈的UL资源的特殊子帧1020。WTRU可以在G-PRBUL子帧1050中传送与S-PRB DL子帧1015相关联的HARQ反馈。在另一个示例中,作为示例,由于DL子帧1040在UL子帧1030之后的1个子帧是可用的,WTRU可以在S-PRB UL子帧1030中传送PUSCH,并且可以在S-PRB DL子帧1040中接收与该传输相关联的HARQ反馈。作为示例,由于处于DL子帧1040之后的一个子帧处的子帧有可能是没有足以携带HARQ反馈的UL资源的特殊子帧1070,因此,WTRU可以在S-PRB DL子帧1040中接收PDSCH,并且可以在G-PRB子帧1080中传送以与该DL传输相关联的HARQ反馈。
在另一个示例中,HARQ反馈资源可以是(隐式地或明确地)在可用于PDSCH或PUSCH调度的相关联的下行链路控制信道中指示的。举例来说,在这里可以使用、预先定义或者配置两种类型的HARQ反馈资源,并且可以在相关联的下行链路控制信道中指示其中一种HARQ反馈资源类型。
例如,第一类型的HARQ反馈资源可以是可被定位在一个或多个S-PRB中或者在所述一个或多个S-PRB中传送的HARQ反馈资源,而第二类型的HARQ反馈资源则可以是可被定位在一个或多个G-PRB中或者可以通过该一个或多个G-PRB传送的HARQ反馈资源。HARQ反馈资源的类型可以基于以下的一项或多项来定义:用于下行链路控制信道的RNTI,所使用的(增强型)控制信道元素((E)CCE)索引,和/或所使用的PRB索引。HARQ反馈资源的类型还可以在DCI中指示。
在一个示例中,一个或多个S-PRB中的sTTI传输可以使用一个子帧子集,并且基于一个或多个S-PRB中用于sTTI传输的子帧子集,可以确定可用于HARQ反馈(例如用于HARQ反馈传输)的一个或多个G-PRB中的相应的子帧子集。
用于一个或多个S-PRB中的sTTI传输的子帧子集可以为e节点B和/或WTRU所知。举例来说,用于sTTI的子帧子集可以基于TDD子帧配置而被预先确定。用于sTTI的子帧子集可以在广播信道中指示。所述用于sTTI的子帧子集可以借助高层信令而以WTRU专用的方式配置。
在这里描述了使用HARQ缓冲器和进程处理的示例,其中包括DL HARQ处理和ULHARQ处理。作为示例,在DL中可以应用HARQ处理。HARQ实体可以在DL中将在共享信道(例如DL共享信道(DL-SCH))上接收的HARQ信息以及相关联的TB定向到诸如WTRU上的相应HARQ进程。对于TTI或子帧来说,所预期的可以是至少一个TB。举例来说,如果没有将物理层配置成用于执行空间复用(例如DL空间复用),那么所预期的可以是一个TB。如果将物理层配置成用于执行空间复用(例如DL空间复用),那么可以预期一个或两个TB。TB可以是在PDSCH上接收的。
在所接收的资源许可(例如所接收的DL许可)中可以指示(例如由e节点B)和/或接收(例如由WTRU)与TTI和/或传输(例如DL传输)相关联的HARQ进程。在这里,术语许可、资源许可以及指配是可以互换使用的。
在UL中可以应用HARQ处理。作为示例,HARQ实体可以在一个TTI(例如被指示了UL许可的TTI)上标识应该发生所针对的UL传输的一个或多个HARQ进程。HARQ实体可以将以下的一个或多个信息路由到一个或多个恰当的HARQ进程:所接收的HARQ反馈(例如ACK/NACK信息)、调制和编码方案(MCS)和/或一个或多个资源,例如用于传输的一个或多个时间/频率资源。至少一些此类信息可以是从物理层接收的。至少一些此类信息可以是在UL许可中接收的,例如在与UL传输相关联的UL许可中。HARQ反馈可以适用于同步的UL HARQ。对于一些UL HARQ(例如异步的UL HARQ)来说,HARQ反馈是不适用的。
在所接收的资源许可中可以指示(例如由e节点B)和/或接收(例如由WTRU)与TTI关联和/或可能或者应该发生相对应的传输的HARQ进程。所接收的资源许可可以是所接收的UL许可。
一个或多个HARQ进程可以与指定的TTI相关联。例如,在物理层未被配置用于空间复用(例如UL空间复用)时,一个HARQ进程可以与指定TTI相关联。在将物理层被配置成用于空间复用(例如UL空间复用)时,两个HARQ进程可以与指定TTI相关联。TB可以在PUSCH上传送。
WTRU可以被配置为在UL和/或DL中使用多个HARQ进程,例如在UL和DL中使用8个HARQ进程。HARQ进程的数量可以用于确定需要WTRU保持以支持传输和重传所需要的存储器总量(例如软缓冲存储器总量)。基于最大TB大小和HARQ进程的数量,WTRU可以确定需要其保持以支持UL/或DL中的维护的最大量的存储器以支持UL和/或DL中的传输和重传。最大TB大小可以取决于TTI长度、被允许的MCS和/或其他参数。
举例来说,系统(例如LTE-A系统)可以使用固定或已知的(例如1毫秒)的TTI长度(例如第一TTI长度)。WTRU可以具有可以与UL和/或DL中的多个HARQ进程(例如8个HARQ进程)相关联的存储器大小。用于每一个HARQ进程的存储器大小可以与用于固定或已知的TTI长度的最大TB大小相对应。
作为示例,诸如sTTI之类的另一个TTI(例如第二TTI)可供WTRU使用或者用于所述WTRU,以便减小系统中的时延。所述第二TTI可以短于第一TTI,并且可被称为短TTI(sTTI)。第一TTI至少在一些时候(例如一些或所有时间)是会被使用的。并且第二TTI至少在一些时候(例如一些或全部时间)同样会被使用。第一和第二TTI有时(例如在一些或全部时间)可以同时使用或者在相邻的时间间隔中使用。举例来说,第一TTI可以在第一子帧中使用,并且第二TTI可以在下一个相邻子帧中使用。
在这里提供了针对多个TTI长度来处理HARQ进程和HARQ缓冲器的示例。在一个示例中,在第一和第二TTI长度中的每一个单独的TTI,所使用的可以是单独的HARQ进程和HARQ缓冲器。
图11是示出了用于两个TTI长度的单独的HARQ进程和HARQ缓冲器的示例的图示。作为示例,这两个TTI长度可以是TTI 1和TTI 2。如1100中的示例所示,用于TTI 1和TTI 2的可以使用单独的HARQ进程和HARQ缓冲器。举例来说,HARQ进程缓冲器1110可被用于TTI1,并且HARQ进程缓冲器1160可被用于TTI 2。然而,在没有减少HARQ进程数量的情况下,单独的进程和缓冲器会导致WTRU中所需要的存储量增加。对于图11中的示例来说,用于TTI 1的8个HARQ进程1110加上用于TTI 2的8个HARQ进程1160都会需要存储器。这种布置有可能会浪费存储器,例如在其中一个TTI(例如TTI 1或TTI 2)在某个时段中与另一个TTI(例如TTI 2或TTI 1)相比更频繁使用的时候。在该示例中,用于TTI 1的是8个HARQ进程,并且用于TTI 2的是8个HARQ进程。任意数量的HARQ进程均可用于TTI 1和TTI 2中的每一个,并且仍旧与这里描述的示例相符合。
在一个示例中,举例来说,通过减少进程数量,可以保持存储器大小。举例来说,通过减小HARQ进程的数量,可以保持存储器大小。
图12是示出了用于两个TTI长度的单独的HARQ处理和HARQ缓冲器的另一示例的图。如图示1200中的示例所示,HARQ进程缓冲器1210可被用于TTI 1,例如在可以使用TTI 1而没有TTI 2的时候。在同时使用TTI 1和TTI 2时,所使用的可以是HARQ进程缓冲器1260。TTI 1可以是正常TTI。TTI2可以是sTTI。
在图12显示的示例中,第二TTI(例如TTI 2)可以是sTTI,并且其长度可以是第一TTI(例如TTI 1)的一半。对于HARQ进程缓冲器1260来说,用于第一TTI的进程数量可以减少到6个,并且用于第二TTI的进程数量可被配置成4个,由此可以在数量上使用与用于HARQ进程缓冲器1210的第一个较长的TTI的8个进程所需要的存储器的数量等效的存储器。然而,作为示例,如果减少从用于TTI 1的1210和1110以及用于TTI 2的1160中的8个进程中减少第一或第二TTI的进程的数量,那么由于在重传旧数据的同时可用于新数据的缓冲器减少,因此将会因为重传而导致新的传输延迟。并且,如果以固定或半静态的方式配置逐个TTI长度的HARQ进程或缓冲器的数量,那么有可能会导致效率低下,作为示例,其原因在于与一个TTI相比,有时会更多地使用另一个TTI。
由此,在这里提供的示例中公开了用于在多个TTI中共享用于HARQ处理的存储器的更进一步的替换手段。特别地,在一个或多个示例中,在两个或更多个TTI长度之间可以共享或划分用于HARQ处理的存储器、缓冲器或进程中的一个或多个。作为示例,所述共享或划分处理可以以动态的方式配置和/或指示。应该理解的是,在这里,TTI和TTI长度是可以互换使用的。
第一TTI可以是或者可以对应于以下的一项或多项:常规TTI,正常TTI,标称TTI,长TTI,可供WTRU使用或被配置成使用的最长TTI,子帧(SF),1毫秒,一组符号(例如14个符号)等等。在这里,第一TTI可被称为nTTI。所述nTTI可被称为正常TTI。
第二TTI可以是或者可以对应于以下的一项或多项:短TTI,长度缩减的TTI,短于nTTI的TTI,子帧的一部分,小于子帧,小于1毫秒,时隙,一组符号(例如多个符号,比方说1、2、3、4和7个符号)等等。在这里,第二TTI可被称为sTTI。
用于nTTI的HARQ进程或缓冲器可被用于多个sTTI。HARQ进程或缓冲器可被用于的sTTI的数量可以取决于sTTI长度和/或nTTI长度。举例来说,HARQ进程或缓冲器可被用于的sTTI的数量可以是TTI长度的函数,例如可被配置的sTTI长度。作为示例,WTRU可以至少基于sTTI长度(例如可被配置的最长sTTI长度)来确定可以使用HARQ进程或缓冲器的sTTI的数量。e节点B可以将WTRU配置成使用具有一个或多个长度的一个或多个sTTI,并且WTRU可以至少基于该WTRU可被配置成使用的sTTI长度来确定可以使用HARQ进程或缓冲器的sTTI的数量。
作为示例,可以使用HARQ进程或缓冲器的sTTI的数量可以由e节点B借助高层信令来配置,例如RRC信令。WTRU可以接收所述配置。该WTRU可以至少基于所述配置来确定可以使用HARQ进程或缓冲器的sTTI的数量。
举例来说,sTTI的长度可以是nTTI的一半。作为示例,当sTTI的长度是nTTI长度的一半或小于一半时,用于一个nTTI的一个HARQ进程或缓冲器可以用于两个sTTI。作为示例,当sTTI的长度小于或等于nTTI的四分之一时,例如当sTTI的长度是3个符号并且nTTI的长度是14个符号时,用于一个nTTI的一个HARQ进程或缓冲器可用于四个sTTI。
图13是示出了用于在两个TTI长度之前链接或共享HARQ进程、HARQ缓冲器或是这两者的示例的图示。在这里描述的示例中,这两个TTI长度可以是nTTI和sTTI。在这里描述的一个或多个实施例及示例中,HARQ进程和HARQ缓冲器是可以相互替换的,并且仍旧是与这里提供的示例相符合的。更进一步,短语HARQ缓冲器和HARQ进程缓冲器在这里是可以互换使用的。在这里,术语过程/缓冲器可用于代表进程、缓冲器或是所有这两者。进程/缓冲器可以是HARQ进程/缓冲器。
在图示1300显示的示例中,一个nTTI HARQ缓冲器可被划分和/或用于两个sTTIHARQ缓冲器。nTTI HARQ缓冲器1310的数量可以是一个或多个。在示例1300中,一个或多个nTTI HARQ缓冲器1310可被划分和/或用于一个或多个sTTI HARQ缓冲器1360。举例来说,nTTI HARQ缓冲器2 1320可被划分和/或用于sTTI HARQ缓冲器2a 1330和2b 1340。更进一步,nTTI HARQ缓冲器4 1350可被划分和/或用于sTTI HARQ缓冲器4a 1380和4b 1370。
nTTI HARQ缓冲器可被用于nTTI数据或sTTI数据。在一个示例中,nTTI HARQ缓冲器不会被同时用于nTTI数据和sTTI数据。在图13显示的示例中,nTTI HARQ缓冲器2和4可被用于sTTI数据,而其他nTTI HARQ缓冲器则可以用于nTTI数据。HARQ缓冲器可以代表可供HARQ进程使用的存储器。HARQ缓冲器既可以处于也可以不处于存储器中的固定位置。HARQ缓冲器可以包括连续的存储器位置,不连续的存储器位置或是所有这二者。
图14是示出了用于多个TTI长度使用情况的例示时间线的图示。在图示1400显示的示例中,执行传输的时段是可以与1毫秒相对应的子帧。子帧是传输时段的非限制性示例。nTTI可以是与该时段(例如子帧)相同的持续时间。sTTI有可能短于nTTI。举例来说,sTTI的长度可以是nTTI的的一半或者小于nTTI的一半。在示例1400中,在子帧2、4和8中可以使用sTTI,而在其他每一个子帧中都会使用nTTI。在子帧2和8中可以使用一个sTTI。在子帧4中则可以使用2个sTTI。
对于图13和图14显示的示例而言,WTRU可以在子帧中采用如下方式来将HARQ进程、缓冲器或所有这两者用于数据(例如用于传送或接收数据):子帧#0(SF0)中的nTTI可以使用处理/缓冲器0,SF1中的nTTI可以使用进程/缓冲器1,SF2中的sTTI可以使用进程/缓冲器2的前半部分(例如进程/缓冲器2a),SF3中的nTTI可以使用进程/缓冲器3,SF4中的第一个sTTI可以使用进程/缓冲器2的后半部分(例如进程/缓冲器2b),SF4中的第二个sTTI可以使用进程/缓冲器4的前半部分(例如进程/缓冲器4a),SF5中的nTTI可以使用进程/缓冲器5,SF6中的nTTI可以使用进程/缓冲器6,SF7中的nTTI可以使用进程/缓冲器7,SF8中的sTTI可以使用进程/缓冲器4的后半部分(例如进程/缓冲区4b)。由此,sTTI数据可以用多个HARQ缓冲器中的下一个可用的sTTI缓冲器来传送/接收。这样一来,缓存器可以根据需要而被用于nTTI、sTTI或所有这二者。如果具有N个HARQ缓存器(例如N=8),那么在以后子帧中进行的传输/重传可以重新使用这N个HARQ缓冲器。
在这里提供了用于链接sTTI和nTTI HARQ进程/缓冲器的示例。举例来说,一个或多个HARQ进程和/或缓冲器可被实施链接、共享或重叠处理中的至少一个处理。作为示例,第一HARQ进程和/或缓冲器可以与第二HARQ进程和/或缓冲器链接、共享或重叠。在这里描述的实施例及示例中,术语链接、重叠和共享是可以相互替换的,并且仍旧是与这里提供的示例相符合的。
图13显示了一个能将nTTI HARQ进程/缓冲器k与sTTI HARQ进程/缓冲器ka和sTTIHARQ进程/缓冲器kb相链接、共享或重叠的示例,其中k=0、1、...7。作为示例,nTTI HARQ进程/缓冲器0可以与sTTI HARQ进程/缓冲器0a以及sTTI HARQ进程/缓冲器0b链接、共享或重叠。更进一步,nTTI HARQ进程/缓冲器2可以与sTTI HARQ进程/缓冲器2a以及sTTI HARQ进程/缓冲器2b链接、共享或重叠。并且,nTTI HARQ进程/缓冲器4可以与sTTI HARQ进程/缓冲器4a以及sTTI HARQ进程/缓冲器4b链接、共享或重叠。这种链接、共享或重叠可被应用于所有的nTTI和sTTI HARQ进程/缓冲器或是其子集。
图15是示出可以链接、共享或重叠HARQ进程、缓冲器或所有这二者的另一个示例的图示。如图示1500所示,HARQ进程/缓冲器的第一集合(例如基本集合)可以与HARQ进程/缓冲器的第二集合链接、重叠或共享。在一个示例中,第一集合可以是所有或一些HARQ进程/缓冲器1510,并且第二集合可以是所有或一些HARQ进程/缓冲器1560。举例来说,nTTIHARQ进程和/或缓冲器2可以与sTTI HARQ进程和/或缓冲器4和5链接、共享或重叠。同样,nTTI HARQ进程和/或缓冲器4可以与sTTI HARQ进程和/或缓冲器8和9链接、共享或重叠。
图16是示出了用于链接、共享或重叠HARQ进程、缓冲器或所有这二者的另一个示例的图示。图17是示出了用于链接、共享或重叠HARQ进程、缓冲器或所有这二者的另一个示例的图示。特别地,图16和17示出了可被链接、共享或重叠的HARQ进程、缓冲器或所有这二者的更多示例。一些进程可以与其他进程相链接。而一些进程则不会与其他进程相链接。一些进程可以链接到有可能与其他其他进程相链接的其他进程。在一个示例中,在图示1600中编号为0-7的进程可以是nTTI进程,而其他进程(例如进程8-15)则可以是sTTI进程。在一个示例中,HARQ进程1610可以是nTTI进程,HARQ进程1660可以是sTTI进程。在图示1700中,编号为0-5的进程可以是nTTI进程,其他进程(例如进程0a-0d、1a-1b、1aa-1bb以及8-11)则可以是sTTI处理。相应的缓冲器可以依照所指配的与之对应的进程(例如该进程是nTTI进程、sTTI进程还是sTTI子进程)而被使用以及划分/细分。
WTRU可以从基站(例如e节点B)接收用于指示至少一个HARQ进程/缓冲器可以与另一个HARQ进程/缓冲器链接、共享或重叠的配置(例如配置消息、信号或信息)。该配置可以指示第一HARQ进程/缓冲器能与第二HARQ进程/缓冲器或一个或多个其他HARQ进程/缓冲器链接、共享或重叠。举例来说,该配置可以指示HARQ进程i能与HARQ进程j和k相链接,其中i、j和k可以是整数。
第一HARQ进程/缓冲器可以是nTTI HARQ进程/缓冲器,第二或所述一个或多个其他HARQ进程/缓冲器可以是(一个或多个)sTTI HARQ进程/(一个或多个)缓冲器。所述第二或其他HARQ进程/缓冲器彼此可以是相同的、不同的、独立的、依存的和/或关联的。
在将第一HARQ进程链接到第二HARQ进程时,可供第一HARQ进程的TB使用的缓冲器将可以用于第二HARQ进程的TB。在一个示例中,该缓冲器可以是软缓冲器。举例来说,如果HARQ进程A链接到HARQ进程B和C,那么使用HARQ进程B和/或C(例如指示使用HARQ进程B和/或C)可以表明与HARQ进程A相关联的数据会被改写或丢弃。与HARQ进程B和/或C相关联的数据可以使用先前用于HARQ进程A的缓冲器的至少一部分。HARQ进程A的后续使用可被认为是用于HARQ进程A的新的数据或关于新数据的指示。如果使用HARQ进程A,例如指示使用HARQ进程A,那么可以表明与HARQ进程B和/或C相关联的数据可被改写或丢弃。与后续的HARQ进程A相关联的数据A可以使用先前用于HARQ进程B和/或C的一个或多个缓冲器。更进一步,HARQ进程B和/或C的后续使用可被视为用于一个或多个相应HARQ进程的新数据或新数据指示。
这里提供了用于确定使用HARQ进程/缓冲器的示例。举例来说,e节点B可以借助发往WTRU的信令来管理、配置和/或指示可供WTRU用于(例如每一个)传输的至少一个HARQ进程/缓冲器。
WTRU可以接收关于使用哪一个HARQ进程来传送或接收数据的指示。作为示例,该指示可以在控制信道(例如DL控制信道)中被动态接收,其中举例来说,所述信道可以是PDCCH、EPDCCH、S-PDCCH(可被称为sPDCCH)、M-PDCCH(其可被称为mPDCCH)、NB-PDCCH等等。该指示可以在控制信道携带的控制信息(例如DL控制信息(DCI))中被接收。控制信道、控制信息或所有这两者均可提供关于所要传送或接收的数据的许可(举例来说,其可以指示资源),并且该许可可以包括关于使用哪一个HARQ进程来传送或接收数据的指示。关于使用哪一个HARQ进程的指示可以是或者可以包括HARQ进程ID或编号。
传输可以在UL或SL中进行。接收可以在DL或SL中进行。数据可被用于表示TB、多个TB、DL信道或UL信道中的至少一个。作为示例,DL信道可以是PDSCH或短PDSCH(sPDSCH)。UL信道可以是PUSCH或短PUSCH(sPUSCH)。信道接收和/或信道上的接收可以包括对信道的重复/信道上的重复进行组合,例如在使用覆盖增强来执行操作的时候。作为示例,在使用覆盖增强来执行操作时,信道传输/信道上的传输可以包括传送信道重复/在信道上传送重复。
在一个示例中,WTRU可以接收一个使用HARQ进程或HARQ缓冲器的指示(例如经由消息、信号、控制信道或控制信息,例如DCI格式),其中所述HARQ进程或HARQ缓冲器可以与另一个HARQ进程或缓冲器具有链接、共享或重叠中的至少一种联系。该指示可以在包含了关于UL或DL资源之类的资源的许可的控制信道和/或控制信息(例如DCI)中被接收。e节点B可以提供该指示。作为示例,WTRU可以从e节点B接收该指示。所述WTRU可以将该指示用于处理和配置。
e节点B可以提供和/或WTRU可以接收以下的至少一个指示(例如在包含了许可(例如DL或UL许可)的DL控制信道或DCI中):关于所要使用的过程/缓冲器的指示;用于数据的进程/缓冲器的指示;用于与许可(例如DL许可或UL许可)相关联的数据(例如DL数据或UL数据)的进程/缓冲器的指示;能与别的进程/缓冲器链接、共享或重叠的用于许可相关联的数据的进程/缓冲器的指示;关于基本进程/缓冲器(例如nTTI进程/缓冲器)的指示;关于可以与基本进程/缓冲器链接、共享或重叠的进程/缓冲器(例如sTTI进程/缓冲器)的指示;关于将要用于诸如sTTI传输和/或接收的子缓冲器或子进程的指示;关于数据的TTI长度的指示;关于用于数据的TTI可以是sTTI或nTTI的指示;以及用于进程/缓冲器的数据是新数据还是重传数据的指示(例如,新数据指示符(NDI)可被切换成指示新数据)。所述NDI可以在许可中提供。所述NDI可以在关于所要使用的HARQ进程的指示中提供,或者与之一起提供。
作为示例,WTRU可以至少基于半静态和/或动态的信令和/或配置来确定能与一个或多个其他HARQ进程和/或缓冲器链接、共享或重叠的一个或多个HARQ进程和/或缓冲器。所述信令和/或配置可以是从e节点B接收的。
在下文中,与第一TTI长度相关联的HARQ进程可被称为nHARQ,并且与第二TTI长度相关联的HARQ进程可被称为sHARQ。第一TTI长度可以长于第二TTI长度。用于nHARQ的软缓冲器大小可以大于用于sHARQ的软缓冲器大小。一个或多个sHARQ可以与nHARQ链接、共享或重叠。一个或多个sHARQ集合可以与nHARQ(例如单个nHARQ)链接。与nHARQ链接的sHARQ集合可以从/通过DCI动态指示。一个或多个sHARQ集合可以基于与TTI长度(例如与sHARQ相关联的TTI长度)而被预先定义、配置或确定。一个或多个sHARQ集合可以基于WTRU能力而被确定。
WTRU可以接收与DL、UL或SL传输相关联的DCI,并且该DCI可以包括HARQ进程ID或编号以及HARQ链接信息。举例来说,WTRU可以接收与具有第一TTI长度的UL传输有关的DCI,并且该DCI可以指示nHARQ ID或编号(例如用于第一TTI长度的HARQ进程ID或编号)以及可以链接的一个或多个sHARQ ID或编号。应该了解的是,在这里,术语进程ID或进程编号是可以互换使用的。
第一类型HARQ进程编号(例如nHARQ号)可被用于(例如保存或将要保存在软缓冲器中的)数据的传输和重传。
第二类型的HARQ进程编号(例如sHARQ号)可以用于刷新缓冲器。举例来说,与第二类型的HARQ进程编号相关联的一个或多个软缓冲器可被刷新,并且可以用于第一类型的HARQ进程编号(例如nHARQ编号)。在DCI的比特字段中可以指示第二类型的HARQ进程编号。第二类型HARQ进程的数量可以(例如由e节点B和/或WTRU)基于第一TTI长度和/或第二TTI长度来确定。举例来说,如果第一TTI长度是第二TTI长度的两倍,那么可以从该DCI指示两个第二类型的HARQ进程。
第二类型的HARQ进程编号(例如sHARQ编号)的存在可以基于以下的一项或多项来确定:DCI类型,RNTI类型,高层配置,与HARQ进程相关联的TTI长度,以及与HARQ进程相关联的传输方案。
在这里可以使用DCI类型。举例来说,第一DCI类型可以只包括第一类型的HARQ进程编号,第二DCI类型可以包括第一类型的HARQ进程编号和一个或多个第二类型的HARQ进程编号。WTRU可以在WTRU专用搜索空间中监视第一DCI类型和第二DCI类型。
在这里可以使用RNTI类型。举例来说,具有第一RNTI类型(例如小区RNTI(C-RNTI))的DCI可以只包含第一类型的HARQ进程编号。具有第二RNTI类型(例如HARQ-C-RNTI(H-C-RNTI))的DCI可以包括一个或多个第一和第二类型的HARQ进程编号。
WTRU可以监视、接收、解码和/或尝试解码第一子帧子集中的第一DCI类型,并且可以监视、接收、解码和/或尝试解码第二子帧子集中的第二DCI类型。所述第一子帧子集和第二子帧子集可以是非重叠的。作为替换,第一子帧子集和第二子帧子集可以部分或完全重叠。
用于第一DCI类型和/或第二DCI类型的子帧子集可以基于子帧编号和/或系统帧编号(SFN)来确定。
在第一PDCCH候选子集中可以监视/接收第一DCI类型,并且在第二PDCCH候选子集中可以监视/接收第二DCI类型。所述第一PDCCH候选子集和第二PDCCH候选子集可以是非重叠的。
图18是示出了使用动态指示来链接或共享HARQ进程、缓冲器或所有这二者的示例的图示。在图示1800显示的示例中,如果指示的是nHARQ0,那么WTRU可以接收未指示任何第二HARQ进程编号的第一类型的DCI,如果指示的是nHARQ1,那么WTRU可以及接收指示了第二HARQ进程编号(例如sHARQ0和sHARQ2)的第二类型的DCI,依此类推。如图18所示,nHARQ1、nHARQ3、nHARQ4和nHARQ6中的每一个都可以链接到在第二类型的DCI中指示的两个sHARQ。所述第二类型的DCI可以是在sTTI或nTTI中接收的。
HARQ进程和/或缓冲器的链接、共享和/或重叠处理可以取决于将会使用的一个或多个sTTI长度。基于将会使用的一个或多个sTTI长度,例如基于可被使用的最长sTTI长度,WTRU可以确定HARQ进程和/或缓冲区的链接、共享和/或重叠处理。作为示例,可被使用的一个或多个sTTI长度可以由e节点B来配置。所述可被使用的一个或多个sTTI长度或长度可以是WTRU专用的。
在这里提供了具有HARQ进程的DL操作的示例。与HARQ进程和/或HARQ缓冲器相关联的DL过程(例如MAC过程)可以依照本文描述的一个或多个实施例而被使用和/或修改。
用于WTRU上的DL数据接收的例示过程可被称为例示过程1,并且该过程可以包括以下的一个或多个操作。应该了解的是,以下的一个或多个操作可以采用串行、并行或重叠的方式执行,并且除非明确声明,否则不应该推断出所述操作、所述操作的一些部分的执行顺序、或是所述操作的执行是在没有发生介于中间或是处于中间的操作的情况下以排他性的方式进行的。
例示过程1可以包括以下的一个或多个操作。WTRU可以接收一个指示了与所标识的HARQ进程A有关的DL许可的DCI。在这里可以存在一个TB(例如未使用空间分集)。WTRU可以确定该数据是新传输还是重传。举例来说,WTRU可以确定与先前接收的对应于TB的传输的取值相比是否已经切换了NDI。作为示例,如果WTRU确定NDI已被切换,那么WTRU可以确定该数据是新的传输。作为示例,如果WTRU确定该数据是新的传输,那么WTRU可以尝试解码所接收的数据。作为示例,如果WTRU没有成功解码数据,那么WTRU可以用其尝试解码的数据来替换软缓冲器中用于TB的数据。作为示例,如果WTRU确定该数据是重传,那么WTRU可以将所接收的数据与当前处于缓冲器中的关于TB的数据相结合,并且可以尝试解码所组合的数据。举例来说,WTRU可以基于其是否成功解码数据来发送ACK或NACK。该WTRU可以向e节点B发送ACK或NACK。
在示例程序1的末尾,在软缓冲器中可能存在关于HARQ进程A TB的数据。作为示例,如针对例示过程1所描述的那样,WTRU可以将该数据保持在缓冲器中,直至该WTRU接收到将缓冲器用于新的数据的指示。作为替换,一旦确定定其成功解码了关于HARQ进程A的数据,那么WTRU可以将与缓冲器相关联的存储器重新用于相同或别的HARQ进程。
通过修改例示过程1,可以将其用于所链接的HARQ进程。所链接的HARQ进程可以如这里所述。
更进一步,关于与HARQ进程相关联的TB的数据是否有可能是新数据的判定至少可以以从接收与所述TB相对应的在先传输时起接收的传输是否针对的是相链接的HARQ进程为基础。应该理解的是,以下的一个或多个操作可以采用串行、并行或重叠的方式执行,并且除非明确声明,否则不应该推断出所述操作、所述操作的一些部分的执行顺序、或是所述操作的执行是在没有发生介于中间或是处于中间的操作的情况下以排他性的方式进行的。
举例来说,WTRU可以执行以下的一个或多个操作。WTRU可以接收一个指示了用于HARQ进程A的DL许可的DCI,其中所述HARQ进程A可以对应于一个TB。
WTRU可以确定诸如HARQ进程B或C之类的与HARQ进程A相链接的HARQ进程从先前接收的与该TB相对应的传输时起接收到了传输。
WTRU可以考虑或确定已被切换的NDI,和/或可以将所述传输考虑或确定成是新的传输。该WTRU可以至少基于其做出的与HARQ进程A相链接的HARQ进程从先前接收的与该TB相对应的传输时起接收到传输的判定来做出该决定。该WTRU独立做出这个决定,并且所述决定的做出与从先前接收到的与该TB相对应的传输时起是否实际切换了NDI无关。
当相链接的HARQ进程接收新数据时,WTRU可以释放至少一些或所有与HARQ进程相关联的缓冲存储器。存储器的释放可被用于别的用途,例如用于可以是相链接的HARQ进程的另一个HARQ进程。举例来说,当WTRU接收关于与HARQ进程A相链接的HARQ进程(例如HARQ进程B或者C)的新数据时,该WTRU可以释放与HARQ进程A相关联的至少一些或全部缓冲存储器。作为补充或替换,举例来说,当WTRU接收关于与HARQ进程B和/或C相链接的HARQ进程(例如HARQ进程A)的新数据时,WTRU可以释放与HARQ进程B和/或C相关联的至少一些或全部缓冲存储器。相应地,WTRU可以为相链接的HARQ进程使用相同缓冲存储器的至少一部分。
在这里描述的示例及实施例中,一个TB是出于非限制性例示目的使用的。所述实施例和示例可以扩展到多个TB,并且仍旧与这里提供的示例相符合。
在这里提供了具有HARQ进程的UL操作的示例。与HARQ进程和/或HARQ缓冲器相关的UL过程(例如MAC过程)可被使用、修改或者同时被执行这两种处理。
被称为例示过程2的可供WTRU执行UL数据传输的例示过程可以包括以下的一个或多个操作。以下的一个或多个操作可以采用串行、并行或重叠的方式执行,并且除非明确声明,否则不应该推断出所述操作、所述操作的一些部分的执行顺序或是所述操作的执行是在没有发生介于中间或是处于中间的操作的情况下以排他性的方式进行的。作为示例,WTRU可以执行以下的一个或多个操作。
WTRU可以接收一个用于指示带有所标识的HARQ进程A的UL许可的DCI。作为示例,在使用异步HARQ的时候,该HARQ进程是可以被标识。举例来说,在使用同步HARQ的时候,例如当WTRU至少在一些时间可以使用或者被配置成使用sTTI的时候,所述HARQ进程是可以被标识的。如果WTRU可被配置成至少在一些时间使用sTTI,那么可以标识HARQ进程。举例来说,所述HARQ进程可以是为sTTI传输标识的。当WTRU可以被配置成至少在一些时间使用sTTI时,这时可以为nTTI传输标识所述HARQ进程。
对于数据(例如由所标识的HARQ进程传送或是为所标识的HARQ进程传送的数据)来说,WTRU可以确定所述数据是新的传输还是重传。举例来说,WTRU可以确定与处于该HARQ进程的在先传输之中或是用于所述传输的值相比是否切换了NDI(例如在相关联的HARQ信息之中)。作为示例,如果WTRU确定切换了NDI,那么它可以确定该数据是新的传输。作为补充或替换,如果所标识的HARQ进程的HARQ缓冲器为空,那么WTRU可以确定所述数据是新的传输。
作为示例,如果WTRU确定该数据是用于新的传输,那么WTRU可以执行以下的一个或多个操作。该WTRU可以获取TB(例如MAC协议数据单元(PDU)),作为示例,所述TB可以是一个新的TB。更进一步,WTRU可以将该TB传送到所标识的HARQ进程。并且,WTRU可以指示所标识的HARQ进程触发新的传输。
作为示例,如果WTRU确定该数据并非用于新的传输,那么该WTRU可以执行以下的一个或多个操作。WTRU可以将UL许可和/或HARQ信息(例如冗余版本)递送到所标识的HARQ进程。更进一步,WTRU可以指示所标识的HARQ进程产生重传。作为示例,所述重传可以是自适应或非自适应重传。
WTRU或HARQ进程可以传送或重传HARQ进程的TB。举例来说,所述HARQ进程的TB可以是所标识的HARQ进程的HARQ缓冲器中的TB。
当重传次数达到或超过可被配置的阈值的时候,WTRU可以刷新所标识的HARQ进程的HARQ缓冲器。在一个示例中,通过采用这种方式,当重传次数达到或超过可被配置的阈值的时候,WTRU可以清空所标识的HARQ进程的HARQ缓冲器。
通过修改这里描述的过程,可以将其用于相链接的HARQ进程。举例来说,关于可被第一HARQ进程传送或是为其传送的数据是否会是新数据的判定至少会以是否从第一HARQ进程的前一次传输时起为第二HARQ进程(例如相链接的HARQ进程)请求或执行了传输(例如新的数据传输)为基础。
在为第二HARQ进程(例如相链接的HARQ进程)请求或执行传输(例如新的数据传输)时,WTRU可以刷新第一HARQ进程的至少部分或所有的HARQ缓冲器。举个例子,对于链接到两个HARQ进程(例如HARQ进程B和C)的第一HARQ进程(例如HARQ进程A)来说,WTRU可以在为HARQ进程A请求数据传输(例如新的数据传输)的时候刷新HARQ进程B的缓冲器以及HARQ进程C的缓冲器。当可以为HARQ进程B或HARQ进程C请求数据传输(例如新的数据传输)时,WTRU可以刷新至少部分或全部的HARQ进程缓冲器A。
参见图17,作为示例,在为HARQ进程0a、0b、0c或0d中的至少一个请求数据传输(例如新的数据传输)时,WTRU可以刷新HARQ进程0的HARQ缓冲器。在为HARQ进程0请求数据传输(例如新的数据传输)时,WTRU可以刷新用于HARQ进程0a、0b、0c和0d的HARQ缓冲器中的至少一个或全部HARQ缓冲器。传输请求可以借助DCI和/或UL许可来进行。所述DCI可以包括UL许可。
在另一个示例中,WTRU可以执行或者被配置成执行以下的一个或多个操作。WTRU可以接收指示了带有所标识的HARQ进程A的UL许可的DCI。作为示例,该WTRU可以确定由所标识的HARQ进程传送或是为其传送的数据是新传输还是重传。作为示例,如果从所标识的HARQ进程的最后一次传输时起为相链接的HARQ缓冲器或相链接的HARQ进程请求了数据传输(例如新的数据传输),那么WTRU可以确定该数据是新的传输。作为示例,如果WTRU确定NDI已被切换,那么该WTRU可以确定该数据是新的传输。作为示例,如果从所标识的HARQ进程的最后一次传输时起为相链接的HARQ缓冲器或相链接的HARQ进程请求了数据传输(例如新的数据传输),那么WTRU可以确定NDI已被切换。所述WTRU可以基于对新的传输或是重传所做的判定来为所标识的HARQ进程执行传输或重传处理。
在这里描述的实施例及示例中,术语刷新、清空、释放、重用和改写是可以相互替换的,并且仍旧是与这里提供的示例相符合的。如果使用术语刷新、清空和/或释放缓冲器或存储器,则意味着可以使用、重用和/或改写存储器,例如与缓冲器相关联的存储器。
缓冲器或存储器可以与第一进程相关联,并且可被第二进程使用或重用。改写处理可以通过用于第二进程或是与第二进程相关联的数据(例如比特)来执行,例如用于与第二进程相关联的缓冲器的数据。作为示例,对于所指示的新的数据来说,第二进程与第一进程可以是相同的。并且作为示例,对于所指示的新的数据,第二进程可以是与第一进程不同的进程。第二进程可以是与第一进程相链接的进程。所述进程可以是HARQ进程。缓冲器可以是HARQ缓冲器。存储器可以是软缓冲存储器。存储器可以是用于DL-SCH数据、PDSCH、UL共享信道(UL-SCH)数据和/或PUSCH的存储器。关联于第二进程的缓冲器可以与关联于第一进程的缓冲器相链接、共享和/或重叠。
WTRU可以假设或者可被配置成假设其不需要为关联于第二HARQ进程的数据保留或保持存储器,例如在该WTRU使用或者可被指示使用与第二HARQ进程相链接的第一HARQ进程的时候。在一个示例中,该存储器是可以单独或附加的存储器。
当WTRU可能正在使用或是被指示使用能与第二HARQ进程相链接的第一HARQ进程的时候,该WTRU可被配置成假设其不需要针对关联于第二HARQ进程的数据保留或保持存储器(例如单独或附加的存储器),直至该WTRU接收到关于与第二HARQ进程有关的数据传输或接收(例如新的数据传输或接收)的指示(例如显性指示)。该指示可以来自e节点B。
图19是示出了由不同HARQ进程实施的HARQ缓冲器共享处理的示例的图示。在一个示例中,WTRU可以将TB分配HARQ进程,以便进行UL传输。在图示1900显示的示例中,WTRU可以链接第一HARQ进程和第二HARQ进程,其中第一HARQ进程与第一HARQ缓冲器以及第一TTI长度相关联,并且第二HARQ进程与第一HARQ缓冲器以及第二TTI长度相关联1910。WTRU可以使用相链接的第一HARQ进程和第一HARQ缓冲器来传送第一TB1920。并且,WTRU可以接收UL许可1930。然后,WTRU可以确定所接收的UL许可针对的是用于相链接的第二HARQ进程的新的传输1940。更进一步,WTRU可以以确定所接收的UL许可针对的是相链接的第二HARQ进程的新传输为基础而释放第一HARQ缓冲器1950。另外,WTRU可以产生用于新的传输的第二TB1960。在另一个示例中,WTRU可以为所述新的传输分配第二TB。在另一个示例中,WTRU既可以获取用于所述新的传输的第二TB,也可以装配用于新的传输的第二TB,还可以同时执行这二者。在一个附加示例中,WTRU可以接收用于所述新的传输的第二TB。
此外,WTRU可以将第二TB保存在第一HARQ缓冲器中1970。更进一步,WTRU可以使用相链接的第二HARQ进程和第一HARQ缓冲器来传送第二TB 1980。
所述第二TB可以改写或替换第一HARQ缓冲器中的一些或全部的第一TB。举例来说,如果不再需要第一TB,那么可以将第一HARQ缓冲器用于第二TB。作为示例,如果e节点B成功接收了用于UL传输的第一TB或者WTRU成功接收了用于DL接收的第一TB,那么将不再需要所述第一TB。在一个示例中,第一TTI长度可以是nTTI长度,第二TTI长度可以是sTTI长度,反之亦然。
在一个示例中,第一TB和第二TB可以是MAC PDU。更进一步,第一TB可以包含与第一TTI相关联的数据,第二TB可以包含与第二TTI相关联的数据。
DL传输可以使用由不同HARQ进程实施的HARQ缓冲器共享处理的另一个示例。举例来说,WTRU可以将TB分配给用于DL接收的HARQ进程。在一个示例中,WTRU可以链接第一HARQ进程和第二HARQ进程,其中第一HARQ进程与第一HARQ缓冲器以及第一TTI长度相关联,并且第二HARQ进程与第一HARQ缓冲器以及第二TTI长度相关联。更进一步,WTRU可以使用相链接的第一HARQ进程和第一HARQ缓冲器来接收第一TB的数据。该WTRU还会接收DL许可。然后,WTRU可以确定所接收的DL许可针对的是接收用于相链接的第二HARQ进程的新的传输。更进一步,WTRU可以以确定所接收的DL许可针对的是接收用于相链接的第二HARQ进程的新传输为基础而释放第一HARQ缓冲器。并且,WTRU可以使用相链接的第二HARQ进程和第一HARQ缓冲器来接收用于所述新的传输的第二TB的数据。更进一步,WTRU可以使用为所述第二TB接收的数据来替换第一HARQ缓冲器中的数据。
在另一个示例中,HARQ缓冲器可被用于软合并处理。举例来说,第一HARQ缓冲器可被用于软合并处理。在另一个示例中,HARQ缓冲器可以位于软缓冲存储器中。举例来说,第一HARQ缓冲器可以位于软缓冲存储器中。
WTRU可以可供其用信号通告或者发送给e节点B的一组能力。这些能力可以包括其在诸如DL、UL和/或SL中的存储能力。
举例来说,WTRU可以具有关于其可在DL中支持的软信道比特数量的能力。所述软信道比特数量可以代表可被提供给HARQ进程的软信道比特数量(例如在DL中)。所述软信道比特数量可以是可用于nTTI HARQ处理的软信道比特数量。
WTRU可以具有能够指示可供其用于sTTI HARQ处理的单独的软信道比特数量的能力。并且,WTRU可以具有能够指示所述WTRU没有可用于sTTI HARQ处理的附加软信道比特的能力,并且作为示例,WTRU可以或者可能需要将可用于nTTI HARQ处理的比特用于sTTIHARQ处理。
作为示例,当WTRU不具有可用于sTTI HARQ处理的附加或足够的附加软信道比特时,该WTRU可以使用用于链接、共享和/或重叠HARQ进程和/或缓冲器的处理。举例来说,当WTRU没有可用于sTTI HARQ处理的附加或足够的附加软信道比特时,e节点B可以将WTRU配置成使用用于链接、共享和/或重叠HARQ进程和/或缓冲器的处理。所述e节点B可以至少基于所述WTRU的与用于sTTI HARQ处理的比特有关的能力来将其配置成使用用于链接、共享和/或重叠HARQ进程和/或缓冲器的处理。
WTRU可以具有可以指示或者可以用于确定该WTRU在UL中所能支持的存储量的能力。举例来说,该WTRU可以具有与在TTI内部传送的最大UL-SCH传输块比特有关的能力,其中所述能力可以用于确定WTRU能在UL中支持的存储量。
WTRU可以具有能够指示该WTRU没有可用于sTTI HARQ处理的附加存储器的能力,并且作为示例,该WTRU可以或可能需要将可用于nTTI HARQ处理的存储器用于sTTI HARQ处理。并且作为示例,当WTRU没有可用于sTTI HARQ处理的附加或足够的附加存储器时,该WTRU可以使用用于链接、共享和/或重叠HARQ进程和/或缓冲器的处理。
举例来说,当WTRU没有可用于sTTI HARQ处理的附加或足够的附加存储器时,e节点B可以将WTRU配置成使用用于链接、共享和/或重叠HARQ进程和/或缓冲器的处理。所述e节点B可以至少基于WTRU所具有的与用于sTTI HARQ处理的存储器有关的能力来将WTRU配置成使用用于链接、共享和/或重叠HARQ进程和/或缓冲器的处理。对于UL、DL和SL中的至少一个来说(例如,基于WTRU针对这每一者的能力),用于链接、共享和/或重叠HARQ进程和/或缓冲器的处理的配置和使用方式可以是独立和/或不同的。
虽然在上文中描述了采用特定组合的特征和要素,但是本领域普通技术人员将会认识到,每一个特征或元素既可以单独使用,也可以与其他特征和要素进行任何组合。此外,这里描述的方法可以在引入计算机可读介质中以供计算机或处理器运行的计算机程序、软件或固件中实施。关于计算机可读媒体的示例包括电信号(经由有线或无线连接传送)以及计算机可读存储介质。关于计算机可读存储媒体的示例包括但不局限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储设备、内部硬盘盒可移除磁盘之类的磁介质、磁光介质、以及CD-ROM碟片和数字多用途碟片(DVD)之类的光介质。与软件关联的处理器可以用于实施在WTRU、UE、终端、基站、RNC或任何计算机主机使用的射频收发信机。

Claims (20)

1.一种用在无线发射/接收单元(WTRU)中的使用了混合自动重复请求(HARQ)进程的上行链路(UL)数据传输方法,所述方法包括:
由所述WTRU链接第一HARQ进程和第二HARQ进程,其中所述第一HARQ进程与第一HARQ缓冲器以及第一传输时间间隔(TTI)长度相关联,并且所述第二HARQ进程与所述第一HARQ缓冲器以及第二TTI长度相关联;
所述WTRU使用相链接的所述第一HARQ进程和所述第一HARQ缓冲器来传送第一传输块(TB);
所述WTRU接收UL许可;
所述WTRU确定所接收的UL许可针对的是与相链接的所述第二HARQ进程有关的新的传输;
以确定所接收的UL许可针对的是与相链接的所述第二HARQ进程有关的新的传输为基础,所述WTRU释放所述第一HARQ缓冲器;
所述WTRU产生用于所述新的传输的第二TB;
所述WTRU将所述第二TB保存在所述第一HARQ缓冲器中;以及
所述WTRU使用相链接的所述第二HARQ进程和所述第一HARQ缓冲器来发送所述第二TB。
2.如权利要求1所述的方法,其中所述第一TB和所述第二TB是媒介接入控制(MAC)协议数据单元(PDU)。
3.如权利要求1所述的方法,其中所述第一TTI长度是正常TTI(nTTI)长度,以及所述第二TTI长度是短TTI(sTTI)长度。
4.如权利要求3所述的方法,其中所述第一TB包含与第一TTI相关联的数据,以及所述第二TB包含与第二TTI相关联的数据。
5.一种用在无线发射/接收单元(WTRU)中的使用了混合自动重复请求(HARQ)进程的下行链路(DL)数据接收方法,所述方法包括:
所述WTRU链接第一HARQ进程和第二HARQ进程,其中所述第一HARQ进程与第一HARQ缓冲器和第一传输时间间隔(TTI)长度相关联,并且所述第二HARQ进程与所述第一HARQ缓冲器以及第二TTI长度相关联;
所述WTRU使用相链接的所述第一HARQ进程和所述第一HARQ缓冲器来接收第一传输块(TB)的数据;
所述WTRU接收DL许可;
所述WTRU确定所接收的DL许可针对的是接收与相链接的所述第二HARQ进程有关的新的传输的接收;
以确定所接收的DL许可针对的是接收与相链接的所述第二HARQ进程有关的新的传输的接收为基础,所述WTRU释放所述第一HARQ缓冲器;
所述WTRU使用相链接的所述第二HARQ进程和所述第一HARQ缓冲器来接收与所述新的传输有关的第二TB的数据;以及
所述WTRU使用为所述第二TB接收的数据来替换所述第一HARQ缓冲器中的数据。
6.如权利要求5所述的方法,其中所述第一TB和所述第二TB是媒介接入控制(MAC)协议数据单元(PDU)。
7.如权利要求5所述的方法,其中所述第一TTI长度是正常TTI(nTTI)长度,以及所述第二TTI长度是短TTI(sTTI)长度。
8.如权利要求7所述的方法,其中所述第一TB包含与第一TTI相关联的数据,以及所述第二TB包含与第二TTI相关联的数据。
9.如权利要求5所述的方法,其中所述第一HARQ缓冲器被用于软合并。
10.一种使用了混合自动重复请求(HARQ)进程来执行上行链路(UL)数据传输的无线发射/接收单元(WTRU),所述WTRU包括:
处理器,其被配置成链接第一HARQ进程和第二HARQ进程,其中所述第一HARQ进程与第一HARQ缓冲器和第一传输时间间隔(TTI)长度相关联,并且所述第二HARQ进程与所述第一HARQ缓冲器以及第二个TTI长度相关联;
可操作地连接到所述处理器的收发信机,该收发信机及所述处理器被配置成使用相链接的所述第一HARQ进程和所述第一HARQ缓冲器来发送第一传输块(TB);
所述收发信机被配置成接收UL许可;
所述处理器被配置成确定所接收的UL许可针对的是用于相链接的所述第二HARQ进程的新的传输;
所述处理器被配置成以确定所接收的UL许可针对的是用于相链接的所述第二HARQ进程的新的传输为基础来释放所述第一HARQ缓冲器;
所述处理器被配置成生成用于所述新的传输的第二TB;
所述处理器可操作地连接到存储介质,所述处理器和所述存储介质被配置成将所述第二TB保存在所述第一HARQ缓冲器中;以及
所述收发信机和所述处理器被配置成使用相链接的所述第二HARQ进程和所述第一HARQ缓冲器来传送所述第二TB。
11.如权利要求10所述的WTRU,其中所述第一TB和所述第二TB是媒介接入控制(MAC)协议数据单元(PDU)。
12.如权利要求10所述的WTRU,其中所述第一TTI长度是正常TTI(nTTI)长度,以及所述第二TTI长度是短TTI(sTTI)长度。
13.如权利要求12所述的WTRU,其中所述第一TB包含与第一TTI相关联的数据,以及所述第二TB包含与第二TTI相关联的数据。
14.一种通过使用在无线发射/接收单元(WTRU)中使用的混合自动重复请求(HARQ)进程来执行下行链路(DL)数据接收的无线发射/接收单元(WTRU),所述WTRU包括:
处理器,其被配置成链接第一HARQ进程和第二HARQ进程,其中所述第一HARQ进程与第一HARQ缓冲器和第一传输时间间隔(TTI)长度相关联,并且所述第二HARQ进程与所述第一HARQ缓冲器以及第二TTI长度相关联;
可操作地的连接到所述处理器的收发信机,所述收发信机和所述处理器被配置成使用相链接的所述第一HARQ进程和所述第一HARQ缓冲器来接收关于第一传输块(TB)的数据;
所述收发信机被配置成接收DL许可;
所述处理器被配置成确定所接收的DL许可针对的是接收关于相链接的所述第二HARQ进程的新的传输的接收;
所述处理器被配置成以确定所接收的DL许可针对的是接收相链接的所述第二HARQ进程的新的传输的接收为基础来释放所述第一HARQ缓冲器;
所述收发信机和所述处理器被配置成使用相链接的所述第二HARQ进程和所述第一HARQ缓冲器来接收与用于所述新传输的第二TB有关的数据;以及
所述处理器被配置成使用为所述第二TB接收的数据来替换所述第一HARQ缓冲器中的所述数据。
15.如权利要求14所述的WTRU,其中所述第一TB和所述第二TB是媒介接入控制(MAC)协议数据单元(PDU)。
16.如权利要求14所述的WTRU,其中所述第一TTI长度是正常TTI(nTTI)长度,以及所述第二TTI长度是短TTI(sTTI)长度。
17.如权利要求16所述的WTRU,其中所述第一TB包含与第一TTI相关联的数据,并且所述第二TB包含与第二TTI相关联的数据。
18.如权利要求14所述的WTRU,其中所述第一HARQ缓冲器被用于软组合。
19.一种使用了特殊子帧的混合自动重复请求(HARQ)处理方法,所述方法包括:
WTRU接收时分双工(TDD)上行链路(UL)/下行链路(DL)子帧配置;
所述WTRU接收带有表明将特殊子帧用于物理上行链路控制信道(PUCCH)传输的指示的DL许可;
所述WTRU动态确定将哪一个子帧切换到特殊子帧;
所述WTRU将所述子帧切换到特殊子帧;
所述WTRU确定用于所确定的特殊子帧的特定子帧配置,以及确定用于PUCCH的所确定的特殊子帧的资源;
所述WTRU确定用于所述PUCCH的PUCCH资源以及PUCCH设计参数;以及
所述WTRU使用所确定的PUCCH资源和PUCCH设计参数而在具有所确定的特殊子帧配置的所确定的特殊子帧的所确定的资源的UL部分中的PUCCH上传送HARQ反馈。
20.如权利要求19所述的方法,还包括:
所述WTRU接收DL子帧中的DL数据;以及
所述WTRU在所述DL子帧之后且经过了至少四个短传输时间间隔(sTTI)的所确定的特殊子帧上传送所述HARQ反馈。
CN201780009173.1A 2016-02-03 2017-02-03 用于调度子帧和混合自动重复请求(harq)反馈的方法、系统和装置 Pending CN108604958A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111431874.9A CN114172622A (zh) 2016-02-03 2017-02-03 用于调度子帧和harq反馈的方法、系统和装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662290770P 2016-02-03 2016-02-03
US62/290,770 2016-02-03
US201662334759P 2016-05-11 2016-05-11
US62/334,759 2016-05-11
PCT/US2017/016438 WO2017136678A1 (en) 2016-02-03 2017-02-03 Methods, systems and apparatus for scheduling of subframes and hybrid automatic repeat request (harq) feedback

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111431874.9A Division CN114172622A (zh) 2016-02-03 2017-02-03 用于调度子帧和harq反馈的方法、系统和装置

Publications (1)

Publication Number Publication Date
CN108604958A true CN108604958A (zh) 2018-09-28

Family

ID=58018319

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780009173.1A Pending CN108604958A (zh) 2016-02-03 2017-02-03 用于调度子帧和混合自动重复请求(harq)反馈的方法、系统和装置
CN202111431874.9A Pending CN114172622A (zh) 2016-02-03 2017-02-03 用于调度子帧和harq反馈的方法、系统和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202111431874.9A Pending CN114172622A (zh) 2016-02-03 2017-02-03 用于调度子帧和harq反馈的方法、系统和装置

Country Status (5)

Country Link
US (4) US20190068334A1 (zh)
EP (2) EP4075703A1 (zh)
CN (2) CN108604958A (zh)
TW (1) TW201737650A (zh)
WO (1) WO2017136678A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391869A (zh) * 2018-04-18 2019-10-29 中兴通讯股份有限公司 信息传输方法及装置、存储介质、电子装置
WO2021164036A1 (zh) * 2020-02-21 2021-08-26 华为技术有限公司 一种数据传输方法及装置
CN113472488A (zh) * 2020-03-30 2021-10-01 维沃移动通信有限公司 Harq-ack的反馈模式确定方法、配置方法及设备
CN113574819A (zh) * 2019-03-22 2021-10-29 联想(新加坡)私人有限公司 侧链路传输的harq进程

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201805145TA (en) * 2016-02-05 2018-07-30 Panasonic Ip Corp America Terminal and transmission method
US10673579B2 (en) * 2016-03-03 2020-06-02 Lg Electronics Inc. Method and apparatus for transreceiving wireless signal in wireless communication system based on downlink scheduling information including different time unit types
US10813123B2 (en) * 2016-05-02 2020-10-20 Lg Electronics Inc. Method and apparatus for changing SPS operation in wireless communication system
EP3455966B1 (en) * 2016-05-13 2020-07-15 Telefonaktiebolaget LM Ericsson (publ) Adaptive transmission time interval length
EP3498012B1 (en) 2016-08-12 2020-03-25 Telefonaktiebolaget LM Ericsson (PUBL) Ul scheduling timing with short ttis in tdd
EP3497850B1 (en) * 2016-08-12 2020-10-07 Telefonaktiebolaget LM Ericsson (publ) Dl harq timing with short tti operations in tdd
US10292157B2 (en) 2016-08-19 2019-05-14 Htc Corporation Communication device and base station
WO2018058583A1 (en) * 2016-09-30 2018-04-05 Mediatek Singapore Pte. Ltd. Methods and apparatus for indicating and implementing of new ue category
EP3520273B1 (en) * 2016-09-30 2023-01-18 Telefonaktiebolaget LM Ericsson (PUBL) Systems and methods for synchronous control of harq timing configurations
WO2018086016A1 (zh) * 2016-11-09 2018-05-17 广东欧珀移动通信有限公司 传输上行数据的方法、终端设备和网络设备
US10484144B2 (en) 2016-11-11 2019-11-19 Qualcomm Incorporated Hybrid automatic repeat request management for low latency communications
CN108282881B (zh) * 2017-01-06 2020-12-15 华为技术有限公司 一种资源配置方法及装置
US10251200B2 (en) * 2017-02-06 2019-04-02 Qualcomm Incorporated Techniques and apparatuses for handling collisions between legacy transmission time interval (TTI) communications and shortened TTI communications
CN108512632B (zh) * 2017-02-28 2021-06-01 华为技术有限公司 数据处理方法及装置
CN108633016B (zh) * 2017-03-23 2023-10-13 华为技术有限公司 一种下行控制信息的收发方法及装置
EP3682589A1 (en) * 2017-09-15 2020-07-22 Telefonaktiebolaget LM Ericsson (Publ) Code-rate-dependent modulation techniques
WO2019066558A1 (en) 2017-09-29 2019-04-04 Lg Electronics Inc. METHOD AND APPARATUS FOR EMPTYING HARQ BUFFER MEMORY IN WIRELESS COMMUNICATION SYSTEM
US10727986B2 (en) * 2017-11-06 2020-07-28 Qualcomm Incorporated Robust acknowledgement retransmission
US10771225B2 (en) * 2017-11-17 2020-09-08 Qualcomm Incorporated Techniques and apparatuses for using mini-slots for hybrid automatic repeat request (HARQ) transmissions
TWI659630B (zh) * 2017-11-24 2019-05-11 財團法人工業技術研究院 混合自動重送方法及系統
US10924223B2 (en) * 2018-02-14 2021-02-16 Google Llc Method of managing HARQ buffer for NR
CN112154621B (zh) * 2018-04-03 2023-10-10 交互数字专利控股公司 用于非地面网络的混合自动重复请求(harq)
US11128429B2 (en) * 2018-10-05 2021-09-21 Lenovo (Singapore) Pte. Ltd. Method and apparatus for generating a CSI report
CN111181693B (zh) * 2018-11-09 2021-08-31 华为技术有限公司 发送数据的方法、发送数据的装置、以及终端设备
US11374696B2 (en) * 2019-01-11 2022-06-28 Qualcomm Incorporated Hybrid automatic repeat request (HARQ) process partitioning
EP4030662A4 (en) * 2019-10-01 2022-10-12 Huawei Technologies Co., Ltd. HARQ PROCESS CONTROL METHOD AND APPARATUS
CN115516954A (zh) * 2020-03-26 2022-12-23 上海诺基亚贝尔股份有限公司 调度释放反馈
US11728922B2 (en) * 2020-07-27 2023-08-15 Samsung Electronics Co., Ltd. Method and apparatus for determination of uplink/downlink transport block size and modulation and coding scheme
WO2022205413A1 (zh) * 2021-04-02 2022-10-06 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110047430A1 (en) * 2008-03-17 2011-02-24 Panasonic Corporation Improved harq process management
US20140362832A1 (en) * 2012-01-24 2014-12-11 Interdigital Patent Holdings, Inc. Systems and methods for improved uplink coverage
CN104756430A (zh) * 2013-09-26 2015-07-01 华为技术有限公司 控制信息的反馈方法、用户设备及基站

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2537341T3 (es) 2008-03-24 2015-06-05 Nokia Technologies Oy Configuración de memoria intermedia suave en un sistema de comunicaciones
TW200947939A (en) 2008-04-25 2009-11-16 Interdigital Patent Holdings Method and apparatus for performing a bundled transmission
CA2752379C (en) 2008-10-31 2016-04-19 Interdigital Patent Holdings, Inc. Providing control information for multi-carrier uplink transmission
US20120054572A1 (en) 2009-04-24 2012-03-01 Nokia Corporation Method and Apparatus for Delta Data Storage
US9485060B2 (en) * 2009-10-01 2016-11-01 Interdigital Patent Holdings, Inc. Uplink control data transmission
WO2013006010A2 (ko) 2011-07-06 2013-01-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 송수신 방법 및 장치
JP5873708B2 (ja) * 2011-12-19 2016-03-01 シャープ株式会社 移動局装置、方法および集積回路
TWI620459B (zh) 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
EP2901599B1 (en) 2012-09-26 2022-06-29 Interdigital Patent Holdings, Inc. Methods for dynamic tdd uplink/downlink configuration
KR101724220B1 (ko) * 2012-11-14 2017-04-06 엘지전자 주식회사 반송파 집성 시스템에서 단말의 동작 방법 및 이러한 방법을 이용하는 장치
US9271242B2 (en) * 2013-01-14 2016-02-23 Intel IP Corporation Energy-harvesting devices in wireless networks
EP2946496A4 (en) * 2013-01-17 2016-09-28 Intel Ip Corp DYNAMIC CONFIGURATION OF UPLINK (UL) AND DOWN (DL) FRAME RESOURCES FOR TIME-DIVISION DUPLEX TRANSMISSION (TDD)
WO2015012491A1 (ko) * 2013-07-26 2015-01-29 엘지전자 주식회사 Mtc 기기의 송수신 방법
TWI568295B (zh) * 2013-09-30 2017-01-21 蘋果公司 用於低頻寬應用程式之延遲及附帶重傳
US9374200B2 (en) 2013-10-11 2016-06-21 Broadcom Corporation TTI bundling and collision avoidance
US9408144B2 (en) * 2013-11-07 2016-08-02 Apple Inc. Shortened HARQ timelines for low bandwidth applications
US9537612B2 (en) * 2013-12-09 2017-01-03 Apple Inc. Restrictions on transmissions of control plane data with carrier aggregation
US10110365B2 (en) * 2014-03-25 2018-10-23 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
PL3127263T3 (pl) 2014-04-04 2019-10-31 Nokia Solutions & Networks Oy Sposób, urządzenie i oprogramowanie komputerowe do taktowania hybrydowego, automatycznego powtarzania żądań w układzie komunikacyjnym
WO2016018056A1 (ko) * 2014-07-28 2016-02-04 엘지전자 주식회사 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국
WO2016021957A1 (ko) * 2014-08-06 2016-02-11 엘지전자 주식회사 Ack/nack 피드백 방법 및 사용자기기
US20160050049A1 (en) 2014-08-12 2016-02-18 Qualcomm Incorporated Managing hybrid automatic repeat request (harq) soft buffer in td-hsdpa for dual sim dual standby (dsds) device
US9935742B2 (en) 2014-10-20 2018-04-03 Apple Inc. Adaptive HARQ for half duplex operation for battery and antenna constrained devices
EP3016465A1 (en) 2014-10-31 2016-05-04 ASUSTeK Computer Inc. Method and device for handling multiple d2d (device to device) grants in a sa (scheduling assignment) period in a wireless communication system
US9887822B2 (en) * 2014-11-03 2018-02-06 Intel IP Corporation System and method to address resource collision for asymmetric region allocation
WO2016072688A2 (ko) * 2014-11-05 2016-05-12 엘지전자 주식회사 Ack/nack 신호 수신 방법 및 mtc 기기
US9819454B2 (en) 2014-12-11 2017-11-14 Nxp Usa, Inc. Wireless communication apparatus and method for HARQ buffer management
US9948431B2 (en) 2015-01-12 2018-04-17 Qualcomm Incorporated Techniques for managing soft buffers in wireless communications
US10009920B2 (en) * 2015-01-27 2018-06-26 Qualcomm Incorporated Triggering a group acknowledgement/negative acknowledgement or channel state information
AR103887A1 (es) * 2015-03-09 2017-06-14 ERICSSON TELEFON AB L M (publ) Canal pucch breve en canal spucch de enlace ascendente
US10298363B2 (en) 2015-03-31 2019-05-21 Lg Electronics Inc. Buffer management method for D2D communication, and wireless device
WO2017078372A1 (ko) 2015-11-02 2017-05-11 엘지전자 주식회사 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국
EP3378180B1 (en) 2015-11-19 2020-11-04 Sony Corporation Telecommunications apparatus and methods
US10623147B2 (en) * 2015-12-18 2020-04-14 Lg Electronics Inc. Method for transmitting uplink control information and user apparatus for carrying out same
CN116647910A (zh) * 2016-01-26 2023-08-25 索尼公司 终端设备、基站设备和通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110047430A1 (en) * 2008-03-17 2011-02-24 Panasonic Corporation Improved harq process management
US20140362832A1 (en) * 2012-01-24 2014-12-11 Interdigital Patent Holdings, Inc. Systems and methods for improved uplink coverage
CN104756430A (zh) * 2013-09-26 2015-07-01 华为技术有限公司 控制信息的反馈方法、用户设备及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on soft buffer management for eCA", 《3GPP,R1-156509》 *
INTERDIGITAL COMMUNICATIONS: "Support for Short TTIs and Processing Times in LTE", 《3GPP,R1-157136》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391869A (zh) * 2018-04-18 2019-10-29 中兴通讯股份有限公司 信息传输方法及装置、存储介质、电子装置
CN110391869B (zh) * 2018-04-18 2022-10-18 中兴通讯股份有限公司 信息传输方法及装置、存储介质、电子装置
US11917608B2 (en) 2018-04-18 2024-02-27 Zte Corporation Information transmission method and device, storage medium and electronic device
CN113574819A (zh) * 2019-03-22 2021-10-29 联想(新加坡)私人有限公司 侧链路传输的harq进程
WO2021164036A1 (zh) * 2020-02-21 2021-08-26 华为技术有限公司 一种数据传输方法及装置
CN115088215A (zh) * 2020-02-21 2022-09-20 华为技术有限公司 一种数据传输方法及装置
CN115088215B (zh) * 2020-02-21 2024-01-02 华为技术有限公司 一种数据传输方法及装置
CN113472488A (zh) * 2020-03-30 2021-10-01 维沃移动通信有限公司 Harq-ack的反馈模式确定方法、配置方法及设备

Also Published As

Publication number Publication date
US20190068334A1 (en) 2019-02-28
US11664939B2 (en) 2023-05-30
US20220311560A1 (en) 2022-09-29
US20230261810A1 (en) 2023-08-17
WO2017136678A1 (en) 2017-08-10
EP4075703A1 (en) 2022-10-19
US20200328855A1 (en) 2020-10-15
US11381357B2 (en) 2022-07-05
TW201737650A (zh) 2017-10-16
CN114172622A (zh) 2022-03-11
EP3411978A1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
CN108604958A (zh) 用于调度子帧和混合自动重复请求(harq)反馈的方法、系统和装置
JP6934965B2 (ja) 無線通信システムにおいてサイドリンクおよび上りリンクharq−ackフィードバックを処理するための方法および装置
US11689321B2 (en) Method and user equipment (UE) for managing HARQ procedure for multiple numerologies
JP7083781B2 (ja) 非免許帯域を支援する無線接続システムにおいて競争ウィンドウサイズを調整する方法及びこれを支援する装置
US11622349B2 (en) Special subframe configuration for latency reduction
US10667253B2 (en) Signal transmission and reception method for reducing latency in wireless communication system, and apparatus therefor
US20210351896A1 (en) Method for ack/nack transmission and reception in wireless communication system and apparatus therefor
US9521669B2 (en) HARQ for dynamic change of the TDD UL/DL configuration in LTE TDD systems
CN103733549B (zh) 无线通信系统中发送控制信息的方法和设备
CN107079448A (zh) 时分双工的覆盖增强和长期演进系统中增强的干扰减轻和业务适配
US9369239B2 (en) Method and apparatus for transmitting acknowledgments in wireless communication systems
KR20180125478A (ko) 확장된 업링크 파일럿 시간 슬롯에서 통신하기 위한 기술들
RU2467503C2 (ru) Базовая станция, мобильная станция и способ управления связью
CN107624263A (zh) 无线通信系统中确定基于竞争的pusch的传输结果的方法及其设备
US20120039289A1 (en) Group resource allocation method in broadband wireless access system and apparatus therefor
US9929833B2 (en) Method for transmitting a HARQ feedback and device therefor
KR102214648B1 (ko) 이동 통신 시스템에서 스케줄링 및 피드백 방법 및 장치
US9768936B2 (en) Message transmission in an unlicensed spectrum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20220517