CN108599649A - PMSM positional servosystem High order Plant controller designs and parameter determination method - Google Patents

PMSM positional servosystem High order Plant controller designs and parameter determination method Download PDF

Info

Publication number
CN108599649A
CN108599649A CN201810542405.6A CN201810542405A CN108599649A CN 108599649 A CN108599649 A CN 108599649A CN 201810542405 A CN201810542405 A CN 201810542405A CN 108599649 A CN108599649 A CN 108599649A
Authority
CN
China
Prior art keywords
loop
controller
pmsm
order
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810542405.6A
Other languages
Chinese (zh)
Inventor
朱其新
费清琪
谢鸥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN201810542405.6A priority Critical patent/CN108599649A/en
Publication of CN108599649A publication Critical patent/CN108599649A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明提供PMSM位置伺服系统高阶对象控制器设计及参数确定方法,位置控制器用PID调节器,基于极点配置设计PID调节器参数;电流环用PI调节器,校正成I型系统确定PI调节器的参数,电流环有PWM逆变器,闭环系统特征方程JTqs4+Js3+KtKds2+KtKps+KtKi=0J为转动惯量,KPWM为PWM逆变器比例增益,R为电机定子电阻,Ta为电机电气时间常数,s为被控时间变量,Kt为转矩常数,Kp、Kd、Ki为控制器控制参数,τi为PID调节器的积分时间常数,针对极点参数变化时高阶对象控制系统不同的阶跃响应来对比分析,给出相关参数的选取范围,有工程意义。

The invention provides a PMSM position servo system high-order object controller design and parameter determination method. The position controller uses a PID regulator, and the PID regulator parameters are designed based on pole configuration; the current loop uses a PI regulator, which is corrected into an I-type system to determine the PI regulator. The current loop has a PWM inverter, and the characteristic equation of the closed-loop system JT q s 4 +Js 3 +K t K d s 2 +K t K p s+K t K i =0J is the moment of inertia, K PWM is the proportional gain of the PWM inverter, R is the stator resistance of the motor, T a is the electrical time constant of the motor, s is the controlled time variable, K t is the torque constant, K p , K d , and K i are the control parameters of the controller, τi is the integral time constant of the PID regulator. It is of engineering significance to compare and analyze the different step responses of the high-order object control system when the pole parameters change, and to give the selection range of the relevant parameters.

Description

PMSM位置伺服系统高阶对象控制器设计及参数确定方法Design of High-order Object Controller and Parameter Determination Method for PMSM Position Servo System

技术领域technical field

本发明属于伺服系统控制领域,特别涉及一种基于极点配置的PMSM位置伺服系统高阶对象控制器设计及参数确定方法。The invention belongs to the field of servo system control, in particular to a PMSM position servo system high-order object controller design and parameter determination method based on pole configuration.

背景技术Background technique

一般情况下,在PMSM(permanent magnet synchronous motor,永磁同步电机)位置伺服系统控制领域中,控制器的相关设计和参数确定可以通过永磁同步电机机械运动方程建立传统二阶模型,然后进行推导和相应的仿真实验,但传统的二阶模型无法很好地反映实际系统的相关物理特征,无法体现电流环参数变化对系统的影响。In general, in the field of PMSM (permanent magnet synchronous motor, permanent magnet synchronous motor) position servo system control, the relevant design and parameter determination of the controller can establish a traditional second-order model through the mechanical motion equation of the permanent magnet synchronous motor, and then deduce And the corresponding simulation experiments, but the traditional second-order model cannot reflect the relevant physical characteristics of the actual system well, and cannot reflect the influence of current loop parameter changes on the system.

因此通过数学分析的方法来建立精度更高的伺服系统的高阶模型是优化伺服系统控制的一个重点。Therefore, it is an important point to optimize the servo system control to establish a high-order model of the servo system with higher precision by means of mathematical analysis.

论文“PMSM伺服系统速度环高阶模型实验建模及分析”(发表于《微特电机》,44(4):52-55,2016,发表人为潘海鸿,王玲,陈琳,林晓词,何蕴达)基于DSA(DigitalSignature Algorithm)算法的PMSM伺服系统速度环建模实验平台来建立了PMSM速度环三阶、四阶和六阶的高阶数学模型;论文“基于前馈解耦的永磁同步电机控制系统研究”(发表于《四川电力技术》,40(4):74-78,2017,发表人为荆世博,王维庆,王海云,吴先友,蒋中川)根据被控量与PMSM数学模型间的联系,基于拉氏变换构造了一种全系统的简化模型来对双闭环控制器的PI参数进行整定;而论文“高阶非线性系统的位置控制器PID参数优化”(发表于《电机控制与应用》,44(9):84-87,2017,发表人为曹薇,谢天驰)则针对高阶非线性伺服系统位置控制器的PID参数优化问题进行了相关研究。Paper "Experimental Modeling and Analysis of High-Order Models of Velocity Loop of PMSM Servo System" (published in "Micro and Special Motors", 44(4): 52-55, 2016, published by Pan Haihong, Wang Ling, Chen Lin, Lin Xiaoci, He Yunda) based on the DSA (DigitalSignature Algorithm) algorithm PMSM servo system speed loop modeling experiment platform to establish the third-order, fourth-order and sixth-order high-order mathematical models of the PMSM speed loop; the paper "Permanent Magnet Synchronization Based on Feedforward Decoupling Motor Control System Research" (published in "Sichuan Electric Power Technology", 40(4): 74-78, 2017, published by Jing Shibo, Wang Weiqing, Wang Haiyun, Wu Xianyou, Jiang Zhongchuan) According to the connection between the controlled quantity and the PMSM mathematical model , constructed a system-wide simplified model based on Laplace transform to tune the PI parameters of the double closed-loop controller; and the paper "Optimization of PID parameters of position controller for high-order nonlinear systems" (published in "Motor Control and Application ", 44(9):84-87, 2017, published by Cao Wei, Xie Tianchi) conducted related research on the PID parameter optimization of position controllers for high-order nonlinear servo systems.

而在对高阶对象的控制器参数进行极点配置设计时,极点参数的变化对控制器性能的影响,也是本领域技术人员需要深入研究的问题之一。When performing pole configuration design on controller parameters of high-order objects, the influence of pole parameter changes on controller performance is also one of the issues that need to be further studied by those skilled in the art.

发明内容Contents of the invention

本发明提供一种基于极点配置的PMSM位置伺服系统高阶对象控制器设计及参数确定方法,用于解决上述问题。The invention provides a PMSM position servo system high-order object controller design and parameter determination method based on pole configuration, which is used to solve the above problems.

为达到上述目的,本发明提供一种PMSM位置伺服系统高阶对象控制器设计方法,其中,所述控制器采用PID闭环系统控制器,并用极点配置的方法设计控制器的参数,假设控制器中的电流环采用PI调节器,并校正成I型系统确定PI调节器的参数,所述电流环中设置有PWM逆变器,在d-q坐标系中,所述PID闭环系统的特征方程式为:JTqs4+Js3+KtKds2+KtKps+KtKi=0,其中J为转动惯量,KPWM为PWM逆变器中的比例增益,R为电机定子电阻,Ta为永磁同步伺服电机电气时间常数,s为被控的时间变量,Kt为转矩常数,Kp、Kd、Ki为控制器的三个控制参数,其中τi为PI调节器的积分时间常数。In order to achieve the above object, the present invention provides a PMSM position servo system high-order object controller design method, wherein, the controller adopts the PID closed-loop system controller, and the parameters of the controller are designed by the method of pole configuration, assuming that in the controller The current loop adopts a PI regulator, and corrects it into an I-type system to determine the parameters of the PI regulator. The current loop is provided with a PWM inverter. In the dq coordinate system, the characteristic equation of the PID closed-loop system is: JT q s 4 +Js 3 +K t K d s 2 +K t K p s+K t K i =0, where J is the moment of inertia, K PWM is the proportional gain in PWM inverter, R is the stator resistance of the motor, T a is the electrical time constant of the permanent magnet synchronous servo motor, s is the controlled time variable, K t is the torque constant, K p , K d , and K i are the three control parameters of the controller, in τ i is the integral time constant of the PI regulator.

作为优选,在d-q坐标系中,假设所述永磁同步伺服电机的定子电流矢量与d轴垂直,也即d-q轴上的电流分量id=0,所述永磁同步伺服电机的传递函数Preferably, in the dq coordinate system, assuming that the stator current vector of the permanent magnet synchronous servo motor is perpendicular to the d axis, that is, the current component id on the dq axis =0, the transfer function of the permanent magnet synchronous servo motor

其中iq也是d-q轴上的电流分量,uq为d-q轴的电压分量,Ef为反电动势,Ef=ωmKe,Ke为反电动势常数,ωm为机械角速度,Lq为d-q轴上的等效电感。 Where i q is also the current component on the dq axis, u q is the voltage component on the dq axis, E f is the counter electromotive force, E f = ω m K e , K e is the counter electromotive force constant, ω m is the mechanical angular velocity, L q is Equivalent inductance on the dq axis.

作为优选,所述电流环的传递函数 Preferably, the transfer function of the current loop

作为优选,为了提高电流环的响应速度,令PI调节器的时间常数τi等于永磁同步伺服电机电气时间常数Ta,电流环加上PI调节器后的闭环传递函数为其中TPWM为PWM逆变器的时间常数。As a preference, in order to improve the response speed of the current loop, the time constant τ i of the PI regulator is set equal to the electrical time constant T a of the permanent magnet synchronous servo motor, and the closed-loop transfer function of the current loop plus the PI regulator is: Among them T PWM is the time constant of PWM inverter.

作为优选,所述控制器的闭环系统的二阶系统的闭环传递函数其中ωn为无阻尼振荡频率。Preferably, the closed-loop transfer function of the second-order system of the closed-loop system of the controller where ω n is the undamped oscillation frequency.

作为优选,按照二阶模型最佳整定方法,并且将PWM逆变器的时间常数TPWM看成0,则PMSM位置伺服系统电流环的高阶系统传递函数 As a preference, according to the optimal tuning method of the second-order model, and the time constant T PWM of the PWM inverter is regarded as 0, the high-order system transfer function of the current loop of the PMSM position servo system

作为优选,所述控制器的闭环系统为单位反馈,则所述控制器的闭环系统的传递函数 Preferably, the closed-loop system of the controller is unit feedback, and the transfer function of the closed-loop system of the controller is

本发明还提供一种如上所述的PMSM位置伺服系统高阶对象控制器参数确定方法,其中,将所述特征方程的根分解为The present invention also provides a method for determining the parameters of the high-order object controller of the PMSM position servo system as described above, wherein the root of the characteristic equation is decomposed into

其中ξ为阻尼比,ωn为无阻尼振荡频率,k1和k2为实轴极点与原点的距离,通过确定ξ,ωn,k1和k2的值,计算出相应的控制参数Kp、Ki、Kd的值。where ξ is the damping ratio, ω n is the undamped oscillation frequency, k 1 and k 2 are the distances from the real axis pole to the origin, by determining the values of ξ, ω n , k 1 and k 2 , the corresponding control parameter K is calculated Values of p , K i , K d .

本发明还提供一种如上所述的PMSM位置伺服系统高阶对象控制器参数确定方法,其中,将所述特征方程的根分解为The present invention also provides a method for determining the parameters of the high-order object controller of the PMSM position servo system as described above, wherein the root of the characteristic equation is decomposed into

其中ξ1、ξ2为阻尼比,ω1、ω2为无阻尼振荡频率,通过确定ξ1、ξ2、ω1和ω2的值,计算出相应的控制参数Kp、Ki、Kd的值。Where ξ 1 and ξ 2 are damping ratios, ω 1 and ω 2 are undamped oscillation frequencies, by determining the values of ξ 1 , ξ 2 , ω 1 and ω 2 , the corresponding control parameters K p , K i , K The value of d .

本发明提出的基于极点配置的PMSM位置伺服系统高阶对象控制器设计及参数确定方法,具有如下优点:The high-order object controller design and parameter determination method of the PMSM position servo system based on the pole configuration proposed by the present invention has the following advantages:

(1)本发明与通过永磁同步电机机械运动方程建立的传统二阶模型相比,本发明提出的位置伺服系统高阶对象模型能够更好地反映实际系统的相关物理特征,可以体现出电流环参数变化对系统的影响。(1) Compared with the traditional second-order model established by the permanent magnet synchronous motor mechanical motion equation, the high-order object model of the position servo system proposed by the present invention can better reflect the relevant physical characteristics of the actual system, and can reflect the current The effect of ring parameter changes on the system.

(2)本发明针对极点参数变化时高阶对象控制系统不同的阶跃响应进行了对比分析,并给出了相关的参数选取范围,具有一定的实际工程意义。(2) The present invention compares and analyzes the different step responses of the high-order object control system when the pole parameters change, and provides the relevant parameter selection range, which has certain practical engineering significance.

附图说明Description of drawings

图1为本发明提供的PMSM位置伺服系统高阶对象结构框图;Fig. 1 is the PMSM position servo system high-order object structural block diagram provided by the present invention;

图2为本发明提供的高阶位置环路PID控制器的系统框图;Fig. 2 is the system block diagram of the high-order position loop PID controller provided by the present invention;

图3为本发明提供的永磁同步电机位置伺服系统的实际Simulink仿真模型;Fig. 3 is the actual Simulink simulation model of the permanent magnet synchronous motor position servo system provided by the present invention;

图4为本发明提供的同阻尼比及实极点k1的极点配置仿真结果;Fig. 4 is the same damping ratio and the pole configuration simulation result of real pole k 1 provided by the present invention;

图5为本发明提供的相同无阻尼振荡频率及实极点k1的极点配置仿真结果(0<ξ<1);Fig. 5 is the same undamped oscillation frequency provided by the present invention and the pole configuration simulation result (0<ξ< 1 ) of real pole k1;

图6为本发明提供的相同无阻尼振荡频率及实极点k1的极点配置仿真结果(ξ≥1);Fig. 6 is the same undamped oscillation frequency provided by the present invention and the pole configuration simulation result of real pole k 1 (ξ≥1);

图7为本发明提供的相同阻尼比及无阻尼振荡频率的极点配置仿真结果;Fig. 7 is the pole configuration simulation result of the same damping ratio and undamped oscillation frequency provided by the present invention;

图8为本发明提供的特征根为两对共轭极点的极点配置仿真结果;Fig. 8 is the pole configuration simulation result that the characteristic root provided by the present invention is two pairs of conjugate poles;

图9为本发明提供的特征根为一对共轭极点,一对实极点的极点配置仿真结果;Fig. 9 is the characteristic root that the present invention provides is a pair of conjugate poles, the pole configuration simulation result of a pair of real poles;

图10为本发明提供的特征根为两对实极点的极点配置仿真结果。FIG. 10 shows the pole configuration simulation results where the characteristic roots provided by the present invention are two pairs of real poles.

具体实施方式Detailed ways

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.

本发明提供的基于极点配置的PMSM位置伺服系统控制器的设计与参数确定方法,主要分为三大步骤:位置环高阶对象的建模、控制器的设计及参数整定、通过仿真分析确定PID控制器参数。The design and parameter determination method of the PMSM position servo system controller based on pole configuration provided by the present invention is mainly divided into three major steps: modeling of high-order objects of the position loop, design of the controller and parameter setting, and determination of PID through simulation analysis Controller parameters.

(一)位置环高阶对象的建模(1) Modeling of high-order objects in the position loop

假设忽略铁芯的饱和,不计算涡流和磁滞损耗,电机中的感应电动势为正弦波,那么在d-q坐标系中,PMSM的定子电压方程可以描述为:Assuming that the saturation of the iron core is ignored, the eddy current and hysteresis loss are not calculated, and the induced electromotive force in the motor is a sine wave, then in the d-q coordinate system, the stator voltage equation of PMSM can be described as:

定子磁链方程为:The stator flux equation is:

那么由(1)和(2),可以得到:Then from (1) and (2), we can get:

其中,ud和uq分别为d-q轴的电压分量;id和iq分别是d-q轴上的电流分量;Ld和Lq为d-q轴上的等效电感;R为定子电阻;ψd和ψq为d-q轴上的定子磁链分量;ω是电角速度;ψf是永久磁体对应的转子磁链。Among them, u d and u q are the voltage components of the dq axis respectively; id and i q are the current components on the dq axis respectively; L d and L q are the equivalent inductance on the dq axis; R is the stator resistance; ψ d and ψ q are the stator flux components on the dq axis; ω is the electrical angular velocity; ψ f is the rotor flux corresponding to the permanent magnet.

在恒功率变换的原则下,得出电机的输出电磁转矩:Under the principle of constant power conversion, the output electromagnetic torque of the motor is obtained:

Te=1.5p[ψfiq+(Ld-Lq)idiq] (4)T e =1.5p[ψ f i q +(L d -L q )i d i q ] (4)

其中p为转子的磁极对数。where p is the number of pole pairs of the rotor.

若忽略磁阻转矩,则令Ld=Lq,转矩方程变为:If the reluctance torque is neglected, let L d =L q , and the torque equation becomes:

Te=1.5pψfiq=Ktiq (5)T e =1.5pψ f i q =K t i q (5)

其中Kt为转矩常数。另外,电机的机械运动方程为:Where K t is the torque constant. In addition, the mechanical equation of motion of the motor is:

其中:J为转动惯量;ωm为机械角速度;TL为负载转矩;B为阻尼系数。Among them: J is the moment of inertia; ω m is the mechanical angular velocity; T L is the load torque; B is the damping coefficient.

为了实现PMSM控制参数的解耦,使用较为常用的“id=0”控制策略,即令定子电流矢量与d轴垂直,那么在永磁体的ψf是定值的情况下只需要通过调整iq,就可以实现对转矩的直接控制。本发明基于“id=0”的控制策略建立伺服系统位置伺服系统高阶对象的模型如图1所示。In order to realize the decoupling of PMSM control parameters, the commonly used " id = 0" control strategy is used, that is, the stator current vector is perpendicular to the d-axis, then when the ψ f of the permanent magnet is a constant value, it is only necessary to adjust i q , the direct control of the torque can be realized. The present invention establishes a servo system position servo system high-order object model based on the control strategy of " id = 0", as shown in FIG. 1 .

首先,PWM逆变器的传递函数可以近似等效为一个一阶惯性环节,写成:First, the transfer function of the PWM inverter can be approximately equivalent to a first-order inertial link, written as:

其中TPWM为比例增益,TPWM为逆变器的时间常数。Among them, T PWM is the proportional gain, and T PWM is the time constant of the inverter.

由(3),电机的传递函数为:From (3), the transfer function of the motor is:

其中Ef为反电动势,Ef=ωmKe,Ke为反电动势常数,Ta为永磁同步伺服电机电气时间常数, Where E f is the back electromotive force, E f = ω m K e , K e is the back electromotive force constant, T a is the electrical time constant of the permanent magnet synchronous servo motor,

在忽略阻尼系数B的情况下,由式(3)、(5)和(6),在电流输出加入负载环节后,其传递函数表示为:In the case of ignoring the damping coefficient B, according to formulas (3), (5) and (6), after the current output is added to the load link, its transfer function is expressed as:

其中Kt=Ke=pψf,iL是负载电流。Where K t =K e =pψ f , i L is the load current.

接下来就是电流调节器的设计,考虑到典型I型系统的抗扰动恢复性能及跟随性能良好,故将电流环设计成典型I型系统,采用PI调节器,其传递函数为:The next step is the design of the current regulator. Considering the anti-disturbance recovery performance and follow-up performance of a typical I-type system, the current loop is designed as a typical I-type system, and a PI regulator is used. The transfer function is:

其中Kp为PI调节器的比例系数,τi为调节器的积分时间常数,考虑到惯性环节对系统的延迟作用,为了提高电流环的响应速度,令调节器的时间常数τi等于电气时间常数Ta,则电流环加上PI调节器后的开环传递函数为:Where K p is the proportional coefficient of the PI regulator, τ i is the integral time constant of the regulator, Considering the delay effect of the inertia link on the system, in order to improve the response speed of the current loop, the time constant τ i of the regulator is set equal to the electrical time constant T a , then the open-loop transfer function of the current loop plus the PI regulator is:

其中in

故此时电流环的闭环传递函数为:Therefore, the closed-loop transfer function of the current loop is:

典型二阶系统,其闭环传递函数可以表示为:For a typical second-order system, its closed-loop transfer function can be expressed as:

按照二阶模型的最佳整定方法,则:According to the optimal tuning method of the second-order model, then:

ξ2=0.5 (15)ξ 2 =0.5 (15)

由(13),(14)可知:From (13), (14) we know:

故由(15),(16),(17)得So from (15), (16), (17) we get

2kTPWM=1 (18)2kT PWM = 1 (18)

一般情况下TPWM较小,那么可以将(13)近似为:In general, T PWM is small, then (13) can be approximated as:

其中 in

根据图1,得到PMSM位置伺服系统电流环的高阶系统传递函数:According to Figure 1, the high-order system transfer function of the current loop of the PMSM position servo system is obtained:

(二)控制器的设计及参数整定(2) Controller design and parameter tuning

整个高阶位置环路采用PID控制器,控制系统框图如图2所示。The entire high-order position loop uses a PID controller, and the block diagram of the control system is shown in Figure 2.

设此闭环系统为单位反馈,由于Gp(s)和G(s)已知,可以得到闭环系统的传递函数:Assuming that the closed-loop system is unit feedback, since Gp (s) and G(s) are known, the transfer function of the closed-loop system can be obtained:

得到系统的特征方程式:Get the characteristic equation of the system:

JTqs4+Js3+KtKds2+KtKps+KtKi=0 (23)JT q s 4 +Js 3 +K t K d s 2 +K t K p s+K t K i =0 (23)

这时对于系统特征方程的根可以分解为两种形式,第一种形式:At this time, the root of the system characteristic equation can be decomposed into two forms, the first form:

其中ξ为阻尼比,ωn为无阻尼振荡频率,k1和k2为实轴极点与原点的距离。由此可知,只要确定ξ,ωn,k1和k2的值,那么根据式(24)系数相等的原则就可以计算出相应的Kp、Ki、Kd控制参数。where ξ is the damping ratio, ωn is the undamped oscillation frequency, and k1 and k2 are the distances from the real axis poles to the origin. It can be seen that as long as the values of ξ, ω n , k 1 and k 2 are determined, the corresponding K p , K i , K d control parameters can be calculated according to the principle that the coefficients of formula (24) are equal.

令式(24)中的等于0,得出其特征根:In order (24) Equal to 0, get its characteristic root:

可以看出,当0<ξ<1时,s1,2为一对共轭复根;ξ=1时,s1,2为一对重根;ξ>1时,s1,2为一对不等负实根,因此根据ξ的取值不同,也可以将特征根分解为第二种形式:It can be seen that when 0<ξ<1, s 1, 2 is a pair of conjugate complex roots; when ξ=1, s 1, 2 is a pair of multiple roots; when ξ>1, s 1, 2 is a pair The negative real roots are not equal, so according to the value of ξ, the characteristic roots can also be decomposed into the second form:

其中ξ1、ξ2为阻尼比,ω1、ω2为无阻尼振荡频率。同理,只要确定ξ1、ξ2、ω1和ω2的值,也可以计算出相应的PID控制参数。Among them, ξ 1 and ξ 2 are damping ratios, and ω 1 and ω 2 are undamped oscillation frequencies. Similarly, as long as the values of ξ 1 , ξ 2 , ω 1 and ω 2 are determined, the corresponding PID control parameters can also be calculated.

(三)通过仿真分析确定PID控制器参数(3) Determine the parameters of the PID controller through simulation analysis

由于式(24),(26)中存在多种变量,故采用控制变量的方法进行实验分析。图3为永磁同步电机位置伺服系统高阶模型的实际Simulink仿真模型,其中电流环调节器的PI参数可由(12)求出,仿真模型的输入角度θ为1rad。Since there are multiple variables in formulas (24) and (26), the method of controlling variables is used for experimental analysis. Figure 3 is the actual Simulink simulation model of the high-order model of the permanent magnet synchronous motor position servo system, in which the PI parameters of the current loop regulator can be obtained by (12), and the input angle θ of the simulation model is 1rad.

仿真实验选取的仿真参数如表1所示:The simulation parameters selected for the simulation experiment are shown in Table 1:

表1 PMSM仿真参数Table 1 PMSM simulation parameters

特征方程的根的第一种形式:The first form of the roots of the characteristic equation:

第一种形式如式(24)所示,由于存在多个变量参数,故采取控制变量的原则进行仿真实验:The first form is shown in formula (24). Since there are multiple variable parameters, the principle of controlling variables is adopted for simulation experiments:

a.同阻尼比及实极点k1的极点配置策略a. Pole configuration strategy with the same damping ratio and real pole k 1

由式(25)可知当0<ξ<1时,系统具有一对共轭复根及两个实数极点,故取ξ=0.707,k1=15,ωn(单位rad/s)分别取10,20,30,40,50时,PID控制器参数及系统仿真结果如表2及图所示:It can be known from formula (25) that when 0<ξ<1, the system has a pair of conjugate complex roots and two real number poles, so take ξ=0.707, k 1 =15, and ω n (unit rad/s) take 10 , 20, 30, 40, 50, the PID controller parameters and system simulation results are shown in Table 2 and the figure:

表2同阻尼比及实极点k1的极点配置参数Table 2 Same damping ratio and pole configuration parameters of real pole k 1

ωn ω n kp k p ki k i kd k d 1010 0.35320.3532 1.69431.6943 0.03310.0331 2020 0.92840.9284 6.73846.7384 0.04900.0490 3030 1.72161.7216 15.074215.0742 0.06480.0648 4040 2.72902.7290 26.643526.6435 0.08060.0806 5050 3.94683.9468 41.388041.3880 0.09620.0962

根据图4所示仿真结果,在系统阻尼比及一个实轴极点不变的情况下,随着ωn的增大,系统调节时间变短,超调量增加,在ωn大于30后系统开始出现振荡。According to the simulation results shown in Figure 4, when the system damping ratio and a real-axis pole remain unchanged, as ω n increases, the system adjustment time becomes shorter and the overshoot increases. When ω n is greater than 30, the system begins to Oscillation occurs.

b.相同无阻尼振荡频率及实极点k1的极点配置策略b. Pole configuration strategy with the same undamped oscillation frequency and real pole k 1

取ωn=30,k1=15时,ξ分别取0.4,0.707,0.9,1,2,4,仿真实验分为三种情况:当0<ξ<1时,系统具有一对共轭复根及两个实数极点;当ξ=1时,系统在实轴上有一对负重根及两个实数极点-k1和-k2;当ξ>1时,系统具有两个不等负实根及两个实数极点-k1和-k2。将ξ=1及ξ>1的情况统一进行分析,PID控制器参数及系统仿真结果如表3及图5、6所示:When ω n = 30, k 1 = 15, ξ takes 0.4, 0.707, 0.9, 1, 2, 4 respectively, and the simulation experiment is divided into three cases: when 0<ξ<1, the system has a pair of conjugate complex root and two real number poles; when ξ=1, the system has a pair of negative heavy roots and two real number poles -k 1 and -k 2 on the real axis; when ξ>1, the system has two unequal negative real roots and two real poles -k 1 and -k 2 . The cases of ξ=1 and ξ>1 are analyzed uniformly, and the PID controller parameters and system simulation results are shown in Table 3 and Figures 5 and 6:

表3相同无阻尼振荡频率及实极点k1的极点配置参数Table 3 The pole configuration parameters of the same undamped oscillation frequency and real pole k 1

由图5所示仿真结果可以发现,在无阻尼振荡频率不变的情况下,当0<ξ<1时,随着阻尼比的增加,系统响应变快,调节时间变短,但慢慢出现小幅振荡。From the simulation results shown in Figure 5, it can be found that under the condition of constant undamped oscillation frequency, when 0<ξ<1, as the damping ratio increases, the system responds faster and the adjustment time becomes shorter, but slowly Oscillate slightly.

由图6所示仿真结果可以发现ξ≥1时,随着阻尼比的增加,系统响应变快但振荡变大,且超调量增加,不利于实际工程的性能指标。From the simulation results shown in Figure 6, it can be found that when ξ≥1, as the damping ratio increases, the system responds faster but the oscillation becomes larger, and the overshoot increases, which is not conducive to the performance index of the actual project.

c.相同阻尼比及无阻尼振荡频率的极点配置策略c. Pole placement strategy with the same damping ratio and undamped oscillation frequency

取ξ=0.707,ωn=30,k1分别取1,5,10,15,30时进行仿真实验,PID控制器参数及系统仿真结果如表4及图7所示:Take ξ = 0.707, ω n = 30, and k 1 to be 1, 5, 10, 15, and 30 respectively for simulation experiments. The parameters of the PID controller and the system simulation results are shown in Table 4 and Figure 7:

表4相同阻尼比及无阻尼振荡频率的极点配置参数Table 4 The pole configuration parameters of the same damping ratio and undamped oscillation frequency

k1 k 1 kp k p ki k i kd k d 11 1.05881.0588 1.01071.0107 0.04920.0492 55 1.24891.2489 5.04535.0453 0.05370.0537 1010 1.48581.4858 10.070010.0700 0.05930.0593 3030 2.42342.4234 29.963329.9633 0.08140.0814

由图7所示仿真结果可以看出:随着k1的增大,系统响应变快,但超调量变大,系统开始出现振荡;而在k1较小时,系统超调量小,基本无振荡,稳定性好,但响应时间不是非常迅速。From the simulation results shown in Figure 7, it can be seen that with the increase of k 1 , the system response becomes faster, but the overshoot becomes larger, and the system begins to oscillate; when k 1 is small, the system overshoot is small, basically no Oscillation, good stability, but the response time is not very fast.

特征方程的根的第一种形式:The first form of the roots of the characteristic equation:

第二种形式如式(26)所示,根据ξ1、ξ2取值范围不同,分为三种情况讨论。The second form is shown in formula (26). According to the different value ranges of ξ 1 and ξ 2 , it is divided into three cases for discussion.

a.特征根为两对共轭极点的配置策略(0<ξ1、ξ2<1)a. The characteristic root is the configuration strategy of two pairs of conjugate poles (0<ξ 1 , ξ 2 <1)

给定ξ1=0.707,ωn=30,分别取ξ2=0.6,0.7,0.8,0.9进行参数配置,PID控制器参数及系统仿真结果如表5及图8所示:Given ξ 1 = 0.707, ω n = 30, respectively take ξ 2 = 0.6, 0.7, 0.8, 0.9 for parameter configuration, the PID controller parameters and system simulation results are shown in Table 5 and Figure 8:

表5特征根为两对共轭极点的极点配置参数Table 5 The characteristic root is the pole configuration parameters of two pairs of conjugate poles

ξ2 ξ 2 kp k p ki k i kd k d 0.60.6 82.345782.3457 1725.61725.6 1.96541.9654 0.70.7 60.767260.7672 1267.81267.8 1.45671.4567 0.80.8 46.761846.7618 970.6660970.6660 1.12661.1266 0.90.9 37.159837.1598 766.9460766.9460 0.90020.9002

可以看出系统开始无响应,约0.45s后呈振荡发散状态,无法达到预期的目标响应。It can be seen that the system does not respond at the beginning, and after about 0.45s, it is in a state of oscillation and divergence, and the expected target response cannot be achieved.

b.特征根为一对共轭复数极点,一对实极点的情况(0<ξ1<1,ξ2>1)b. The case where the characteristic root is a pair of conjugate complex poles and a pair of real poles (0<ξ 1 <1, ξ 2 >1)

取ξ1=0.707,ωn=30,分别取ξ2=3,5,15,30进行参数配置,PID控制器参数及系统仿真结果如表6及图9所示:Take ξ 1 =0.707, ω n =30, respectively take ξ 2 =3, 5, 15, and 30 for parameter configuration, the PID controller parameters and system simulation results are shown in Table 6 and Figure 9:

表6特征根为一对共轭极点,一对实极点的极点配置参数Table 6 The characteristic root is a pair of conjugate poles, and the pole configuration parameters of a pair of real poles

根据图9仿真结果所示,在ξ1和ωn不变的情况下,随着ξ2的增大,系统响应变慢,振荡及超调量变小,系统趋于稳定。According to the simulation results in Figure 9, when ξ1 and ωn remain unchanged, as ξ2 increases, the system response becomes slower, the oscillation and overshoot become smaller, and the system tends to be stable.

c.特征根为两对实数极点的情况(ξ1、ξ2值均大于1)c. The case where the characteristic roots are two pairs of real poles (both the values of ξ 1 and ξ 2 are greater than 1)

根据控制变量的原则,给定ξ1=2,ωn=30,分别取ξ2=3,5,15,30进行PID控制器参数配置,PID控制器参数及系统仿真结果如表7及图10所示:According to the principle of control variables, given ξ 1 = 2, ω n = 30, respectively take ξ 2 = 3, 5, 15, 30 to configure the PID controller parameters. The PID controller parameters and system simulation results are shown in Table 7 and Fig. 10 shows:

表7特征根为两对实数极点的极点配置参数Table 7 The characteristic root is the pole configuration parameters of two pairs of real number poles

ξ2 ξ 2 kp k p ki k i kd k d 33 9.61079.6107 64.736064.7360 0.20290.2029 55 4.08654.0865 23.305023.3050 0.15690.1569 1515 1.32451.3245 2.58942.5894 0.13380.1338 3030 1.06551.0655 0.64740.6474 0.13170.1317

仿真结果可以看出:当一对实极点的位置不变,另一对的阻尼比增加时,系统超调量及振荡变小,系统趋于稳定,响应变慢。From the simulation results, it can be seen that when the positions of one pair of real poles remain unchanged and the damping ratio of the other pair increases, the overshoot and oscillation of the system become smaller, the system tends to be stable, and the response becomes slower.

由以上的分析,兼顾系统的快速性与稳定性,我们可以将参数取值范围大致总结为:阻尼比ξ一般可以在0.6-0.8间取值;ωn(rad/s)可以在20-40间取值;k1可以在10~20间取值。From the above analysis, taking into account the rapidity and stability of the system, we can roughly summarize the value range of the parameters as follows: the damping ratio ξ can generally be set between 0.6-0.8; ω n (rad/s) can be between 20-40 value between; k 1 can take a value between 10 and 20.

显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the invention without departing from the spirit and scope of the invention. If these modifications and variations of the present invention fall within the scope of the claims of the present invention and their technical equivalents, the present invention also intends to include these modifications and variations.

Claims (9)

1.一种PMSM位置伺服系统高阶对象控制器设计方法,其特征在于,所述控制器采用PID闭环系统控制器,并用极点配置的方法设计控制器的参数,假设控制器中的电流环采用PI调节器,并校正成I型系统确定PI调节器的参数,所述电流环中设置有PWM逆变器,在d-q坐标系中,所述PID闭环系统的特征方程式为: 其中J为转动惯量,KPWM为PWM逆变器中的比例增益,R为电机定子电阻,Ta为永磁同步伺服电机电气时间常数,s为被控的时间变量,Kt为转矩常数,Kp、Kd、Ki为控制器的三个控制参数,其中τi为PI调节器的积分时间常数。1. a PMSM position servo system high-order object controller design method, it is characterized in that, described controller adopts PID closed-loop system controller, and with the parameter of the method design controller of pole configuration, assuming that the current loop in the controller adopts PI regulator, and correct it into an I-type system to determine the parameters of the PI regulator, the current loop is provided with a PWM inverter, and in the dq coordinate system, the characteristic equation of the PID closed-loop system is: where J is the moment of inertia, K PWM is the proportional gain in PWM inverter, R is the stator resistance of the motor, T a is the electrical time constant of the permanent magnet synchronous servo motor, s is the controlled time variable, K t is the torque constant, K p , K d , and K i are the three control parameters of the controller, in τ i is the integral time constant of the PI regulator. 2.如权利要求1所述的PMSM位置伺服系统高阶对象控制器设计方法,其特征在于,在d-q坐标系中,假设所述永磁同步伺服电机的定子电流矢量与d轴垂直,也即d-q轴上的电流分量id=0,所述永磁同步伺服电机的传递函数2. PMSM position servo system high-order object controller design method as claimed in claim 1, is characterized in that, in dq coordinate system, assumes that the stator current vector of described permanent magnet synchronous servo motor is perpendicular to d axis, that is The current component i d on the dq axis =0, the transfer function of the permanent magnet synchronous servo motor 其中iq也是d-q轴上的电流分量,uq为d-q轴的电压分量,Ef为反电动势,Ef=ωmKe,Ke为反电动势常数,ωm为机械角速度,Lq为d-q轴上的等效电感。 Where i q is also the current component on the dq axis, u q is the voltage component on the dq axis, E f is the counter electromotive force, E f = ω m K e , K e is the counter electromotive force constant, ω m is the mechanical angular velocity, L q is Equivalent inductance on the dq axis. 3.如权利要求2所述的PMSM位置伺服系统高阶对象控制器设计方法,其特征在于,所述电流环的传递函数 3. PMSM position servo system high-order object controller design method as claimed in claim 2, is characterized in that, the transfer function of described current loop 4.如权利要求3所述的PMSM位置伺服系统高阶对象控制器设计方法,其特征在于,为了提高电流环的响应速度,令PI调节器的时间常数τi等于永磁同步伺服电机电气时间常数Ta,电流环加上PI调节器后的闭环传递函数为其中TPWM为PWM逆变器的时间常数。4. PMSM position servo system high-order object controller design method as claimed in claim 3 is characterized in that, in order to improve the response speed of current loop, make the time constant τ of PI regulator equal to permanent magnet synchronous servo motor electrical time constant T a , the closed-loop transfer function of the current loop plus the PI regulator is Among them T PWM is the time constant of PWM inverter. 5.如权利要求4所述的PMSM位置伺服系统高阶对象控制器设计方法,其特征在于,所述控制器的闭环系统的二阶系统的闭环传递函数其中ωn为无阻尼振荡频率。5. PMSM position servo system high-order object controller design method as claimed in claim 4, is characterized in that, the closed-loop transfer function of the second-order system of the closed-loop system of described controller where ω n is the undamped oscillation frequency. 6.如权利要求5所述的PMSM位置伺服系统高阶对象控制器设计方法,其特征在于,按照二阶模型最佳整定方法,并且将PWM逆变器的时间常数TPWM看成0,则PMSM位置伺服系统电流环的高阶系统传递函数 6. PMSM position servo system high-order object controller design method as claimed in claim 5 is characterized in that, according to second-order model optimal tuning method, and the time constant T PWM of PWM inverter is regarded as 0, then Higher Order System Transfer Function of Current Loop in PMSM Position Servo System 7.如权利要求6所述的PMSM位置伺服系统高阶对象控制器设计方法,其特征在于,所述控制器的闭环系统为单位反馈,则所述控制器的闭环系统的传递函数 7. PMSM position servo system high-order object controller design method as claimed in claim 6 is characterized in that, the closed-loop system of described controller is unit feedback, then the transfer function of the closed-loop system of described controller 8.一种如权利要求1所述的PMSM位置伺服系统高阶对象控制器参数确定方法,其特征在于,将所述特征方程的根分解为 8. a PMSM position servo system high-order object controller parameter determination method as claimed in claim 1, is characterized in that, the root of described characteristic equation is decomposed into 其中ξ为阻尼比,ωn为无阻尼振荡频率,k1和k2为实轴极点与原点的距离,通过确定ξ,ωn,k1和k2的值,计算出相应的控制参数Kp、Ki、Kd的值。where ξ is the damping ratio, ω n is the undamped oscillation frequency, k 1 and k 2 are the distances from the real axis pole to the origin, by determining the values of ξ, ω n , k 1 and k 2 , the corresponding control parameter K is calculated Values of p , K i , K d . 9.一种如权利要求1所述的PMSM位置伺服系统高阶对象控制器参数确定方法,其特征在于,将所述特征方程的根分解为9. a PMSM position servo system high-order object controller parameter determination method as claimed in claim 1, is characterized in that, the root of described characteristic equation is decomposed into 其中ξ1、ξ2为阻尼比,ω1、ω2为无阻尼振荡频率,通过确定ξ1、ξ2、ω1和ω2的值,计算出相应的控制参数Kp、Ki、Kd的值。Where ξ 1 and ξ 2 are damping ratios, ω 1 and ω 2 are undamped oscillation frequencies, by determining the values of ξ 1 , ξ 2 , ω 1 and ω 2 , the corresponding control parameters K p , K i , K The value of d .
CN201810542405.6A 2018-05-30 2018-05-30 PMSM positional servosystem High order Plant controller designs and parameter determination method Pending CN108599649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810542405.6A CN108599649A (en) 2018-05-30 2018-05-30 PMSM positional servosystem High order Plant controller designs and parameter determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810542405.6A CN108599649A (en) 2018-05-30 2018-05-30 PMSM positional servosystem High order Plant controller designs and parameter determination method

Publications (1)

Publication Number Publication Date
CN108599649A true CN108599649A (en) 2018-09-28

Family

ID=63630315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810542405.6A Pending CN108599649A (en) 2018-05-30 2018-05-30 PMSM positional servosystem High order Plant controller designs and parameter determination method

Country Status (1)

Country Link
CN (1) CN108599649A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995294A (en) * 2019-04-25 2019-07-09 电子科技大学 A current loop control method for the full speed range of permanent magnet synchronous motor
CN110609230A (en) * 2019-09-23 2019-12-24 上海大学 A power stage simulation drive system and method for a permanent magnet synchronous motor
CN110802602A (en) * 2019-11-29 2020-02-18 东北大学 A Vibration Suppression Method Based on PI Control Strategy for Manipulator Flexible Joint Pose Transformation
CN110932634A (en) * 2019-12-04 2020-03-27 东南大学 A Design Method of Current Regulator for Permanent Magnet Synchronous Motor Drive System
CN111082731A (en) * 2020-01-07 2020-04-28 北京自动化控制设备研究所 Parameter optimization method of speed-regulating motor for pump and speed-regulating motor for pump
CN111211720A (en) * 2019-12-30 2020-05-29 东风航盛(武汉)汽车控制系统有限公司 Method for setting PI (proportional integral) parameter of current loop of permanent magnet synchronous motor controller
CN111987944A (en) * 2019-05-24 2020-11-24 上海汽车变速器有限公司 State feedback-based direct current motor angle control method for electronic parking
CN112558463A (en) * 2020-12-03 2021-03-26 重庆交通大学 Series correction method of second-order under-damped system
CN113934138A (en) * 2021-10-21 2022-01-14 苏州科技大学 A Friction Compensation Feedforward Controller for Servo System

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401493A (en) * 2013-08-09 2013-11-20 固高科技(深圳)有限公司 Control system and method for permanent magnet synchronous electric spindle driving

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401493A (en) * 2013-08-09 2013-11-20 固高科技(深圳)有限公司 Control system and method for permanent magnet synchronous electric spindle driving

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
丁有爽等: "基于极点配置的永磁同步电机驱动柔性负载PI调节器参数确定方法", 《中国电机工程学报》 *
熊磊: "永磁同步电机伺服系统的位置环建模与时延鲁棒控制", 《中国优秀硕士学位论文全文数据库(电子期刊)•工程科技Ⅱ辑》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995294A (en) * 2019-04-25 2019-07-09 电子科技大学 A current loop control method for the full speed range of permanent magnet synchronous motor
CN111987944A (en) * 2019-05-24 2020-11-24 上海汽车变速器有限公司 State feedback-based direct current motor angle control method for electronic parking
CN110609230A (en) * 2019-09-23 2019-12-24 上海大学 A power stage simulation drive system and method for a permanent magnet synchronous motor
CN110609230B (en) * 2019-09-23 2022-06-14 上海大学 A power stage analog drive system and method for a permanent magnet synchronous motor
CN110802602A (en) * 2019-11-29 2020-02-18 东北大学 A Vibration Suppression Method Based on PI Control Strategy for Manipulator Flexible Joint Pose Transformation
CN110802602B (en) * 2019-11-29 2023-01-10 东北大学 Mechanical arm flexible joint pose transformation vibration suppression method based on PI control strategy
CN110932634A (en) * 2019-12-04 2020-03-27 东南大学 A Design Method of Current Regulator for Permanent Magnet Synchronous Motor Drive System
CN110932634B (en) * 2019-12-04 2021-11-12 东南大学 Design method of current regulator of permanent magnet synchronous motor driving system
CN111211720B (en) * 2019-12-30 2021-11-12 东风航盛(武汉)汽车控制系统有限公司 Method for setting PI (proportional integral) parameter of current loop of permanent magnet synchronous motor controller
CN111211720A (en) * 2019-12-30 2020-05-29 东风航盛(武汉)汽车控制系统有限公司 Method for setting PI (proportional integral) parameter of current loop of permanent magnet synchronous motor controller
CN111082731A (en) * 2020-01-07 2020-04-28 北京自动化控制设备研究所 Parameter optimization method of speed-regulating motor for pump and speed-regulating motor for pump
CN112558463A (en) * 2020-12-03 2021-03-26 重庆交通大学 Series correction method of second-order under-damped system
CN113934138A (en) * 2021-10-21 2022-01-14 苏州科技大学 A Friction Compensation Feedforward Controller for Servo System
CN113934138B (en) * 2021-10-21 2024-02-23 苏州科技大学 Friction compensation feedforward controller for servo system

Similar Documents

Publication Publication Date Title
CN108599649A (en) PMSM positional servosystem High order Plant controller designs and parameter determination method
CN104242769B (en) Permanent magnet synchronous motor speed composite control method based on continuous terminal slip form technology
CN101989827B (en) Method for automatically adjusting speed loop control parameters of alternating-current servo system based on inertia identification
CN104300863B (en) A kind of adaptive sliding-mode observer method of varying load PMSM Speed
CN104639001B (en) Servo motor control method integrating sliding mode control and fractional order neural network control
CN104410107B (en) A Passive Integral Sliding Mode Control Method for Doubly-fed Wind Power System
CN107070342A (en) A kind of control system for permanent-magnet synchronous motor of bringing onto load state observer
CN110492804A (en) A kind of permanent magnet synchronous motor Second Order Sliding Mode Control method based on novel disturbance observer
CN102354107A (en) On-line identification and control method for parameter of alternating current position servo system model
CN108322120B (en) Robust nonlinear predictive torque control method for permanent magnet synchronous motors
CN103944481B (en) A kind of AC Motor Vector Control System model parameter on-line amending method
CN112187130B (en) Method and system for controlling a permanent magnet synchronous machine
CN109755957A (en) A method and system for modeling the outer loop control analytical transfer function of a grid-connected voltage source converter system
CN107577149A (en) A kind of follow-up control method using fractional order fast terminal sliding formwork control
CN104880944B (en) Novel variable structure PI controller
CN103001567B (en) Multi-mode inverse model identification method for speed regulating system of six-phase permanent magnet synchronous linear motor
CN104977850B (en) It is a kind of based on fractional order fallout predictor without Time-delay Robust control method of servo motor
Wang et al. Current-loop bandwidth expansion strategy for permanent magnet synchronous motor drives
Tarnik et al. Model reference adaptive control of permanent magnet synchronous motor
Chen et al. Different Model-Based ADRCs Satisfying Performance Independent Control for PMSM Speed Servo System
CN105549385A (en) Decoupling internal die controller, control system, and control method of multivariable time-lag non-minimum-phase non-square system
Xie et al. Optimization research of FOC based on PSO of induction motors
Okoro et al. Performance assessment of a model-based DC motor scheme
CN102969948A (en) Two-motor variable-frequency speed control system considering efficiency optimization and decoupling control method thereof
CN114528669B (en) Design method of super-helical controller for permanent magnet synchronous motor based on preset time stability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928

WD01 Invention patent application deemed withdrawn after publication