CN102354107A - On-line identification and control method for parameter of alternating current position servo system model - Google Patents
On-line identification and control method for parameter of alternating current position servo system model Download PDFInfo
- Publication number
- CN102354107A CN102354107A CN2011101427369A CN201110142736A CN102354107A CN 102354107 A CN102354107 A CN 102354107A CN 2011101427369 A CN2011101427369 A CN 2011101427369A CN 201110142736 A CN201110142736 A CN 201110142736A CN 102354107 A CN102354107 A CN 102354107A
- Authority
- CN
- China
- Prior art keywords
- theta
- omega
- gamma
- ref
- identification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000003044 adaptive effect Effects 0.000 claims abstract description 23
- 238000013016 damping Methods 0.000 claims abstract description 19
- 238000005070 sampling Methods 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 7
- 238000013178 mathematical model Methods 0.000 claims description 4
- 238000013461 design Methods 0.000 abstract description 9
- 238000004422 calculation algorithm Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明公开了一种交流位置伺服系统模型参数在线辨识和控制方法,利用基于李雅普诺夫(Lyapunov)稳定性理论的模型参考自适应辨识算法,对交流伺服系统被控对象的转动惯量J和粘性阻尼系数B进行在线辨识,当辨识参数收敛后,根据J和B的值在线设计位置控制器,并自动切换到位置控制,本发明可大大提高交流伺服系统设计的效率。
The invention discloses an on-line identification and control method for model parameters of an AC servo system, using a model reference adaptive identification algorithm based on Lyapunov's (Lyapunov) stability theory to calculate the moment of inertia J and viscosity of the controlled object of the AC servo system The damping coefficient B is identified online. When the identification parameters converge, the position controller is designed online according to the values of J and B, and automatically switches to position control. The invention can greatly improve the efficiency of AC servo system design.
Description
技术领域 technical field
本发明涉及交流永磁同步电机伺服系统,特别涉及一种交流位置伺服系统模型参数在线辨识和控制方法,属于同步电机技术领域。The invention relates to an AC permanent magnet synchronous motor servo system, in particular to an online identification and control method for model parameters of an AC position servo system, and belongs to the technical field of synchronous motors.
背景技术 Background technique
一个新的交流伺服系统建立以后,其诸多系统参数都是未知的,而控制系统的控制器参数都是依据系统的模型参数来设计的。另外在许多控制问题中,面向的对象通常是不确定的,工作负载的改变会导致伺服系统模型参数的变化。因此,一个高性能的交流伺服系统不仅要求系统能对伺服指令做出快速、准确的响应,而且还要求当负载特征变化时,仍能保证系统具有良好的控制性能,这就要求伺服系统的控制器参数能够随负载特性作适当的调整。After a new AC servo system is established, many system parameters are unknown, and the controller parameters of the control system are designed according to the model parameters of the system. In addition, in many control problems, the object-oriented is usually uncertain, and the change of the workload will lead to the change of the parameters of the servo system model. Therefore, a high-performance AC servo system not only requires the system to respond quickly and accurately to servo commands, but also requires that the system still have good control performance when the load characteristics change, which requires the control of the servo system The parameters of the inverter can be adjusted appropriately according to the load characteristics.
交流伺服控制系统的设计方法一般分为三种,第一种是先离线辨识出系统模型参数,再根据辨识出的模型参数设计控制器参数,该方法效率比较低,并且离线辨识需要大量实验数据,要对多组数据进行处理才能得到系统的参数,计算量很大,并且当负载的变化导致系统模型参数变化时要重新进行离线参数辨识,增加了控制系统设计时间和工作量,专利申请号为200710024700.4名称为《一种交流位置伺服系统中干扰的观测和补偿方法》的中国专利介绍了参数变化等对被控对象控制性能的影响。第二种是先辨识出系统模型参数,再根据辨识出的模型参数在线设计控制器参数,并自动切换到位置控制。第三种是位置自适应控制算法,和第二种方法不同的是在控制系统运行过程中不断进行参数辨识和控制器的修改,此种方法系统设计比较复杂难于实现,并且对控制系统的硬件要求较高。The design methods of AC servo control systems are generally divided into three types. The first one is to identify the system model parameters offline first, and then design the controller parameters according to the identified model parameters. This method is relatively inefficient, and offline identification requires a large amount of experimental data. , it is necessary to process multiple sets of data to obtain the parameters of the system, which requires a large amount of calculation, and when the load changes cause the parameters of the system model to change, the offline parameter identification must be re-identified, which increases the design time and workload of the control system. Patent application number The 200710024700.4 Chinese patent titled "A Disturbance Observation and Compensation Method in AC Position Servo System" introduced the influence of parameter changes on the control performance of the controlled object. The second is to identify the system model parameters first, then design the controller parameters online according to the identified model parameters, and automatically switch to position control. The third is the position adaptive control algorithm, which is different from the second method in that parameter identification and controller modification are carried out continuously during the operation of the control system. Higher requirements.
发明内容 Contents of the invention
本发明要解决的技术问题在于,针对现有技术上的缺陷,提供一种交流位置伺服系统模型参数在线辨识和控制方法,以提高设计控制系统的效率。The technical problem to be solved by the present invention is to provide an AC position servo system model parameter online identification and control method to improve the efficiency of designing the control system in view of the defects in the prior art.
为解决上述技术问题,本发明提供一种交流位置伺服系统模型参数在线辨识和控制方法,其特征在于,包括以下步骤:In order to solve the above technical problems, the present invention provides a method for online identification and control of AC position servo system model parameters, which is characterized in that it includes the following steps:
1)设定交流伺服系统被控对象数学模型:利用一阶微分方程表示为其中ω是系统输出速度,u是被控对象输入速度信号,J和B是交流伺服系统被控对象的模型参数,是未知参数,分别是转动惯量和粘性阻尼系数;1) Set the mathematical model of the controlled object of the AC servo system: use the first-order differential equation to express as Where ω is the output speed of the system, u is the input speed signal of the controlled object, J and B are the model parameters of the controlled object of the AC servo system, which are unknown parameters, and are the moment of inertia and viscous damping coefficient respectively;
设定被控对象辨识的参考模型:
2)在被控对象模型参考自适应控制系统中,将辨识的模型参数转动惯量J和粘性阻尼系数B的辨识值和其前一采样周期的转动惯量J和粘性阻尼系数B进行比较,直到它们的差值小于预先给定的性能指标ε时停止辨识,输出辨识的参数值J和B;2) In the model reference adaptive control system of the controlled object, compare the identified value of the identified model parameters moment of inertia J and viscous damping coefficient B with the moment of inertia J and viscous damping coefficient B of the previous sampling period until they When the difference between is less than the predetermined performance index ε, the identification is stopped, and the identification parameter values J and B are output;
3)根据步骤2)输出的被控对象辨识的参数值在线计算位置控制器,并自动切换到位置控制。3) Calculate the position controller online according to the parameter value of the controlled object identification output in step 2), and automatically switch to position control.
前述的一种交流位置伺服系统模型参数在线辨识和控制方法,其特征在于:在所述步骤2)中,被控对象辨识的参考模型和实际模型参数之间的跟踪偏差采用比例运算,控制规律为u=θr(t)ω_ref-θy(t)ω,其中θr(t)和θy(t)是分别是t时刻的辨识值和参考模型参数的时变反馈增益,闭环系统函数为
前述的一种交流位置伺服系统模型参数在线辨识和控制方法,其特征在于:在所述步骤2)中,利用李雅普诺夫稳定性判据判断被控对象模型参考自适应控制系统是否稳定,具体方法为:The aforesaid online identification and control method of AC position servo system model parameters is characterized in that: in the step 2), the Lyapunov stability criterion is used to judge whether the controlled object model reference adaptive control system is stable, specifically The method is:
李 雅 普 诺 夫 Lyapunov 函 数 为
如果控制器参数根据自适应规律
前述的一种交流位置伺服系统模型参数在线辨识和控制方法,其特征在于:在所述步骤3)中,位置控制器采用PD控制,传递函数表示为Gc(s)=Kp+Kds, 则位置环的闭环传递函数为
本发明的有益效果是,利用基于李雅普诺夫(Lyapunov)稳定性理论的模型参考自适应辨识算法,对交流伺服系统被控对象的模型参数转动惯量J和粘性阻尼系数B进行在线辨识,当辨识参数收敛后,根据J和B的值在线设计位置控制器,并自动切换到位置控制,大大提高系统设计的效率。The beneficial effect of the present invention is that, using the model reference adaptive identification algorithm based on Lyapunov (Lyapunov) stability theory, the model parameters moment of inertia J and viscous damping coefficient B of the controlled object of the AC servo system are identified online. After the parameters converge, the position controller is designed online according to the values of J and B, and automatically switches to position control, which greatly improves the efficiency of system design.
附图说明Description of drawings
图1为本发明的基于模型参数在线辨识和位置控制原理图;Fig. 1 is the schematic diagram of on-line identification and position control based on model parameters of the present invention;
图2为被控对象模型参数在线辨识和位置控制流程图;Fig. 2 is a flow chart of the online identification and position control of the model parameters of the controlled object;
图3为被控对象模型参考自适应控制系统的框图;Fig. 3 is a block diagram of the controlled object model reference adaptive control system;
图4为一阶系统的模型参考自适应辨识框图;Fig. 4 is a block diagram of the model reference adaptive identification of the first-order system;
图5为简化后的位置闭环原理框图;Fig. 5 is a schematic block diagram of the simplified position closed loop;
图6为位置控制输出跟踪曲线。Figure 6 is the position control output tracking curve.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1中表示交流伺服系统被控对象数学模型,J和B是交流伺服系统被控对象的模型参数转动惯量和粘性阻尼系数,Kp+Kds为位置控制器,θ_ref为系统的位置控制输入参考信号,ω_ref是辨识输入的外部参考信号。被控对象数学模型用一阶微分方程表示为其中ω是系统输出速度,u是速度环输入。Figure 1 Indicates the mathematical model of the controlled object of the AC servo system, J and B are the model parameters of the controlled object of the AC servo system, the moment of inertia and the viscous damping coefficient, K p + K d s is the position controller, and θ_ref is the position control input reference signal of the system , ω_ref is the external reference signal for identification input. The mathematical model of the controlled object is expressed by a first-order differential equation as Where ω is the system output speed, u is the speed loop input.
图2中
图3中为被控对象辨识的参考模型,其中Jm和Bm是常数,ωm为控制系统希望达到的控制性能指标,e表示每一个动态瞬间实际过程和参考模型之间的跟踪偏差,根据这个差异,不断的修改控制器参数,就可以使实际系统的控制性能指标尽可能接近参考模型,完成被控对象模型参数在线辨识。Figure 3 is the reference model for the identification of the controlled object, where J m and B m are constants, ω m is the control performance index that the control system hopes to achieve, e represents the tracking deviation between the actual process and the reference model at each dynamic instant, according to the difference , and continuously modify the controller parameters, the control performance index of the actual system can be as close as possible to the reference model, and the online identification of the model parameters of the controlled object can be completed.
在自适应辨识系统中,假设系统参数J和B是未知的。所期望的系统的动态特性设为一阶参考模型
被控对象参考模型和实际模型参数之间的跟踪偏差要进行适当的运算,比较成熟的算法有比例控制和比例积分控制,本发明控制规律采用比例运算,因此选择控制规律u=θr(t)ω_ref-θy(t)ω,其中θr和θy是时变反馈增益。闭环系统为
现在我们选择参数θr和θy的自适应规律。记跟踪误差为e=ω-ωm,跟踪误差的动态表达式为
如果控制器参数根据自适应规律
图4为一阶系统的模型参考自适应辨识框图,其中是参考模型,是被控对象的模型。调节时间ts是反应一个系统动态特性的综合性指标,在本发明中就根据系统的调节时间ts来确定参考模型中Jm和Bm的值。根据调节时间的计算公式,在本发明中选取所设计系统的调节时间为0.025秒,就可以得出Jm和Bm的值为0.00625和1,计算过程不再赘述。再根据
图5为简化后的位置闭环原理框图,本发明中位置控制器采用PD控制,其传递函数表示为Gc(s)=Kp+Kds,则位置环的闭环传递函数为
本发明根据转动惯量J和粘性阻尼系数B两个模型参数的辨识值,在线设计位置控制器,即将模型参数的辨识值和其前一采样周期的延迟值进行比较,直到它们的差值小于预先给定的性能指标时停止辨识,输出辨识的参数值,根据辨识值在线设计位置控制器,并自动切换到位置控制,跟踪的位置参考信号为单位阶跃信号,终值为1。According to the identification value of the two model parameters of moment of inertia J and viscous damping coefficient B, the present invention designs the position controller online, that is, the identification value of the model parameter is compared with the delay value of the previous sampling period until their difference is less than the preset When the performance index is given, the identification is stopped, the parameter value of identification is output, and the position controller is designed online according to the identification value, and automatically switches to position control. The tracked position reference signal is a unit step signal, and the final value is 1.
实验装置中交流永磁同步电机型号为MHMD042P1U,控制软件采用Mathworks公司生产的MATLAB2009a。试验时选择参考信号为ω_ref=4sin100t。The model of the AC permanent magnet synchronous motor in the experimental device is MHMD042P1U, and the control software adopts MATLAB2009a produced by Mathworks. During the test, the reference signal is selected as ω_ref=4sin100t.
实验结果表明,模型参考自适应参数辨识方法可以正确的辨识控制系统的模型参数,根据辨识的被控对象模型参数在线设计位置控制器,并自动切换到位置控制,可以有效地提高控制系统的效率。以上已以较佳实施例公开了本发明,然其并非用以限制本发明,凡采用等同替换或者等效变换方式所获得的技术方案,均落在本发明的保护范围之内。The experimental results show that the model reference adaptive parameter identification method can correctly identify the model parameters of the control system, design the position controller online according to the identified model parameters of the controlled object, and automatically switch to position control, which can effectively improve the efficiency of the control system . The above has disclosed the present invention with preferred embodiments, but it is not intended to limit the present invention, and all technical solutions obtained by adopting equivalent replacement or equivalent transformation methods fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110142736 CN102354107B (en) | 2011-05-30 | 2011-05-30 | A method for online identification and control of AC position servo system model parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110142736 CN102354107B (en) | 2011-05-30 | 2011-05-30 | A method for online identification and control of AC position servo system model parameters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102354107A true CN102354107A (en) | 2012-02-15 |
CN102354107B CN102354107B (en) | 2013-05-29 |
Family
ID=45577684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110142736 Active CN102354107B (en) | 2011-05-30 | 2011-05-30 | A method for online identification and control of AC position servo system model parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102354107B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103149843A (en) * | 2013-03-13 | 2013-06-12 | 河南科技大学 | Ultrasonic motor model reference self-adaptation control system based on MIT (Massachu-setts Institute of Technology) |
CN103219914A (en) * | 2013-03-13 | 2013-07-24 | 河南科技大学 | Ultrasonic motor model reference self-adaption control system based on Lyapunov |
CN103338003A (en) * | 2013-06-28 | 2013-10-02 | 西安交通大学 | Online simultaneous identifying method for load torque and inertia of motor |
CN103699010A (en) * | 2013-12-04 | 2014-04-02 | 上海交通大学 | Servo system identification method based on relay position feedback time domain characteristics |
CN104111607A (en) * | 2014-06-13 | 2014-10-22 | 南京理工大学 | Motor position servo system control method taking input time lag into consideration |
CN104252134A (en) * | 2014-09-17 | 2014-12-31 | 南京理工大学 | Method for controlling position of self-adaptive robust of motor servo system based on extended state observer |
CN104391497A (en) * | 2014-08-15 | 2015-03-04 | 北京邮电大学 | On-line joint servo system parameter identification and controller parameter optimization method |
CN105245145A (en) * | 2015-10-30 | 2016-01-13 | 中国兵器工业集团第二O二研究所 | Non-steady-state-error-constant-speed-based position servo system control method |
CN105375848A (en) * | 2015-11-26 | 2016-03-02 | 上海无线电设备研究所 | Permanent magnet synchronous motor self-adaptive identification control method and control system thereof |
CN105938325A (en) * | 2016-04-05 | 2016-09-14 | 中国电力科学研究院 | System model identification method for alternating-current and direct-current coordination control |
CN106066604A (en) * | 2015-04-21 | 2016-11-02 | 南京理工大学 | Based on self adaptation and the implementation method of the motor servo system positioner of expansion error symbol integration robust |
CN106773665A (en) * | 2015-11-23 | 2017-05-31 | 广东工业大学 | A kind of supersonic motor adaptive control system based on Liapunov model |
CN108516678A (en) * | 2018-03-23 | 2018-09-11 | 烽火通信科技股份有限公司 | Design method in fiber drawing tower |
CN110239140A (en) * | 2019-06-13 | 2019-09-17 | 博众精工科技股份有限公司 | A kind of servo press equipment compress control method based on input shaper |
CN113341806A (en) * | 2021-06-07 | 2021-09-03 | 英飞睿(成都)微系统技术有限公司 | Rapid control reflector control method and system based on online identification |
CN113848720A (en) * | 2021-10-09 | 2021-12-28 | 国核电力规划设计研究院有限公司 | System stability analysis method based on full-power direct-drive fan control inertia |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4437045A (en) * | 1981-01-22 | 1984-03-13 | Agency Of Industrial Science & Technology | Method and apparatus for controlling servomechanism by use of model reference servo-control system |
CN101718969A (en) * | 2009-12-11 | 2010-06-02 | 郭乙宏 | Feeding speed servo controller of rotary cutter without clamping |
CN102005762A (en) * | 2010-12-08 | 2011-04-06 | 长沙理工大学 | Direct current voltage on-line identification method for active filter |
CN102033548A (en) * | 2009-09-29 | 2011-04-27 | 北京航空航天大学 | RBF neural network-based servo control system and method |
-
2011
- 2011-05-30 CN CN 201110142736 patent/CN102354107B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4437045A (en) * | 1981-01-22 | 1984-03-13 | Agency Of Industrial Science & Technology | Method and apparatus for controlling servomechanism by use of model reference servo-control system |
CN102033548A (en) * | 2009-09-29 | 2011-04-27 | 北京航空航天大学 | RBF neural network-based servo control system and method |
CN101718969A (en) * | 2009-12-11 | 2010-06-02 | 郭乙宏 | Feeding speed servo controller of rotary cutter without clamping |
CN102005762A (en) * | 2010-12-08 | 2011-04-06 | 长沙理工大学 | Direct current voltage on-line identification method for active filter |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219914A (en) * | 2013-03-13 | 2013-07-24 | 河南科技大学 | Ultrasonic motor model reference self-adaption control system based on Lyapunov |
CN103149843A (en) * | 2013-03-13 | 2013-06-12 | 河南科技大学 | Ultrasonic motor model reference self-adaptation control system based on MIT (Massachu-setts Institute of Technology) |
CN103219914B (en) * | 2013-03-13 | 2015-05-27 | 河南科技大学 | Ultrasonic motor model reference self-adaption control system based on Lyapunov |
CN103149843B (en) * | 2013-03-13 | 2015-09-23 | 河南科技大学 | A kind of ultrasonic motor model Model Reference Adaptive Control system based on MIT |
CN103338003A (en) * | 2013-06-28 | 2013-10-02 | 西安交通大学 | Online simultaneous identifying method for load torque and inertia of motor |
CN103338003B (en) * | 2013-06-28 | 2015-08-26 | 西安交通大学 | A kind of method of electric motor load torque and inertia on-line identification simultaneously |
CN103699010B (en) * | 2013-12-04 | 2016-03-09 | 上海交通大学 | A kind of servo system identification method based on relay position feedback temporal signatures |
CN103699010A (en) * | 2013-12-04 | 2014-04-02 | 上海交通大学 | Servo system identification method based on relay position feedback time domain characteristics |
CN104111607A (en) * | 2014-06-13 | 2014-10-22 | 南京理工大学 | Motor position servo system control method taking input time lag into consideration |
CN104111607B (en) * | 2014-06-13 | 2016-08-17 | 南京理工大学 | A kind of control method of the electric machine position servo system considering input delay |
CN104391497A (en) * | 2014-08-15 | 2015-03-04 | 北京邮电大学 | On-line joint servo system parameter identification and controller parameter optimization method |
CN104391497B (en) * | 2014-08-15 | 2017-08-29 | 北京邮电大学 | A kind of joint servo system parameter identification and control parameter method for on-line optimization |
CN104252134A (en) * | 2014-09-17 | 2014-12-31 | 南京理工大学 | Method for controlling position of self-adaptive robust of motor servo system based on extended state observer |
CN106066604B (en) * | 2015-04-21 | 2019-01-18 | 南京理工大学 | Implementation method based on adaptive and expansion error symbol integral robust motor servo system positioner |
CN106066604A (en) * | 2015-04-21 | 2016-11-02 | 南京理工大学 | Based on self adaptation and the implementation method of the motor servo system positioner of expansion error symbol integration robust |
CN105245145A (en) * | 2015-10-30 | 2016-01-13 | 中国兵器工业集团第二O二研究所 | Non-steady-state-error-constant-speed-based position servo system control method |
CN106773665A (en) * | 2015-11-23 | 2017-05-31 | 广东工业大学 | A kind of supersonic motor adaptive control system based on Liapunov model |
CN105375848B (en) * | 2015-11-26 | 2018-04-20 | 上海无线电设备研究所 | A kind of permanent magnet synchronous motor Adaptive Identification control method and its control system |
CN105375848A (en) * | 2015-11-26 | 2016-03-02 | 上海无线电设备研究所 | Permanent magnet synchronous motor self-adaptive identification control method and control system thereof |
CN105938325A (en) * | 2016-04-05 | 2016-09-14 | 中国电力科学研究院 | System model identification method for alternating-current and direct-current coordination control |
CN108516678A (en) * | 2018-03-23 | 2018-09-11 | 烽火通信科技股份有限公司 | Design method in fiber drawing tower |
CN108516678B (en) * | 2018-03-23 | 2021-03-16 | 烽火通信科技股份有限公司 | System design method in optical fiber drawing tower |
CN110239140A (en) * | 2019-06-13 | 2019-09-17 | 博众精工科技股份有限公司 | A kind of servo press equipment compress control method based on input shaper |
CN110239140B (en) * | 2019-06-13 | 2021-06-15 | 博众精工科技股份有限公司 | Servo laminating equipment pressure control method based on input shaping |
CN113341806A (en) * | 2021-06-07 | 2021-09-03 | 英飞睿(成都)微系统技术有限公司 | Rapid control reflector control method and system based on online identification |
CN113848720A (en) * | 2021-10-09 | 2021-12-28 | 国核电力规划设计研究院有限公司 | System stability analysis method based on full-power direct-drive fan control inertia |
CN113848720B (en) * | 2021-10-09 | 2023-11-03 | 国核电力规划设计研究院有限公司 | System stability analysis method based on full power direct drive fan control inertia |
Also Published As
Publication number | Publication date |
---|---|
CN102354107B (en) | 2013-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102354107A (en) | On-line identification and control method for parameter of alternating current position servo system model | |
CN104639001B (en) | Servo motor control method integrating sliding mode control and fractional order neural network control | |
CN103944481B (en) | A kind of AC Motor Vector Control System model parameter on-line amending method | |
CN104218853B (en) | Sliding-mode synchronization control method of double-permanent-magnet synchronous motor chaos system | |
CN108599649A (en) | PMSM positional servosystem High order Plant controller designs and parameter determination method | |
CN104270054A (en) | Anti-rest Windup smooth nonsingular terminal sliding mode control method for permanent magnet synchronous motor based on relative order | |
CN108489015B (en) | Air conditioning system temperature control method based on pole allocation and Pade approximation | |
CN104638999B (en) | Dual-servo-motor system control method based on segmentation neutral net friction model | |
CN106681150A (en) | Fractional-order PID controller parameter optimizing and setting method based on closed-loop reference model | |
CN105259414B (en) | A kind of electric network impedance online test method based on inverter | |
CN103926830B (en) | A kind of parameters on line modifying method and system of fractional order PI controllers | |
CN108549227B (en) | Design method of time-lag feedback controller based on fractional order red blood cell model | |
CN103516280B (en) | Improving one's methods of a kind of permagnetic synchronous motor electric current loop adjuster | |
CN110492479A (en) | A kind of rotary inertia of distributed grid-connected equipment and damping discrimination method | |
CN106684890A (en) | A Suppression Method of Power System Chaotic Oscillation Based on Hyperbolic Function Sliding Mode Control | |
CN109755957A (en) | A method and system for modeling the outer loop control analytical transfer function of a grid-connected voltage source converter system | |
CN104460704A (en) | Tracking control method for pitching position of electric rotary table based on perturbation upper bound estimation | |
CN103997274B (en) | Model reference adaptive systematic parameter automatic setting method based on one dimension fuzzy control | |
CN103986400B (en) | Based on the model reference adaptive system parameters automatic setting method that two dimension fuzzy controls | |
CN105843078A (en) | Sliding mode control method and apparatus | |
CN103149843B (en) | A kind of ultrasonic motor model Model Reference Adaptive Control system based on MIT | |
CN110429887B (en) | Position tracking controller and control method of permanent magnet synchronous motor | |
Zaidi et al. | Input-output linearization of an induction motor using MRAS observer | |
CN104734591B (en) | The tandem system stabilization speed regulating method of motorcar electric steering motor Field orientable control | |
CN108880383A (en) | Magneto ratio resonant controller discretization design method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Luo Haijiang Inventor after: Dang Haiping Inventor before: Li Xiangguo Inventor before: Liu Xianghong Inventor before: Mei Zhiqian |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20171130 Address after: 213164 West Lake Road, Wujin national high tech Industrial Development Zone, Changzhou City, Changzhou, Jiangsu 301, 301 Patentee after: CHANGZHOU GUCOI INTELLIGENT CONTROL TECHNOLOGY CO.,LTD. Address before: 213022 Changzhou Jin Ling North Road, Jiangsu, No. 200 Patentee before: CHANGZHOU CAMPUS OF HOHAI University |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 213000 No. 301, Xihu Road, Wujin National High-tech Industrial Development Zone, Changzhou City, Jiangsu Province Patentee after: Changzhou Gugao Intelligent Equipment Technology Research Institute Co.,Ltd. Address before: 213164 No. 301, Xihu Road, Wujin National High-tech Industrial Development Zone, Changzhou City, Jiangsu Province Patentee before: CHANGZHOU GUCOI INTELLIGENT CONTROL TECHNOLOGY CO.,LTD. |