CN102354107A - On-line identification and control method for parameter of alternating current position servo system model - Google Patents

On-line identification and control method for parameter of alternating current position servo system model Download PDF

Info

Publication number
CN102354107A
CN102354107A CN2011101427369A CN201110142736A CN102354107A CN 102354107 A CN102354107 A CN 102354107A CN 2011101427369 A CN2011101427369 A CN 2011101427369A CN 201110142736 A CN201110142736 A CN 201110142736A CN 102354107 A CN102354107 A CN 102354107A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
theta
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101427369A
Other languages
Chinese (zh)
Other versions
CN102354107B (en
Inventor
李向国
刘向红
梅志千
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Gugao Intelligent Equipment Technology Research Institute Co ltd
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN 201110142736 priority Critical patent/CN102354107B/en
Publication of CN102354107A publication Critical patent/CN102354107A/en
Application granted granted Critical
Publication of CN102354107B publication Critical patent/CN102354107B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention discloses an on-line identification and control method for a parameter of an alternating current position servo system model. According to the invention, a model reference adaptive identification algorithm based on a Lyapunov stability theory is utilized; and on-line identification is carried out on a rotary inertia J and a viscous damping coefficient B of a controlled object of an alternating current servo system; after convergence is carried out on an identification parameter, an on-line design on a position controller is carried out according to J and B values and the design is automatically switched to position control. According to the invention, an efficiency on an alternating current servo system design can be substantially improved.

Description

On-line identification of a kind of AC position servo system model parameter and control method
Technical field
The present invention relates to permanent magnet synchronous motor (PMSM) AC servo system, on-line identification of particularly a kind of AC position servo system model parameter and control method belong to the synchronous motor technical field.
Background technology
After a new AC servo was set up, its many systematic parameter all was unknown, and the controller parameter of control system all to be model parameter according to system design.In addition in many control problems, towards object normally uncertain, the change of operating load can cause the variation of servo system models parameter.Therefore; A high performance AC servo not only requires system to make response fast and accurately to servo instruction; But also require when load characteristic changes; Can guarantee that still system has the better controlling performance, this just requires the controller parameter of servo-drive system to do suitable adjustment with load characteristic.
The method for designing of AC servo control system generally is divided into three kinds; First kind is that first off-line identification goes out the system model parameter; Again according to the model parameter CONTROLLER DESIGN parameter that picks out; This method efficient is lower; And off-line identification needs a large amount of experimental datas; To handle the parameter that just can obtain system to multi-group data; Amount of calculation is very big; And, the variation of load to carry out the offline parameter identification again when causing the system model parameter to change; Increased Control System Design time and workload, number of patent application is 200710024700.4 and is called that the Chinese patent of " observation of disturbing in a kind of AC position servo system and compensation method " introduced the influence to the controlled device control performance such as parameter variation.Second kind is to pick out the system model parameter earlier, again according to the online CONTROLLER DESIGN parameter of model parameter that picks out, and automatically switches to position control.The third is the position adaptive control algorithm; Different with second method is the modification of in the control system operational process, constantly carrying out parameter identification and controller; This kind method system design more complicated is difficult to realization, and higher to the hardware requirement of control system.
Summary of the invention
The technical matters that the present invention will solve is, to the defective on the prior art, on-line identification of a kind of AC position servo system model parameter and control method is provided, to improve the efficient of design control system.
For solving the problems of the technologies described above, the present invention provides on-line identification of a kind of AC position servo system model parameter and control method, it is characterized in that, may further comprise the steps:
1) Set the AC servo system controlled object model: the use of a first-order differential equation is expressed as
Figure BDA0000064938950000021
where ω is the system output speed, u is the input speed signal controlled object, J, and B is the AC servo system controlled object model parameters, are unknown parameters, namely the moment of inertia and viscous damping coefficient;
Set the reference model of controlled device identification: J m ω · m = - B m ω m + ω _ ref , ω _ ref is the external reference signal of identification input, ω mFor control system is hoped the control performance index that reaches, parameter J mAnd B mBeing respectively moment of inertia and viscous damping coefficient hopes the control performance index that reaches to be positive number in control system;
2) in plant model Model Reference Adaptive Control system; The model parameter moment of inertia J of identification and the identifier and the moment of inertia J and the viscous damping coefficient B in its last sampling period of viscous damping coefficient B are compared; Stop identification, the parameter value J and the B of output identification during less than given in advance performance index ε up to their difference;
3) according to step 2) the online calculating location controller of parameter value of controlled device identification of output, and automatically switch to position control.
On-line identification of aforesaid a kind of AC position servo system model parameter and control method is characterized in that: in said step 2) in, the tracing deviation between the reference model of controlled device identification and the realistic model parameter adopts scale operation, and control law is u=θ<sub >r</sub>(t) ω _ ref-θ<sub >y</sub>(t) ω, wherein θ<sub >r</sub>(t) and θ<sub >y</sub>(t) being is respectively the time change feedback gain of t identifier constantly and reference model parameter, and the closed-loop system function does<maths num=" 0002 "><[CDATA[<math><mrow><mover><mi>&omega;</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mo>-</mo><mrow><mo>(</mo><mi>B</mi><mo>+</mo><msub><mi>&theta;</mi><mi>y</mi></msub><mo>)</mo></mrow><mi>&omega;</mi><mo>/</mo><mi>J</mi><mo>+</mo><msub><mi>&theta;</mi><mi>r</mi></msub><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mo>/</mo><mi>J</mi><mo>;</mo></mrow></math>]]></maths>Tracing deviation is e=ω-ω<sub >m</sub>, the dynamic expression formula of tracing deviation does<maths num=" 0003 "><[CDATA[<math><mrow><mover><mi>e</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mover><mi>&omega;</mi><mo>&CenterDot;</mo></mover><mo>-</mo><msub><mover><mi>&omega;</mi><mo>&CenterDot;</mo></mover><mi>m</mi></msub><mo>=</mo><mo>-</mo><mfrac><msub><mi>B</mi><mi>m</mi></msub><msub><mi>J</mi><mi>m</mi></msub></mfrac><mi>e</mi><mo>+</mo><mrow><mo>(</mo><mfrac><msub><mi>B</mi><mi>m</mi></msub><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>-</mo><mfrac><msub><mi>&theta;</mi><mi>y</mi></msub><mi>J</mi></mfrac><mo>-</mo><mfrac><mi>B</mi><mi>J</mi></mfrac><mo>)</mo></mrow><mi>&omega;</mi><mo>+</mo><mrow><mo>(</mo><mfrac><msub><mi>&theta;</mi><mi>r</mi></msub><mi>J</mi></mfrac><mo>-</mo><mfrac><mn>1</mn><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mo>.</mo></mrow></math>]]></maths>
On-line identification of aforesaid a kind of AC position servo system model parameter and control method is characterized in that: in said step 2) in, utilize Liapunov's stability criterion to judge whether plant model Model Reference Adaptive Control system is stable, and concrete grammar is:
Liapunov Lyapunov function does V ( e , &theta; r , &theta; y ) = 1 2 ( e 2 + J &gamma; ( &theta; y J + B J - B m J m ) 2 + J &gamma; ( &theta; r J - 1 J m ) 2 ) , Wherein γ is an adaptive gain, as e=0, controller parameter θ rAnd θ yWhen equaling their optimal value, Lyapunov function V is zero, and the derivative of V does
dV dt = e de dt + 1 &gamma; ( &theta; y J + B J - B m J m ) d&theta; y dt + 1 &gamma; ( &theta; r J - 1 J m ) d&theta; r dt
= - B m J m e 2 + 1 &gamma; ( &theta; y J + B J - B m J m ) ( d&theta; y dt - &gamma;&omega;e ) + 1 &gamma; ( &theta; r J - 1 J m ) ( d&theta; r dt + &gamma;e&omega; _ ref )
If the controller parameters based on adaptive law <maths num="0007"> <! [CDATA [<math> <mrow> <mfrac> <msub> <mi> dθ </ mi> <mi> r </ mi> </ msub> <mi> dt </ mi> </ mfrac> <mo> = </ mo> <mo> - </ mo> <mi> γeω </ mi> <mo > _ </ mo> <mi> ref </ mi> <mo>, </ mo> </ mrow> </ math>]]> </maths> <maths num="0008"> <! [CDATA [<math> <mrow> <mfrac> <msub> <mi> dθ </ mi> <mi> y </ mi> </ msub> <mi> dt </ mi> </ mfrac> <mo> = </ mo> <mi> γωe </ mi> </ mrow> </ math>]]> </maths> update, then get <img file = " BDA0000064938950000041.GIF " he =" 120 " img-content =" drawing " img-format =" tif " inline =" yes " orientation =" portrait " wi =" 290 "/> If the error e is not equal to zero, the function V is decremented small, we can draw the error will tend to zero, determine the controlled object model reference adaptive control system is stable.The difference equation of self-adaptation rule does<maths num=" 0009 "><[CDATA[<math><mrow><mfrac><mrow><msub><mi>&theta;</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&theta;</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mo>-</mo><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mrow></math>]]></maths><maths num=" 0010 "><[CDATA[<math><mrow><mfrac><mrow><msub><mi>&theta;</mi><mi>y</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&theta;</mi><mi>y</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mrow></math>]]></maths>Then the difference equation of moment of inertia and viscous damping coefficient does<maths num=" 0011 "><[CDATA[<math><mrow><mfrac><mrow><mi>J</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>J</mi><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mo>-</mo><msub><mi>J</mi><mi>m</mi></msub><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mrow></math>]]></maths><maths num=" 0012 "><[CDATA[<math><mrow><mfrac><mrow><mi>B</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>B</mi><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mo>-</mo><msub><mi>B</mi><mi>m</mi></msub><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mrow></math>]]></maths>T<sub >s</sub>Be the sampling period, θ<sub >r</sub>(k), θ<sub >y</sub>(k), e (k), ω (k), ω _ ref (k), J (k), B (k) and θ<sub >r</sub>(k-1), θ<sub >y</sub>(k-1), J (k-1), B (k-1) are respectively the value in k and k-1 sampling period.
On-line identification of aforesaid a kind of AC position servo system model parameter and control method is characterized in that: in said step 3), positioner adopts PD control, and transport function is expressed as G c(s)=K p+ K dS, then the closed loop transfer function, of position ring does &Phi; ( s ) = K p + K d s Js 2 + ( B + K d ) s + K p , Canonical form according to second-order system Obtain ω n 2=K p/ J, 2 ζ ω n=(B+K d)/J, so
Figure BDA0000064938950000048
K d=2 ζ ω n-B, wherein, K P+ K dS is positioner, wherein K PBe scale-up factor, K dBe differential coefficient, s is Laplce's variable; Make ω nThe expectation free-running frequency of expression position ring, ζ representes the expectation damping ratio of position ring.
The invention has the beneficial effects as follows; Utilization is based on the model reference adaptive identification algorithm of Liapunov (Lyapunov) stability theory; Model parameter moment of inertia J and viscous damping coefficient B to the AC servo controlled device carry out on-line identification; After the identified parameters convergence; According to the online design attitude controller of the value of J and B; And automatically switch to position control, improve the efficient of system design greatly.
Description of drawings
Fig. 1 is of the present invention based on model parameter on-line identification and position control schematic diagram;
Fig. 2 is plant model on-line parameter identification and position control process flow diagram;
Fig. 3 is the block diagram of plant model Model Reference Adaptive Control system;
Fig. 4 is the model reference adaptive identification block diagram of first-order system;
Fig. 5 is the position closed loop theory diagram after simplifying;
Fig. 6 is a position control output tracking curve.
Embodiment
Below in conjunction with accompanying drawing and embodiment the present invention is further specified.
Among Fig. 1
Figure BDA0000064938950000051
Expression AC servo controlled device mathematical model, J and B are the model parameter moment of inertia and the viscous damping coefficients of AC servo controlled device, K p+ K dS is a positioner, and θ _ ref is the position control input reference signal of system, and ω _ ref is the external reference signal of identification input.Controlled object model with first-order differential equation is expressed as
Figure BDA0000064938950000052
where ω is the system output speed, u is the velocity loop input.
Among Fig. 2<maths num=" 0014 "><[CDATA[<math><mrow><mfrac><mrow><mi>J</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>J</mi><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mo>-</mo><msub><mi>J</mi><mi>m</mi></msub><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math>]]></maths>With<maths num=" 0015 "><[CDATA[<math><mrow><mfrac><mrow><mi>B</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>B</mi><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mo>-</mo><msub><mi>B</mi><mi>m</mi></msub><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math>]]></maths>Difference equation for plant model parameter moment of inertia and viscous damping coefficient Adaptive Identification; ε is for judging the convergent performance index; The identifier and the value in its last sampling period of moment of inertia J and viscous damping coefficient B are compared; Stop identification, the parameter value J and the B of output identification during less than given in advance performance index ε up to their difference; According to the online design attitude controller of the value of J and B, and automatically switch to position control.
Among Fig. 3
Figure BDA0000064938950000061
Be the reference model of controlled device identification, wherein J mAnd B mBe constant, ω mHope the control performance index that reaches for control system; E representes the tracing deviation between each dynamic transient real process and the reference model; According to this difference; Constantly revise controller parameter; The control performance index that just can make real system is accomplished the plant model on-line parameter identification as far as possible near reference model.
In the Adaptive Identification system, supposing the system parameter J and B are unknown.The dynamic perfromance of desired system is made as the single order reference model J m &omega; &CenterDot; m = - B m &omega; m + &omega; _ ref , ω _ ref is the external reference signal of input.Parameter J mRequirement is strict positive, and reference model is stable like this.Be without loss of generality B mAlso elect strict positive number as.Reference model can be expressed as ω with its transport function G m=G ω _ ref, wherein G = 1 J m s + B m .
Tracing deviation between controlled device reference model and the realistic model parameter will carry out suitable computing, proportional control of the algorithm of comparative maturity and proportional plus integral control, and control law of the present invention adopts scale operation, therefore selects control law u=θ<sub >r</sub>(t) ω _ ref-θ<sub >y</sub>(t) ω, wherein θ<sub >r</sub>And θ<sub >y</sub>Become feedback gain when being.Closed-loop system does<maths num="0018"><![CDATA[<math> <mrow> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>B</mi> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mi>&omega;</mi> <mo>/</mo> <mi>J</mi> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>r</mi> </msub> <mi>&omega;</mi> <mo>_</mo> <mi>ref</mi> <mo>/</mo> <mi>J</mi> <mo>,</mo> </mrow></math>]]></maths>Select u=θ<sub >r</sub>(t) ω _ ref-θ<sub >y</sub>(t) ω is a control law, and clearly: its system that makes can realize the accurate model coupling.In fact, if object parameters is known, allow formula<maths num=" 0019 "><[CDATA[<math><mrow><mover><mi>&omega;</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mo>-</mo><mrow><mo>(</mo><mi>B</mi><mo>+</mo><msub><mi>&theta;</mi><mi>y</mi></msub><mo>)</mo></mrow><mi>&omega;</mi><mo>/</mo><mi>J</mi><mo>+</mo><msub><mi>&theta;</mi><mi>r</mi></msub><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mo>/</mo><mi>J</mi></mrow></math>]]></maths>And formula<maths num=" 0020 "><[CDATA[<math><mrow><msub><mover><mi>&omega;</mi><mo>&CenterDot;</mo></mover><mi>m</mi></msub><mo>=</mo><mfrac><mrow><mo>-</mo><msub><mi>B</mi><mi>m</mi></msub><msub><mi>&omega;</mi><mi>m</mi></msub><mo>+</mo><mi>&omega;</mi><mo>_</mo><mi>Ref</mi></mrow><msub><mi>J</mi><mi>m</mi></msub></mfrac></mrow></math>]]></maths>Equate:<maths num=" 0021 "><[CDATA[<math><mrow><msup><msub><mi>&theta;</mi><mi>r</mi></msub><mo>*</mo></msup><mo>=</mo><mfrac><mi>J</mi><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>,</mo></mrow></math>]]></maths><maths num=" 0022 "><[CDATA[<math><mrow><msup><msub><mi>&theta;</mi><mi>y</mi></msub><mo>*</mo></msup><mo>=</mo><mfrac><mrow><msub><mi>B</mi><mi>m</mi></msub><mi>J</mi></mrow><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>-</mo><mi>B</mi><mo>,</mo></mrow></math>]]></maths>If promptly select θ<sub >r</sub><sup >*</sup>, θ<sub >y</sub><sup >*</sup>Such controller parameter, then the dynamic perfromance of closed-loop system and reference model is identical, thus odd tracking error.
We select parameter θ now rAnd θ yThe self-adaptation rule.The note tracking error is e=ω-ω m, the dynamic expression formula of tracking error does e &CenterDot; = &omega; &CenterDot; - &omega; &CenterDot; m = - B m J m e + ( B m J m - &theta; y J - B J ) &omega; + ( &theta; r J - 1 J m ) &omega; _ ref , If parameter θ rAnd θ yEqual their desired value θ r *And θ y *, then error e just goes to zero.Introduce the Lyapunov function V ( e , &theta; r , &theta; y ) = 1 2 ( e 2 + J &gamma; ( &theta; y J + B J - B m J m ) 2 + J &gamma; ( &theta; r J - 1 J m ) 2 ) , When e=0 and controller parameter equaled their optimal value, function V was zero.The derivative of V does
dV dt = e de dt + 1 &gamma; ( &theta; y J + B J - B m J m ) d&theta; y dt + 1 &gamma; ( &theta; r J - 1 J m ) d&theta; r dt
= - B m J m e 2 + 1 &gamma; ( &theta; y J + B J - B m J m ) ( d&theta; y dt - &gamma;&omega;e ) + 1 &gamma; ( &theta; r J - 1 J m ) ( d&theta; r dt + &gamma;e&omega; _ ref )
If the controller parameters based on adaptive law <maths num="0027"> <! [CDATA [<math> <mrow> <mfrac> <msub> <mi> dθ </ mi> <mi> r </ mi> </ msub> <mi> dt </ mi> </ mfrac> <mo> = </ mo> <mo> - </ mo> <mi> γeω </ mi> <mo > _ </ mo> <mi> ref </ mi> <mo>, </ mo> </ mrow> </ math>]]> </maths> <maths num="0028"> <! [CDATA [<math> <mrow> <mfrac> <msub> <mi> dθ </ mi> <mi> y </ mi> </ msub> <mi> dt </ mi> </ mfrac> <mo> = </ mo> <mi> γωe </ mi> </ mrow> </ math>]]> </maths> update, then get <img file = " BDA0000064938950000077.GIF " he =" 120 " img-content =" drawing " img-format =" tif " inline =" yes " orientation =" portrait " wi =" 290 "/> So as long as the error e is not zero, the function V on reduced, whereby the error can be derived will tend to zero, can be obtained according to the Lyapunov stability criterion of this system is stable.
Figure 4 is a first-order model reference adaptive system identification diagram, where <img file = "BDA0000064938950000078.GIF" he = "117" img-content = "drawing" img-format = "tif" inline = "yes" orientation = "portrait" wi = "351" /> is the reference model, <img file = "BDA0000064938950000079.GIF" he = "107" img-content = "drawing" img-format = " tif " inline =" yes " orientation =" portrait " wi =" 273 "/> is the controlled object model.Adjusting time t<sub >s</sub>Be the composite target of a system dynamic characteristic of reaction, in the present invention just according to the adjusting time t of system<sub >s</sub>Confirm J in the reference model<sub >m</sub>And B<sub >m</sub>Value.According to the computing formula of the time of adjusting, the adjusting time of choosing institute's design system in the present invention is 0.025 second, just can draw J<sub >m</sub>And B<sub >m</sub>Value be 0.00625 and 1, computation process repeats no more.Basis again<maths num=" 0029 "><[CDATA[<math><mrow><msup><msub><mi>&theta;</mi><mi>r</mi></msub><mo>*</mo></msup><mo>=</mo><mfrac><mi>J</mi><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>,</mo></mrow></math>]]></maths><maths num=" 0030 "><[CDATA[<math><mrow><msup><msub><mi>&theta;</mi><mi>y</mi></msub><mo>*</mo></msup><mo>=</mo><mfrac><mrow><msub><mi>B</mi><mi>m</mi></msub><mi>J</mi></mrow><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>-</mo><mi>B</mi><mo>,</mo></mrow></math>]]></maths>Can get J=θ<sub >r</sub><sup >*</sup>J<sub >m</sub>,<maths num=" 0031 "><[CDATA[<math><mrow><mi>B</mi><mo>=</mo><mfrac><mrow><msub><mi>B</mi><mi>m</mi></msub><mi>J</mi></mrow><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>-</mo><msup><msub><mi>&theta;</mi><mi>y</mi></msub><mo>*</mo></msup><mo>.</mo></mrow></math>]]></maths>
Fig. 5 is the position closed loop theory diagram after simplifying, and positioner adopts PD control among the present invention, and its transport function is expressed as G c(s)=K p+ K dS, then the closed loop transfer function, of position ring does &Phi; ( s ) = K p + K d s Js 2 + ( B + K d ) s + K p , Make ω nThe expectation free-running frequency of expression position ring, ζ representes the expectation damping ratio of position ring, according to the canonical form of second-order system
Figure BDA0000064938950000082
Can obtain ω n 2=K p/ J, 2 ζ ω n=(B+K d)/J, so K d=2 ζ ω n-B.
The present invention is according to the identifier of moment of inertia J and two model parameters of viscous damping coefficient B; Online design attitude controller; The identifier and the length of delay in its last sampling period that are about to model parameter compare; Stop identification during less than given in advance performance index up to their difference; The parameter value of output identification according to the online design attitude controller of identifier, and automatically switches to position control; The position reference of following the tracks of is a unit step signal, and final value is 1.
The AC permanent magnet synchronous motor model is MHMD042P1U in the experimental provision, the MATLAB2009a that Control Software adopts Mathworks company to produce.Selecting reference signal during test is ω _ ref=4sin100t.
Experimental result shows; The model reference adaptive parameter identification method can be correct the model parameter of identification control system; According to the online design attitude controller of the plant model parameter of identification, and automatically switch to position control, can improve the efficient of control system effectively.Below disclose the present invention with preferred embodiment, so it is not in order to restriction the present invention, and all employings are equal to replacement or the technical scheme that obtained of equivalent transformation mode, all drop within protection scope of the present invention.

Claims (4)

1. AC position servo system model parameter on-line identification and control method is characterized in that, may further comprise the steps:
1) sets AC servo controlled device mathematical model: utilize differential equation of first order to be expressed as J &omega; &CenterDot; = - B&omega; + u , Wherein ω is system's output speed, and u is a controlled device input speed signal, and J and B are the model parameters of AC servo controlled device, are unknown parameters, is respectively moment of inertia and viscous damping coefficient;
Set the reference model of controlled device identification: J m &omega; &CenterDot; m = - B m &omega; m + &omega; _ ref , ω _ ref is the external reference signal of identification input, ω mFor control system is hoped the control performance index that reaches, parameter J mAnd B mBeing respectively moment of inertia and viscous damping coefficient hopes the control performance index that reaches to be positive number in control system;
2) in plant model Model Reference Adaptive Control system; The model parameter moment of inertia J of identification and the identifier and the moment of inertia J and the viscous damping coefficient B in its last sampling period of viscous damping coefficient B are compared; Stop identification, the parameter value J and the B of output identification during less than given in advance performance index ε up to their difference;
3) according to step 2) export the online calculating location controller of parameter value of controlled device identification, and automatically switch to position control.
2. a kind of AC position servo system model parameter according to claim 1 on-line identification and control method; It is characterized in that: in said step 2) in; Tracing deviation between the reference model of controlled device identification and the realistic model parameter adopts scale operation, and control law is u=θ<sub >r</sub>(t) ω _ ref-θ<sub >y</sub>(t) ω, wherein θ<sub >r</sub>(t) and θ<sub >y</sub>(t) be respectively the time change feedback gain of t identifier constantly and reference model parameter, the closed-loop system function does<maths num=" 0003 "><[CDATA[<math><mrow><mover><mi>&omega;</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mo>-</mo><mrow><mo>(</mo><mi>B</mi><mo>+</mo><msub><mi>&theta;</mi><mi>y</mi></msub><mo>)</mo></mrow><mi>&omega;</mi><mo>/</mo><mi>J</mi><mo>+</mo><msub><mi>&theta;</mi><mi>r</mi></msub><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mo>/</mo><mi>J</mi><mo>;</mo></mrow></math>]]></maths>Tracing deviation is e=ω-ω<sub >m</sub>, the dynamic expression formula of tracing deviation does<maths num=" 0004 "><[CDATA[<math><mrow><mover><mi>e</mi><mo>&CenterDot;</mo></mover><mo>=</mo><mover><mi>&omega;</mi><mo>&CenterDot;</mo></mover><mo>-</mo><msub><mover><mi>&omega;</mi><mo>&CenterDot;</mo></mover><mi>m</mi></msub><mo>=</mo><mo>-</mo><mfrac><msub><mi>B</mi><mi>m</mi></msub><msub><mi>J</mi><mi>m</mi></msub></mfrac><mi>e</mi><mo>+</mo><mrow><mo>(</mo><mfrac><msub><mi>B</mi><mi>m</mi></msub><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>-</mo><mfrac><msub><mi>&theta;</mi><mi>y</mi></msub><mi>J</mi></mfrac><mo>-</mo><mfrac><mi>B</mi><mi>J</mi></mfrac><mo>)</mo></mrow><mi>&omega;</mi><mo>+</mo><mrow><mo>(</mo><mfrac><msub><mi>&theta;</mi><mi>r</mi></msub><mi>J</mi></mfrac><mo>-</mo><mfrac><mn>1</mn><msub><mi>J</mi><mi>m</mi></msub></mfrac><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mo>.</mo></mrow></math>]]></maths>
3. a kind of AC position servo system model parameter according to claim 2 on-line identification and control method; It is characterized in that: in said step 2) in; Utilize Liapunov's stability criterion to judge whether plant model Model Reference Adaptive Control system is stable, and concrete grammar is:
Liapunov Lyapunov function does V ( e , &theta; r , &theta; y ) = 1 2 ( e 2 + J &gamma; ( &theta; y J + B J - B m J m ) 2 + J &gamma; ( &theta; r J - 1 J m ) 2 ) , Wherein γ is an adaptive gain, as e=0, controller parameter θ rAnd θ yWhen equaling their optimal value, Lyapunov function V is zero, and the derivative of V does
dV dt = e de dt + 1 &gamma; ( &theta; y J + B J - B m J m ) d&theta; y dt + 1 &gamma; ( &theta; r J - 1 J m ) d&theta; r dt
= - B m J m e 2 + 1 &gamma; ( &theta; y J + B J - B m J m ) ( d&theta; y dt - &gamma;&omega;e ) + 1 &gamma; ( &theta; r J - 1 J m ) ( d&theta; r dt + &gamma;e&omega; _ ref )
If controller parameter is according to the self-adaptation rule<maths num=" 0008 "><[CDATA[<math><mrow><mfrac><msub><mi>D&theta;</mi><mi>r</mi></msub><mi>Dt</mi></mfrac><mo>=</mo><mo>-</mo><mi>&gamma; E&omega;</mi><mo>_</mo><mi>Ref</mi><mo>,</mo></mrow></math>]]></maths><maths num=" 0009 "><[CDATA[<math><mrow><mfrac><msub><mi>D&theta;</mi><mi>y</mi></msub><mi>Dt</mi></mfrac><mo>=</mo><mi>&gamma; &omega; e</mi></mrow></math>]]></maths>Upgrade, then<img file="FDA0000064938940000028.GIF" he="119" id="ifm0010" img-content="drawing" img-format="GIF" inline="yes" orientation="portrait" wi="290"/>If error e is not equal to zero, function V just reduces, and can draw error will go to zero, and it is stable judging plant model Model Reference Adaptive Control system, and the difference equation of self-adaptation rule does<maths num=" 0010 "><[CDATA[<math><mrow><mfrac><mrow><msub><mi>&theta;</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&theta;</mi><mi>r</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mo>-</mo><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mrow></math>]]></maths><maths num=" 0011 "><[CDATA[<math><mrow><mfrac><mrow><msub><mi>&theta;</mi><mi>y</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&theta;</mi><mi>y</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mrow></math>]]></maths>Then the difference equation of moment of inertia and viscous damping coefficient does<maths num=" 0012 "><[CDATA[<math><mrow><mfrac><mrow><mi>J</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>J</mi><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mo>-</mo><msub><mi>J</mi><mi>m</mi></msub><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mrow></math>]]></maths><maths num=" 0013 "><[CDATA[<math><mrow><mfrac><mrow><mi>B</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>B</mi><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><msub><mi>T</mi><mi>s</mi></msub></mfrac><mo>=</mo><mo>-</mo><msub><mi>B</mi><mi>m</mi></msub><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mo>_</mo><mi>Ref</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>&gamma; e</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mi>&omega;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>,</mo></mrow></math>]]></maths>T wherein<sub >s</sub>Be the sampling period, θ<sub >r</sub>(k), θ<sub >y</sub>(k), e (k), ω (k), ω _ ref (k), J (k), B (k) and θ<sub >r</sub>(k-1), θ<sub >y</sub>(k-1), J (k-1), B (k-1) are respectively the value in k and k-1 sampling period.
4. according to claim 1 or 2 or 3 on-line identification of described a kind of AC position servo system model parameter and control methods, it is characterized in that: in said step 3), positioner adopts PD control, and transport function is expressed as G c(s)=K p+ K dS, then the closed loop transfer function, of position ring does &Phi; ( s ) = K p + K d s Js 2 + ( B + K d ) s + K p , Canonical form according to second-order system Obtain ω n 2=K p/ J, 2 ζ ω n=(B+K d)/J, so
Figure FDA0000064938940000033
K d=2 ζ ω n-B, wherein, K p+ K dS is a positioner, K pBe scale-up factor, K dBe differential coefficient, s is Laplce's variable; Make ω nThe expectation free-running frequency of expression position ring, ζ representes the expectation damping ratio of position ring.
CN 201110142736 2011-05-30 2011-05-30 On-line identification and control method for parameter of alternating current position servo system model Active CN102354107B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110142736 CN102354107B (en) 2011-05-30 2011-05-30 On-line identification and control method for parameter of alternating current position servo system model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110142736 CN102354107B (en) 2011-05-30 2011-05-30 On-line identification and control method for parameter of alternating current position servo system model

Publications (2)

Publication Number Publication Date
CN102354107A true CN102354107A (en) 2012-02-15
CN102354107B CN102354107B (en) 2013-05-29

Family

ID=45577684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110142736 Active CN102354107B (en) 2011-05-30 2011-05-30 On-line identification and control method for parameter of alternating current position servo system model

Country Status (1)

Country Link
CN (1) CN102354107B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149843A (en) * 2013-03-13 2013-06-12 河南科技大学 Ultrasonic motor model reference self-adaptation control system based on MIT (Massachu-setts Institute of Technology)
CN103219914A (en) * 2013-03-13 2013-07-24 河南科技大学 Ultrasonic motor model reference self-adaption control system based on Lyapunov
CN103338003A (en) * 2013-06-28 2013-10-02 西安交通大学 Online simultaneous identifying method for load torque and inertia of motor
CN103699010A (en) * 2013-12-04 2014-04-02 上海交通大学 Servo system identification method based on relay position feedback time domain characteristics
CN104111607A (en) * 2014-06-13 2014-10-22 南京理工大学 Motor position servo system control method taking input time lag into consideration
CN104252134A (en) * 2014-09-17 2014-12-31 南京理工大学 Method for controlling position of self-adaptive robust of motor servo system based on extended state observer
CN104391497A (en) * 2014-08-15 2015-03-04 北京邮电大学 On-line joint servo system parameter identification and controller parameter optimization method
CN105245145A (en) * 2015-10-30 2016-01-13 中国兵器工业集团第二O二研究所 Non-steady-state-error-constant-speed-based position servo system control method
CN105375848A (en) * 2015-11-26 2016-03-02 上海无线电设备研究所 Permanent magnet synchronous motor self-adaptive identification control method and control system thereof
CN105938325A (en) * 2016-04-05 2016-09-14 中国电力科学研究院 System model identification method for alternating-current and direct-current coordination control
CN106066604A (en) * 2015-04-21 2016-11-02 南京理工大学 Based on self adaptation and the implementation method of the motor servo system positioner of expansion error symbol integration robust
CN106773665A (en) * 2015-11-23 2017-05-31 广东工业大学 A kind of supersonic motor adaptive control system based on Liapunov model
CN108516678A (en) * 2018-03-23 2018-09-11 烽火通信科技股份有限公司 Design method in fiber drawing tower
CN110239140A (en) * 2019-06-13 2019-09-17 博众精工科技股份有限公司 A kind of servo press equipment compress control method based on input shaper
CN113341806A (en) * 2021-06-07 2021-09-03 英飞睿(成都)微系统技术有限公司 Rapid control reflector control method and system based on online identification
CN113848720A (en) * 2021-10-09 2021-12-28 国核电力规划设计研究院有限公司 System stability analysis method based on full-power direct-drive fan control inertia

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437045A (en) * 1981-01-22 1984-03-13 Agency Of Industrial Science & Technology Method and apparatus for controlling servomechanism by use of model reference servo-control system
CN101718969A (en) * 2009-12-11 2010-06-02 郭乙宏 Feeding speed servo controller of rotary cutter without clamping
CN102005762A (en) * 2010-12-08 2011-04-06 长沙理工大学 Direct current voltage on-line identification method for active filter
CN102033548A (en) * 2009-09-29 2011-04-27 北京航空航天大学 RBF neural network-based servo control system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437045A (en) * 1981-01-22 1984-03-13 Agency Of Industrial Science & Technology Method and apparatus for controlling servomechanism by use of model reference servo-control system
CN102033548A (en) * 2009-09-29 2011-04-27 北京航空航天大学 RBF neural network-based servo control system and method
CN101718969A (en) * 2009-12-11 2010-06-02 郭乙宏 Feeding speed servo controller of rotary cutter without clamping
CN102005762A (en) * 2010-12-08 2011-04-06 长沙理工大学 Direct current voltage on-line identification method for active filter

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219914A (en) * 2013-03-13 2013-07-24 河南科技大学 Ultrasonic motor model reference self-adaption control system based on Lyapunov
CN103149843A (en) * 2013-03-13 2013-06-12 河南科技大学 Ultrasonic motor model reference self-adaptation control system based on MIT (Massachu-setts Institute of Technology)
CN103219914B (en) * 2013-03-13 2015-05-27 河南科技大学 Ultrasonic motor model reference self-adaption control system based on Lyapunov
CN103149843B (en) * 2013-03-13 2015-09-23 河南科技大学 A kind of ultrasonic motor model Model Reference Adaptive Control system based on MIT
CN103338003A (en) * 2013-06-28 2013-10-02 西安交通大学 Online simultaneous identifying method for load torque and inertia of motor
CN103338003B (en) * 2013-06-28 2015-08-26 西安交通大学 A kind of method of electric motor load torque and inertia on-line identification simultaneously
CN103699010B (en) * 2013-12-04 2016-03-09 上海交通大学 A kind of servo system identification method based on relay position feedback temporal signatures
CN103699010A (en) * 2013-12-04 2014-04-02 上海交通大学 Servo system identification method based on relay position feedback time domain characteristics
CN104111607A (en) * 2014-06-13 2014-10-22 南京理工大学 Motor position servo system control method taking input time lag into consideration
CN104111607B (en) * 2014-06-13 2016-08-17 南京理工大学 A kind of control method of the electric machine position servo system considering input delay
CN104391497A (en) * 2014-08-15 2015-03-04 北京邮电大学 On-line joint servo system parameter identification and controller parameter optimization method
CN104391497B (en) * 2014-08-15 2017-08-29 北京邮电大学 A kind of joint servo system parameter identification and control parameter method for on-line optimization
CN104252134A (en) * 2014-09-17 2014-12-31 南京理工大学 Method for controlling position of self-adaptive robust of motor servo system based on extended state observer
CN106066604B (en) * 2015-04-21 2019-01-18 南京理工大学 Implementation method based on adaptive and expansion error symbol integral robust motor servo system positioner
CN106066604A (en) * 2015-04-21 2016-11-02 南京理工大学 Based on self adaptation and the implementation method of the motor servo system positioner of expansion error symbol integration robust
CN105245145A (en) * 2015-10-30 2016-01-13 中国兵器工业集团第二O二研究所 Non-steady-state-error-constant-speed-based position servo system control method
CN106773665A (en) * 2015-11-23 2017-05-31 广东工业大学 A kind of supersonic motor adaptive control system based on Liapunov model
CN105375848B (en) * 2015-11-26 2018-04-20 上海无线电设备研究所 A kind of permanent magnet synchronous motor Adaptive Identification control method and its control system
CN105375848A (en) * 2015-11-26 2016-03-02 上海无线电设备研究所 Permanent magnet synchronous motor self-adaptive identification control method and control system thereof
CN105938325A (en) * 2016-04-05 2016-09-14 中国电力科学研究院 System model identification method for alternating-current and direct-current coordination control
CN108516678A (en) * 2018-03-23 2018-09-11 烽火通信科技股份有限公司 Design method in fiber drawing tower
CN108516678B (en) * 2018-03-23 2021-03-16 烽火通信科技股份有限公司 System design method in optical fiber drawing tower
CN110239140A (en) * 2019-06-13 2019-09-17 博众精工科技股份有限公司 A kind of servo press equipment compress control method based on input shaper
CN110239140B (en) * 2019-06-13 2021-06-15 博众精工科技股份有限公司 Servo laminating equipment pressure control method based on input shaping
CN113341806A (en) * 2021-06-07 2021-09-03 英飞睿(成都)微系统技术有限公司 Rapid control reflector control method and system based on online identification
CN113848720A (en) * 2021-10-09 2021-12-28 国核电力规划设计研究院有限公司 System stability analysis method based on full-power direct-drive fan control inertia
CN113848720B (en) * 2021-10-09 2023-11-03 国核电力规划设计研究院有限公司 System stability analysis method based on full-power direct-drive fan control inertia

Also Published As

Publication number Publication date
CN102354107B (en) 2013-05-29

Similar Documents

Publication Publication Date Title
CN102354107B (en) On-line identification and control method for parameter of alternating current position servo system model
CN106325073B (en) Position Closed Loop for Servo System IP controller model-free automatic correcting method based on fractional order
CN105888971B (en) A kind of large scale wind power machine blade active load shedding control system and method
CN102411305A (en) Design method of comprehensive disturbance rejection control system for single-rotor wing helicopter/turboshaft engine
CN109981103B (en) Parameter optimization method and system for bi-second order generalized integrator frequency locking loop
CN108599649A (en) PMSM positional servosystem High order Plant controller designs and parameter determination method
CN106773649A (en) A kind of automatic control valve for gaseous fuel door intelligent control method based on PSO pid algorithms
CN113572199B (en) Smooth switching method of network-forming type current converter based on model prediction algorithm
CN104197793B (en) Missile PID controller parameter self-adaptive adjustment method
Diab et al. A comparative study of speed control based on MPC and PI-controller for Indirect Field oriented control of induction motor drive
CN102410138A (en) Method for acquiring optimal control input of wind generating set
Ming et al. Simulation study on fuzzy PID controller for DC motor based on DSP
CN113890424A (en) Parameter identification-based permanent magnet synchronous motor speed loop PI controller tuning method
Celentano Robust tracking method for uncertain MIMO systems of realistic trajectories
CN104038128A (en) NURBS (Non Uniform Rational B Spline) based linear motor thrust fluctuation control method
CN102269971A (en) Self-adapting servo controller based on model tracking
CN105573380A (en) Auto-disturbance rejection temperature control system of automatic production line spraying and drying process
Diehl et al. Nonlinear model predictive control
Diab et al. Cascade model predictive vector control of induction motor drive
Balaguer et al. Enhanced 2-DOF PID controller tuning based on an uncertainty and disturbance estimator with experimental validation
CN108983618A (en) PMSM robust H based on convex polytope∞Output feedback ontrol design method
Autsou et al. Principles and Methods of Servomotor Control: Comparative Analysis and Applications
Wang et al. Design of fractional order pi controller for permanent magnet synchronous motor
CN106953582A (en) A kind of alternating-current variable frequency motor drags two dimensional surface position control method
Shaban et al. Proportional integral derivative versus proportional integral plus control applied to mobile robotic system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Luo Haijiang

Inventor after: Dang Haiping

Inventor before: Li Xiangguo

Inventor before: Liu Xianghong

Inventor before: Mei Zhiqian

CB03 Change of inventor or designer information
TR01 Transfer of patent right

Effective date of registration: 20171130

Address after: 213164 West Lake Road, Wujin national high tech Industrial Development Zone, Changzhou City, Changzhou, Jiangsu 301, 301

Patentee after: CHANGZHOU GUCOI INTELLIGENT CONTROL TECHNOLOGY CO.,LTD.

Address before: 213022 Changzhou Jin Ling North Road, Jiangsu, No. 200

Patentee before: CHANGZHOU CAMPUS OF HOHAI University

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: 213000 No. 301, Xihu Road, Wujin National High-tech Industrial Development Zone, Changzhou City, Jiangsu Province

Patentee after: Changzhou Gugao Intelligent Equipment Technology Research Institute Co.,Ltd.

Address before: 213164 No. 301, Xihu Road, Wujin National High-tech Industrial Development Zone, Changzhou City, Jiangsu Province

Patentee before: CHANGZHOU GUCOI INTELLIGENT CONTROL TECHNOLOGY CO.,LTD.

CP03 Change of name, title or address