CN108594269A - 一种星上高精度自主应急响应的方法 - Google Patents

一种星上高精度自主应急响应的方法 Download PDF

Info

Publication number
CN108594269A
CN108594269A CN201810385037.9A CN201810385037A CN108594269A CN 108594269 A CN108594269 A CN 108594269A CN 201810385037 A CN201810385037 A CN 201810385037A CN 108594269 A CN108594269 A CN 108594269A
Authority
CN
China
Prior art keywords
satellite
calculating
orbit
axis
geocentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810385037.9A
Other languages
English (en)
Other versions
CN108594269B (zh
Inventor
齐金玲
吴会英
周美江
姬聪云
陈宏宇
付碧红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Engineering Center for Microsatellites
Original Assignee
Shanghai Engineering Center for Microsatellites
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Engineering Center for Microsatellites filed Critical Shanghai Engineering Center for Microsatellites
Priority to CN201810385037.9A priority Critical patent/CN108594269B/zh
Publication of CN108594269A publication Critical patent/CN108594269A/zh
Application granted granted Critical
Publication of CN108594269B publication Critical patent/CN108594269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请涉及一种星上高精度自主应急响应的方法,其包括以下步骤:(一)计算目标点所在轨道与赤道面交点的地心经度;(二)计算轨控期间卫星在赤道处的地心经度变化量;(三)计算应急响应时间。

Description

一种星上高精度自主应急响应的方法
技术领域
本申请涉及航天技术领域,尤其涉及一种星上高精度自主应急响应方法。
背景技术
对地观测卫星利用星载传感器获取地球表面信息,可以广泛应用在土地资源普查、城市规划、环境保护等多个领域。当越来越多的抗灾救援任务愈加依赖卫星系统时,出现了一些新的需求,主要包括以下几个方面:1)反恐维稳,快速加强对某重点区域的情报收集分析;2)热点区域应对,对周边海域舰船的突发事件针对性地应对;3)灾害救援,对突发的重大自然灾害进行救援及评估工作。这些新的卫星应用需求与传统的卫星使用方式相比具有极强的突发、短暂等特性,因此卫星在轨任务的反应速度逐渐成为衡量空间系统性能的重要指标之一。
目前现有的卫星快速响应方法主要通过采用卫星姿态侧摆策略实现卫星对目标区域的快速观测需求;通过地面计算变轨策略使卫星到达目标点上方,实现卫星对目标区域的高分辨率观测需求;但现有技术不能同时满足快速观测(通常采用卫星姿态侧摆策略)与高分辨率观测(通常采用地面计算变轨策略)两种需求。
为了提高卫星的应急响应能力,快速对突发事件目标区域进行高精度观测,减少应急响应的时间,抓住抗灾救援任务的黄金时间段,对卫星具有高精度自主应急响应能力的需求越来越迫切,本领域急需一种星上高精度自主应急响应方法,利用本方法,可满足卫星的高精度自主应急响应,尤其是满足对突发事件区域的高精度(即高分辨率)快速应急观测。
发明内容
本申请之目的在于提供一种星上高精度自主应急响应的方法。
为了实现上述目的,本申请提供下述技术方案。
本申请的方法包括以下步骤:
(一)计算目标点所在轨道与赤道面交点的地心经度;
(二)计算轨控期间卫星在赤道处的地心经度变化量;
(三)计算应急响应时间。
与现有技术相比,本申请的有益效果在于能够提高卫星的应急响应能力。
附图说明
图1是本申请的卫星位置与其在赤道处的经度关系图;其中,O-XYZ是地心第二赤道坐标系;S点是卫星在轨道上的位置;D点是卫星所在经度圈与赤道面的交点;N点是卫星所在的轨道与赤道面的交点;W是卫星轨道面法向量;i是地心第二赤道坐标系下轨道平倾角,其单位是度。
其中,所述地心第二赤道坐标系:坐标原点在地心,Z轴同地球自转轴重合,X轴在赤道平面内指向该时刻的格林威治子午线,Y轴垂直于X轴和Z轴并成右手直角坐标系。
具体实施方式
下面将结合附图以及本申请的实施例,对本申请的技术方案进行清楚和完整的描述。
本申请提供了一种星上高精度自主应急响应的方法,其包括以下步骤:
(一)计算目标点所在轨道与赤道面交点的地心经度:
1)计算轨道面法向量
a)计算卫星当前所在轨道面法向单位向量
根据下式计算卫星当前点的位置速度R0=[R0x R0y R0z]、V0=[V0x V0y V0z]
其中,Rin,Vin为卫星当前点的位置速度(地固坐标系),R0,V0为卫星当前点的位置速度(地心第二赤道坐标系),we=[0 0 we]为地球自转角速度矢量,we=7.292115146700604×10-5rad/s。
其中,地固坐标系:坐标原点在地心,Z轴同地球自转轴重合,X轴在赤道平面内指向格林威治零子午线,Y轴垂直于X轴和Z轴并成右手直角坐标系,坐标系固连在地球上。
其中,地心第二赤道坐标系:坐标原点在地心,Z轴同地球自转轴重合,X轴在赤道平面内指向该时刻的格林威治子午线,Y轴垂直于X轴和Z轴并成右手直角坐标系。
则卫星当前时刻的星下点地心经纬度为:
卫星在当前时刻的轨道面法向单位向量为:
进一步可计算出,卫星在当前点轨道时速度在地心第二赤道坐标系Z轴方向的符号值:
vz_sat=sign(V0z)
其中,sign()代表对括号内变量取符号值。
b)计算目标点所在轨道面法向单位量
所有法向量取单位向量,设目标点所在轨道面法向量为Wtar=[W11 W12 W13],则其满足如下方程:
则,
其中,lontar、lattar为目标点的地心经纬度。
进一步可计算出,卫星在目标点轨道时速度在地心第二赤道坐标系Z轴方向的符号值:
vz_tar=sign(W11·ry-W12·rx)
2)计算DN、SN
根据球面三角形的正弦定理,可得
则,
其中,SD=lat,∠DSN=arccos(W1·cos(lon-90°)+W2·sin(lon-90°)),∠SDN=90°,卫星在当前点时W1=W01,W2=W02;卫星在目标点时W1=W11,W2=W12
3)计算卫星当前点及目标点所在轨道与赤道面的交点的地心经度
其中,卫星在当前点轨道时vz=vz_sat,卫星在目标点轨道时vz=vz_tar
(二)计算轨控期间卫星在赤道处的地心经度变化量
选用“Ton秒开,Toff秒关”的脉冲螺旋控制方式进行轨道快速机动。
1)计算轨控消耗的燃料质量
其中,Ig是比冲,其单位为米/秒;F是推力,其单位是牛顿;Tpc是推进喷气时长(根据当前时刻判定卫星是否处于喷气状态,若处于Ton时间内,则Tpc=dt(采样间隔);若处于Toff时间内,则Tpc=0),其单位是秒。
2)计算轨控后卫星总质量
Mg=M-Mt
其中,M是卫星轨控前总质量。
3)计算卫星产生的速度增量
4)计算轨控后卫星平半长轴大小
其中,是卫星轨控前的地心第二赤道坐标系下轨道平半长轴;其中,N_GK是轨控模式标志(1:升轨,-1:降轨);其中,μ=398600.4418×109m3/s2;J2=1.08263×10-3;Re=6378137m。
5)计算轨控期间卫星地心经度变化量
其中,
Tgk是轨控总时间;
为地心第二赤道坐标系下轨道平偏心率。
(三)计算应急响应时间
1)计算卫星当前时刻位置与目标点位置在赤道面上地心经度的差值,并将其转换为[0°,360°]之间的角度,公式如下:
其中,mod((),360)代表括号内的值对360°取余数,Δλsat是当前点所在轨道与赤道面的交点的地心经度,Δλtar目标点所在轨道与赤道面的交点的地心经度。
2)计算卫星将要机动的地心经度差
Δλ=Δλ0+360°n
其中,整数n=0,1,2,...,TD,TD是应急任务限制的整天时间天数。
3)计算需要运行的轨数
其中,
4)判断轨数NS是否满足要求,若满足则结束轨控,若不满足继续轨控,判断条件如下:
NS-round(NS)≤Nerror
其中,round()表示对括号内的值四舍五入取整,Nerror是用户允许的轨数误差。
5)若满足应急响应要求,则卫星从接到任务到机动到目标点上方所需时间约为:
上述对实施例的描述是为了便于本技术领域的普通技术人员能理解和应用本申请。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必付出创造性的劳动。因此,本申请不限于这里的实施例,本领域技术人员根据本申请披露的内容,在不脱离本申请范围和精神的情况下做出的改进和修改都本申请的范围之内。

Claims (4)

1.一种星上高精度自主应急响应的方法,其特征在于,包括以下步骤:
(一)计算目标点所在轨道与赤道面交点的地心经度;
(二)计算轨控期间卫星在赤道处的地心经度变化量;
(三)计算应急响应时间。
2.如权利要求1所述的方法,其特征在于,所述步骤(一)计算目标点所在轨道与赤道面交点的地心经度包括以下步骤:
1)计算轨道面法向量
a)计算卫星当前所在轨道面法向单位向量
根据下式计算卫星当前点的位置速度R0=[R0x R0y R0z]、V0=[V0x V0y V0z]
其中,Rin,Vin为卫星当前点的地固坐标系位置速度,R0,V0为卫星当前点的地心第二赤道坐标系位置速度,we=[0 0 we]为地球自转角速度矢量,we=7.292115146700604×10- 5rad/s;
其中,地固坐标系:坐标原点在地心,Z轴同地球自转轴重合,X轴在赤道平面内指向格林威治零子午线,Y轴垂直于X轴和Z轴并成右手直角坐标系,坐标系固连在地球上;
其中,地心第二赤道坐标系:坐标原点在地心,Z轴同地球自转轴重合,X轴在赤道平面内指向该时刻的格林威治子午线,Y轴垂直于X轴和Z轴并成右手直角坐标系;
则卫星当前时刻的星下点地心经纬度为:
卫星在当前时刻的轨道面法向单位向量为:
进一步可计算出,卫星在当前点轨道时速度在地心第二赤道坐标系Z轴方向的符号值:
vz_sat=sign(V0z);
其中,sign()代表对括号内变量取符号值。
b)计算目标点所在轨道面法向单位量
所有法向量取单位向量,设目标点所在轨道面法向量为Wtar=[W11 W12 W13],则其满足如下方程:
则,
其中,lontar、lattar为目标点的地心经纬度。
进一步可计算出,卫星在目标点轨道时速度在地心第二赤道坐标系Z轴方向的符号值:
vz_tar=sign(W11·ry-W12·rx);
2)计算DN、SN
根据球面三角形的正弦定理,可得
则,
其中,SD=lat,∠DSN=arccos(W1·cos(lon-90°)+W2·sin(lon-90°)),∠SDN=90°,卫星在当前点时W1=W01,W2=W02;卫星在目标点时W1=W11,W2=W12
3)计算卫星当前点及目标点所在轨道与赤道面的交点的地心经度
其中,卫星在当前点轨道时vz=vz_sat,卫星在目标点轨道时vz=vz_tar
3.如权利要求1所述的方法,其特征在于,所述步骤(二)计算轨控期间卫星在赤道处的地心经度变化量包括以下步骤:
选用“Ton秒开,Toff秒关”的脉冲螺旋控制方式进行轨道快速机动;
1)计算轨控消耗的燃料质量
其中,Ig是比冲,其单位为米/秒;F是推力,其单位是牛顿;Tpc是推进喷气时长(根据当前时刻判定卫星是否处于喷气状态,若处于Ton时间内,则Tpc=dt(采样间隔);若处于Toff时间内,则Tpc=0;其单位是秒;
2)计算轨控后卫星总质量
Mg=M-Mt
其中,M是卫星轨控前总质量;
3)计算卫星产生的速度增量
4)计算轨控后卫星平半长轴大小
其中,是卫星轨控前的地心第二赤道坐标系下轨道平半长轴;其中,N_GK是轨控模式标志(1:升轨,-1:降轨);其中,μ=398600.4418×109m3/s2;J2=1.08263×10-3;Re=6378137m;
5)计算轨控期间卫星地心经度变化量
其中,
Tgk是轨控总时间;
为地心第二赤道坐标系下轨道平偏心率。
4.如权利要求1所述的方法,其特征在于,所述步骤(三)计算应急响应时间包括以下步骤:
1)计算卫星当前时刻位置与目标点位置在赤道面上地心经度的差值,并将其转换为[0°,360°]之间的角度,公式如下:
其中,mod((),360)代表括号内的值对360°取余数,Δλsat是当前点所在轨道与赤道面的交点的地心经度,Δλtar目标点所在轨道与赤道面的交点的地心经度;
2)计算卫星将要机动的地心经度差
Δλ=Δλ0+360°n
其中,整数n=0,1,2,...,TD,TD是应急任务限制的整天时间天数;
3)计算需要运行的轨数
其中,
4)判断轨数NS是否满足要求,若满足则结束轨控,若不满足继续轨控,判断条件如下:
NS-round(NS)≤Nerror
其中,round()表示对括号内的值四舍五入取整,Nerror是用户允许的轨数误差;
5)若满足应急响应要求,则卫星从接到任务到机动到目标点上方所需时间约为:
CN201810385037.9A 2018-04-26 2018-04-26 一种星上高精度自主应急响应的方法 Active CN108594269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810385037.9A CN108594269B (zh) 2018-04-26 2018-04-26 一种星上高精度自主应急响应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810385037.9A CN108594269B (zh) 2018-04-26 2018-04-26 一种星上高精度自主应急响应的方法

Publications (2)

Publication Number Publication Date
CN108594269A true CN108594269A (zh) 2018-09-28
CN108594269B CN108594269B (zh) 2021-11-23

Family

ID=63609600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810385037.9A Active CN108594269B (zh) 2018-04-26 2018-04-26 一种星上高精度自主应急响应的方法

Country Status (1)

Country Link
CN (1) CN108594269B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111881514A (zh) * 2020-07-16 2020-11-03 北京航天自动控制研究所 一种发动机故障状态下的制导重构方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140357301A1 (en) * 2007-09-11 2014-12-04 Qualcomm Incorporated Delayed radio resource signaling in a mobile radio network
CN104276293A (zh) * 2014-09-28 2015-01-14 中国人民解放军国防科学技术大学 一种快速响应空间系统
CN104378552A (zh) * 2014-11-26 2015-02-25 武汉大学 面向连续监视任务的视频卫星摄像机最优指向角控制方法
CN104753582A (zh) * 2015-03-18 2015-07-01 北京跟踪与通信技术研究所 空间信息快速响应的地面验证系统及其实验方法
CN105678007A (zh) * 2016-01-25 2016-06-15 张雅声 基于快速响应卫星的敏捷轨道实现方法和系统
CN106647787A (zh) * 2016-11-28 2017-05-10 中国人民解放军国防科学技术大学 一种卫星星上自主规划任务的方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140357301A1 (en) * 2007-09-11 2014-12-04 Qualcomm Incorporated Delayed radio resource signaling in a mobile radio network
CN104276293A (zh) * 2014-09-28 2015-01-14 中国人民解放军国防科学技术大学 一种快速响应空间系统
CN104378552A (zh) * 2014-11-26 2015-02-25 武汉大学 面向连续监视任务的视频卫星摄像机最优指向角控制方法
CN104753582A (zh) * 2015-03-18 2015-07-01 北京跟踪与通信技术研究所 空间信息快速响应的地面验证系统及其实验方法
CN105678007A (zh) * 2016-01-25 2016-06-15 张雅声 基于快速响应卫星的敏捷轨道实现方法和系统
CN106647787A (zh) * 2016-11-28 2017-05-10 中国人民解放军国防科学技术大学 一种卫星星上自主规划任务的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曾俊康等: "基于应急任务的快速进入近地轨道设计及应用", 《上海航天》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111881514A (zh) * 2020-07-16 2020-11-03 北京航天自动控制研究所 一种发动机故障状态下的制导重构方法
CN111881514B (zh) * 2020-07-16 2024-04-05 北京航天自动控制研究所 一种发动机故障状态下的制导重构方法

Also Published As

Publication number Publication date
CN108594269B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN100487378C (zh) 一种sins/gps/磁罗盘组合导航系统的数据融合方法
CN110203422B (zh) 针对面目标区域探测的快速响应卫星轨道设计方法
CN103900576B (zh) 一种深空探测自主导航的信息融合方法
CN102880184A (zh) 一种静止轨道卫星自主轨道控制方法
CN105905317A (zh) 一种卫星对日定向控制系统及其控制方法
CN109927941B (zh) 一种基于预测离轨点精度的自主允许离轨判断方法
CN102116628A (zh) 一种着陆或附着深空天体探测器的高精度导航方法
CN109813306A (zh) 一种无人车规划轨迹卫星定位数据可信度计算方法
CN108594269B (zh) 一种星上高精度自主应急响应的方法
CN103471614A (zh) 一种基于逆坐标系的极区传递对准方法
CN104714243A (zh) 近地轨道微小卫星所在位置地磁场强度的确定方法
CN104391311B (zh) 基于gps广播数据的星上无源定位方法
Kominato et al. Optical hybrid navigation and station keeping around Itokawa
CN103900569B (zh) 微惯导与dgps和电子罗盘组合导航姿态测量方法
JP4295618B2 (ja) Gpsの初期化のための衛星姿勢調整
Jah et al. Mars aerobraking spacecraft state estimation by processing inertial measurement unit data
CN106814383A (zh) 一种适用于多种模式下的高精度pos快速对准方法
Guinn et al. Preliminary results of Mars Exploration Rover in-situ radio navigation
CN104914458A (zh) 一种月球探测器射入转移轨道确定方法
Naderi et al. Mars exploration
CN108536990B (zh) 一种计算重访卫星载荷入射角随轨道漂移量变化的方法
Ellis Deep space navigation with noncoherent tracking data
Duxbury et al. Phobos and Deimos cartography
Bird et al. A Two-impulse Plan for Performing Rendezvous on a Once-a-day Basis
Ockels et al. EuroMoon 2000 a plan for a European lunar south Pole expedition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant