CN108593771A - Damage strength computational methods and damage strength computing device - Google Patents

Damage strength computational methods and damage strength computing device Download PDF

Info

Publication number
CN108593771A
CN108593771A CN201810392263.XA CN201810392263A CN108593771A CN 108593771 A CN108593771 A CN 108593771A CN 201810392263 A CN201810392263 A CN 201810392263A CN 108593771 A CN108593771 A CN 108593771A
Authority
CN
China
Prior art keywords
shale
damage
coefficient
wave
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810392263.XA
Other languages
Chinese (zh)
Inventor
刘向君
丁乙
罗平亚
梁利喜
熊健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201810392263.XA priority Critical patent/CN108593771A/en
Publication of CN108593771A publication Critical patent/CN108593771A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明提供的损伤强度计算方法和损伤强度计算装置,涉及页岩水化损伤评价技术领域。其中,损伤强度计算方法包括:获取页岩的第一声波时差、第一衰减系数、第一最大振幅以及第一主频;获取经过水化处理后的页岩的第二声波时差、第二衰减系数、第二最大振幅以及第二主频;根据第一声波时差和第二声波时差、第一衰减系数和第二衰减系数、第一最大振幅和第二最大振幅、第一主频和第二主频计算得到页岩水化后的损伤强度。通过上述方法,可以改善现有技术中计算得到的页岩水化后的损伤强度可靠性较低的问题。

The damage strength calculation method and damage strength calculation device provided by the invention relate to the technical field of shale hydration damage evaluation. Among them, the damage intensity calculation method includes: obtaining the first acoustic time difference, the first attenuation coefficient, the first maximum amplitude, and the first main frequency of the shale; obtaining the second acoustic time difference, the second Attenuation coefficient, the second maximum amplitude and the second main frequency; according to the first acoustic time difference and the second acoustic time difference, the first attenuation coefficient and the second attenuation coefficient, the first maximum amplitude and the second maximum amplitude, the first main frequency and The damage intensity after shale hydration is calculated by the second main frequency. Through the above method, the problem of low reliability of the damage strength of shale after hydration calculated in the prior art can be improved.

Description

损伤强度计算方法和损伤强度计算装置Damage intensity calculation method and damage intensity calculation device

技术领域technical field

本发明涉及页岩水化损伤评价技术领域,具体而言,涉及一种损伤强度计算方法和损伤强度计算装置。The invention relates to the technical field of shale hydration damage evaluation, in particular to a damage strength calculation method and a damage strength calculation device.

背景技术Background technique

井壁失稳问题一直是石油、天然气等行业的一个重难点问题。其中,在硬脆性页岩地层钻井过程中,钻井液会对页岩造成水化损伤,降低井壁稳定性,从而造成井下复杂情况频发,影响安全钻进。针对硬脆性页岩的水化损伤评价在钻井领域已经开展了大量研究,考虑钻井作业位于深部地层,通常基于岩石物理特征,采用测井信息获取地层岩石信息,评价钻井液对页岩地层的水化损伤。在众多测井信息中,声测井应用最为广泛。声波在岩体介质传播过程中,携带极其丰富的声信息。尤其在水化作用后,岩石内部结构发生改变会导致岩石声学特性发生变化,因此依据岩石声学特性能够对水化损伤进行定量评价。The problem of wellbore instability has always been a major and difficult problem in the oil and gas industries. Among them, during the drilling process of hard and brittle shale formations, the drilling fluid will cause hydration damage to the shale and reduce the stability of the wellbore wall, resulting in frequent downhole complex situations and affecting safe drilling. The hydration damage evaluation of hard and brittle shale has been extensively studied in the field of drilling. Considering that the drilling operation is located in deep formations, usually based on petrophysical characteristics, well logging information is used to obtain formation rock information, and the impact of drilling fluid on water in shale formations is evaluated. chemical damage. Among the many logging information, acoustic logging is the most widely used. During the propagation of sound waves in rock mass media, they carry extremely rich acoustic information. Especially after hydration, changes in the internal structure of the rock will lead to changes in the acoustic properties of the rock, so the hydration damage can be quantitatively evaluated based on the acoustic properties of the rock.

经发明人研究发现,目前基于声学特性的水化评价方法主要以声波时差为指标,忽略了页岩其他声学特性,从而不能全面准确地体现页岩水化损伤强度,导致计算得到的页岩水化后的损伤强度可靠性较低的问题。The inventors have found that the current hydration evaluation method based on acoustic characteristics mainly uses acoustic transit time as the index, ignoring other acoustic characteristics of shale, so that it cannot fully and accurately reflect the hydration damage intensity of shale, resulting in the calculated shale water The problem of the low reliability of the damage strength after chemicalization.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种损伤强度计算方法和损伤强度计算装置,以改善现有技术中计算得到的页岩水化后的损伤强度可靠性较低的问题。In view of this, the object of the present invention is to provide a damage strength calculation method and a damage strength calculation device to improve the low reliability of the calculated damage strength of shale after hydration in the prior art.

为实现上述目的,本发明实施例采用如下技术方案:In order to achieve the above purpose, the embodiment of the present invention adopts the following technical solutions:

一种损伤强度计算方法,用于对页岩的水化损伤进行评价,所述方法包括:A damage intensity calculation method for evaluating shale hydration damage, the method comprising:

获取所述页岩的第一声波时差、第一衰减系数、第一最大振幅以及第一主频,其中,所述第一声波时差、第一衰减系数、第一最大振幅以及第一主频基于对所述页岩进行超声波透射处理生成;Acquiring the first acoustic time difference, first attenuation coefficient, first maximum amplitude and first main frequency of the shale, wherein the first acoustic time difference, first attenuation coefficient, first maximum amplitude and first main frequency The frequency is generated based on ultrasonic transmission treatment of the shale;

获取所述页岩的第二声波时差、第二衰减系数、第二最大振幅以及第二主频,其中,所述第二声波时差、第二衰减系数、第二最大振幅以及第二主频基于对经过水化处理后的页岩进行超声波透射处理生成;Obtaining the second acoustic time difference, second attenuation coefficient, second maximum amplitude, and second main frequency of the shale, wherein the second acoustic time difference, second attenuation coefficient, second maximum amplitude, and second main frequency are based on Generated by ultrasonic transmission treatment of shale after hydration treatment;

根据所述第一声波时差和所述第二声波时差、所述第一衰减系数和所述第二衰减系数、所述第一最大振幅和所述第二最大振幅、所述第一主频和所述第二主频分别按照预设公式计算得到第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数;According to the first acoustic time difference and the second acoustic time difference, the first attenuation coefficient and the second attenuation coefficient, the first maximum amplitude and the second maximum amplitude, the first main frequency The first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient are respectively calculated according to the preset formula with the second main frequency;

根据所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数按照预设公式计算得到所述页岩水化后的损伤强度。The damage intensity after hydration of the shale is calculated according to the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient according to a preset formula.

在本发明实施例较佳的选择中,在上述损伤强度计算方法中,获取所述第一声波时差的步骤包括:In a preferred embodiment of the present invention, in the above damage intensity calculation method, the step of obtaining the first acoustic time difference includes:

分别获取初始首波起跳时间、页岩首波起跳时间以及所述页岩的长度,其中,所述初始首波起跳时间基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波起跳时间基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成;Obtaining the initial first-wave take-off time, the shale first-wave take-off time, and the length of the shale respectively, wherein the initial first-wave take-off time is generated based on ultrasonic transmission processing after docking the excitation probe and the receiving probe of the ultrasonic transilluminator, The take-off time of the first wave of the shale is generated based on ultrasonic transmission treatment after the excitation probe and the receiving probe are respectively arranged at both ends of the shale in the length direction;

根据所述初始首波起跳时间、所述页岩首波起跳时间以及所述页岩的长度按照预设规则计算得到所述第一声波时差。The first acoustic wave time difference is calculated according to the initial first wave take-off time, the first shale wave take-off time and the length of the shale according to a preset rule.

在本发明实施例较佳的选择中,在上述损伤强度计算方法中,获取所述第一衰减系数的步骤包括:In a preferred option of the embodiment of the present invention, in the above damage intensity calculation method, the step of obtaining the first attenuation coefficient includes:

分别获取初始首波幅度、页岩首波幅度以及所述页岩的长度,其中,所述初始首波幅度基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波幅度基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成;Obtain the initial first wave amplitude, the shale first wave amplitude and the length of the shale respectively, wherein the initial first wave amplitude is generated based on ultrasonic transmission processing after docking the excitation probe and the receiving probe of the ultrasonic transilluminator, and the page The rockhead wave amplitude is generated based on ultrasonic transmission processing after the excitation probe and the reception probe are respectively arranged at both ends of the shale in the length direction;

根据所述初始首波幅度、所述页岩首波幅度以及所述页岩的长度按照预设规则计算得到所述第一衰减系数。The first attenuation coefficient is calculated according to a preset rule according to the initial first wave amplitude, the shale first wave amplitude and the length of the shale.

在本发明实施例较佳的选择中,在上述损伤强度计算方法中,获取所述第一最大振幅和所述第一主频的步骤包括:In a preferred option of the embodiment of the present invention, in the above damage intensity calculation method, the step of obtaining the first maximum amplitude and the first main frequency includes:

获取基于对所述页岩进行超声波透射处理生成的声波时域信号,并从该声波时域信号中得到第一最大振幅;Acquiring an acoustic time-domain signal generated based on ultrasonic transmission processing of the shale, and obtaining the first maximum amplitude from the acoustic time-domain signal;

将所述声波时域信号进行傅里叶变换处理以得到声波频域信号,并从该声波频域信号中得到第一主频。The acoustic time domain signal is subjected to Fourier transform processing to obtain an acoustic frequency domain signal, and the first main frequency is obtained from the acoustic frequency domain signal.

在本发明实施例较佳的选择中,在上述损伤强度计算方法中,计算所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数的预设公式包括:In a preferred option of the embodiment of the present invention, in the above damage intensity calculation method, the preset formulas for calculating the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient include:

其中,St、Sa、Sr、Sf分别为第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数,Δt(0)和Δt(s)分别为第一声波时差和第二声波时差,At(0)和At(s)分别为第一衰减系数和第二衰减系数,r(0)和r(s)分别为第一最大振幅和第二最大振幅,fre(0)和fre(s)分别为第一主频和第二主频。Among them, S t , S a , S r , and S f are the first damage coefficient, the second damage coefficient, the third damage coefficient, and the fourth damage coefficient, respectively, and Δt(0) and Δt(s) are the first acoustic wave The time difference and the second acoustic time difference, At(0) and At(s) are the first attenuation coefficient and the second attenuation coefficient respectively, r(0) and r(s) are the first maximum amplitude and the second maximum amplitude respectively, fre (0) and fre(s) are the first main frequency and the second main frequency respectively.

在本发明实施例较佳的选择中,在上述损伤强度计算方法中,计算所述页岩水化后的损伤强度的预设公式包括:In a preferred option of an embodiment of the present invention, in the above damage strength calculation method, the preset formula for calculating the damage strength of the shale after hydration includes:

其中,S为所述页岩水化后的损伤强度,St、Sa、Sr、Sf分别为第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数。Wherein, S is the damage intensity of the shale after hydration, and S t , S a , S r , and S f are the first damage coefficient, the second damage coefficient, the third damage coefficient, and the fourth damage coefficient, respectively.

本发明实施例还提供了一种损伤强度计算装置,用于对页岩的水化损伤进行评价,所述装置包括:An embodiment of the present invention also provides a damage intensity calculation device for evaluating shale hydration damage, and the device includes:

第一参数获取模块,用于获取所述页岩的第一声波时差、第一衰减系数、第一最大振幅以及第一主频,其中,所述第一声波时差、第一衰减系数、第一最大振幅以及第一主频基于对所述页岩进行超声波透射处理生成;The first parameter acquisition module is used to acquire the first acoustic time difference, first attenuation coefficient, first maximum amplitude and first main frequency of the shale, wherein the first acoustic time difference, first attenuation coefficient, The first maximum amplitude and the first main frequency are generated based on ultrasonic transmission treatment of the shale;

第二参数获取模块,用于获取所述页岩的第二声波时差、第二衰减系数、第二最大振幅以及第二主频,其中,所述第二声波时差、第二衰减系数、第二最大振幅以及第二主频基于对经过水化处理后的页岩进行超声波透射处理生成;The second parameter acquisition module is used to acquire the second acoustic time difference, the second attenuation coefficient, the second maximum amplitude and the second main frequency of the shale, wherein the second acoustic time difference, the second attenuation coefficient, the second The maximum amplitude and the second main frequency are generated based on ultrasonic transmission treatment of shale after hydration treatment;

损伤系数计算模块,用于根据所述第一声波时差和所述第二声波时差、所述第一衰减系数和所述第二衰减系数、所述第一最大振幅和所述第二最大振幅、所述第一主频和所述第二主频分别按照预设公式计算得到第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数;A damage coefficient calculation module, configured to calculate according to the first acoustic time difference and the second acoustic time difference, the first attenuation coefficient and the second attenuation coefficient, the first maximum amplitude and the second maximum amplitude , the first main frequency and the second main frequency are respectively calculated according to a preset formula to obtain a first damage coefficient, a second damage coefficient, a third damage coefficient and a fourth damage coefficient;

损伤强度计算模块,用于根据所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数按照预设公式计算得到所述页岩水化后的损伤强度。The damage intensity calculation module is used to calculate and obtain the damage intensity of the shale after hydration according to the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient according to a preset formula.

在本发明实施例较佳的选择中,在上述损伤强度计算装置中,所述第一参数获取模块包括:In a preferred option of the embodiment of the present invention, in the above damage intensity calculation device, the first parameter acquisition module includes:

时间参数获取子模块,用于分别获取初始首波起跳时间、页岩首波起跳时间以及所述页岩的长度,其中,所述初始首波起跳时间基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波起跳时间基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成;The time parameter acquisition sub-module is used to obtain the initial first-wave take-off time, the first-wave take-off time of the shale and the length of the shale respectively, wherein the initial first-wave take-off time is based on the excitation probe and the receiving probe of the ultrasonic transilluminator Ultrasonic transmission processing is performed after docking, and the first wave take-off time of the shale is generated based on ultrasonic transmission processing after the excitation probe and the receiving probe are respectively arranged at both ends of the shale in the length direction;

声波时差计算子模块,用于根据所述初始首波起跳时间、所述页岩首波起跳时间以及所述页岩的长度按照预设规则计算得到所述第一声波时差。The sonic time difference calculation sub-module is used to calculate and obtain the first sonic time difference according to the initial first wave take-off time, the shale first wave take-off time and the length of the shale according to preset rules.

在本发明实施例较佳的选择中,在上述损伤强度计算装置中,所述第一参数获取模块还包括:In a preferred option of the embodiment of the present invention, in the above damage intensity calculation device, the first parameter acquisition module further includes:

幅度参数获取子模块,用于分别获取初始首波幅度、页岩首波幅度以及所述页岩的长度,其中,所述初始首波幅度基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波幅度基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成;The amplitude parameter acquisition sub-module is used to obtain the initial first wave amplitude, the shale first wave amplitude and the length of the shale respectively, wherein the initial first wave amplitude is based on the docking of the excitation probe and the receiving probe of the ultrasonic transilluminator. Generated by ultrasonic transmission processing, the first wave amplitude of the shale is generated based on ultrasonic transmission processing after the excitation probe and the receiving probe are respectively arranged at both ends of the shale in the length direction;

衰减系数计算子模块,用于根据所述初始首波幅度、所述页岩首波幅度以及所述页岩的长度按照预设规则计算得到所述第一衰减系数。The attenuation coefficient calculation sub-module is used to calculate and obtain the first attenuation coefficient according to the initial first wave amplitude, the shale first wave amplitude and the length of the shale according to preset rules.

在本发明实施例较佳的选择中,在上述损伤强度计算装置中,所述第一参数获取模块还包括:In a preferred option of the embodiment of the present invention, in the above damage intensity calculation device, the first parameter acquisition module further includes:

振幅参数获取子模块,用于获取基于对所述页岩进行超声波透射处理生成的声波时域信号,并从该声波时域信号中得到第一最大振幅;The amplitude parameter acquisition sub-module is used to acquire the acoustic wave time-domain signal generated based on the ultrasonic transmission processing of the shale, and obtain the first maximum amplitude from the acoustic wave time-domain signal;

主频参数获取子模块,用于将所述声波时域信号进行傅里叶变换处理以得到声波频域信号,并从该声波频域信号中得到第一主频。The main frequency parameter acquisition sub-module is configured to perform Fourier transform processing on the sound wave time domain signal to obtain the sound wave frequency domain signal, and obtain the first main frequency from the sound wave frequency domain signal.

本发明提供的损伤强度计算方法和损伤强度计算装置,通过分别获取需要评价的页岩在水化处理前后的声波时差、衰减系数、最大振幅以及主频,并基于各参数对页岩的损伤强度进行计算,以较为全面的对页岩的水化损伤进行评价,进而改善现有技术中计算得到的页岩水化后的损伤强度可靠性较低的问题。The damage intensity calculation method and damage intensity calculation device provided by the present invention respectively obtain the acoustic time difference, attenuation coefficient, maximum amplitude and main frequency of the shale to be evaluated before and after hydration treatment, and based on the damage intensity of each parameter to the shale Calculations are performed to comprehensively evaluate the hydration damage of shale, thereby improving the problem of low reliability of the damage strength of shale after hydration calculated in the prior art.

为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.

附图说明Description of drawings

图1为本发明实施例提供的电子设备的结构框图。FIG. 1 is a structural block diagram of an electronic device provided by an embodiment of the present invention.

图2为本发明实施例提供的损伤强度计算方法的流程示意图。Fig. 2 is a schematic flowchart of a damage intensity calculation method provided by an embodiment of the present invention.

图3为图2中步骤S110的流程示意图。FIG. 3 is a schematic flowchart of step S110 in FIG. 2 .

图4为图2中步骤S110的另一流程示意图。FIG. 4 is another schematic flowchart of step S110 in FIG. 2 .

图5为图2中步骤S110的另一流程示意图。FIG. 5 is another schematic flowchart of step S110 in FIG. 2 .

图6为本发明实施例提供的损伤强度计算装置的结构框图。Fig. 6 is a structural block diagram of a damage intensity calculation device provided by an embodiment of the present invention.

图7为本发明实施例提供的第一参数获取模块的结构框图。Fig. 7 is a structural block diagram of a first parameter acquisition module provided by an embodiment of the present invention.

图8为本发明实施例提供的第一参数获取模块的另一结构框图。Fig. 8 is another structural block diagram of the first parameter acquisition module provided by the embodiment of the present invention.

图9为本发明实施例提供的第一参数获取模块的另一结构框图。Fig. 9 is another structural block diagram of the first parameter acquisition module provided by the embodiment of the present invention.

图标:10-电子设备;12-存储器;14-处理器;100-损伤强度计算装置;110-第一参数获取模块;111-时间参数获取子模块;112-声波时差计算子模块;113-幅度参数获取子模块;114-衰减系数计算子模块;115-振幅参数获取子模块;116-主频参数获取子模块;130-第二参数获取模块;150-损伤系数计算模块;170-损伤强度计算模块。Icons: 10-electronic equipment; 12-memory; 14-processor; 100-damage strength calculation device; 110-first parameter acquisition module; 111-time parameter acquisition submodule; 112-acoustic time difference calculation submodule; 113-amplitude Parameter acquisition sub-module; 114-attenuation coefficient calculation sub-module; 115-amplitude parameter acquisition sub-module; 116-main frequency parameter acquisition sub-module; 130-second parameter acquisition module; 150-damage coefficient calculation module; 170-damage strength calculation module.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本发明的一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is only a part of embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.

因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。在本发明的描述中,术语“第一”、“第二”、“第三”、“第四”等仅用于区分描述,而不能理解为只是或暗示相对重要性。It should be noted that like numerals and letters denote similar items in the following figures, therefore, once an item is defined in one figure, it does not require further definition and explanation in subsequent figures. In the description of the present invention, the terms "first", "second", "third", "fourth" and so on are only used for distinguishing descriptions, and should not be interpreted as merely or implying relative importance.

如图1所示,本发明实施例提供了一种可用于对页岩的水化损伤进行评价的电子设备10。其中,所述电子设备10可以包括存储器12、处理器14和损伤强度计算装置100。As shown in FIG. 1 , an embodiment of the present invention provides an electronic device 10 that can be used to evaluate hydration damage of shale. Wherein, the electronic device 10 may include a memory 12 , a processor 14 and a damage intensity calculation device 100 .

所述存储器12和处理器14之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。所述损伤强度计算装置100包括至少一个可以软件或固件(firmware)的形式存储于所述存储器12中的软件功能模块。所述处理器14用于执行所述存储器12中存储的可执行的计算机程序,例如,所述损伤强度计算装置100所包括的软件功能模块及计算机程序等,以实现损伤强度计算取方法。The memory 12 and the processor 14 are electrically connected directly or indirectly to realize data transmission or interaction. For example, these components can be electrically connected to each other through one or more communication buses or signal lines. The damage intensity calculation device 100 includes at least one software function module that can be stored in the memory 12 in the form of software or firmware. The processor 14 is used to execute executable computer programs stored in the memory 12 , for example, software function modules and computer programs included in the damage intensity calculation device 100 , so as to realize the damage intensity calculation method.

其中,所述存储器12可以是,但不限于,随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-OnlyMemory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,EEPROM)等。其中,存储器12用于存储程序,所述处理器14在接收到执行指令后,执行所述程序。Wherein, the memory 12 can be, but not limited to, random access memory (Random Access Memory, RAM), read-only memory (Read Only Memory, ROM), programmable read-only memory (Programmable Read-OnlyMemory, PROM), Erasable Programmable Read-Only Memory (EPROM), Electric Erasable Programmable Read-Only Memory (EEPROM), etc. Wherein, the memory 12 is used to store programs, and the processor 14 executes the programs after receiving execution instructions.

所述处理器14可能是一种集成电路芯片,具有信号的处理能力。上述的处理器14可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The processor 14 may be an integrated circuit chip with signal processing capabilities. Above-mentioned processor 14 can be general-purpose processor, comprises central processing unit (Central Processing Unit, CPU), network processor (Network Processor, NP) etc.; Can also be digital signal processor (DSP), application-specific integrated circuit (ASIC) ), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. Various methods, steps and logic block diagrams disclosed in the embodiments of the present invention may be implemented or executed. A general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.

可以理解,图1所示的结构仅为示意,所述电子设备10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。图1中所示的各组件可以采用硬件、软件或其组合实现。It can be understood that the structure shown in FIG. 1 is only for illustration, and the electronic device 10 may also include more or less components than those shown in FIG. 1 , or have a configuration different from that shown in FIG. 1 . Each component shown in Fig. 1 may be implemented by hardware, software or a combination thereof.

可选地,所述电子设备10的具体类型不受限制,例如,可以是,但不限于,智能手机、个人电脑(personal computer,PC)、平板电脑、个人数字助理(personal digitalassistant,PDA)、移动上网设备(mobile Internet device,MID)、web(网站)服务器、数据服务器、电脑、移动上网设备(mobile Internet device,MID)等具有处理功能的设备。Optionally, the specific type of the electronic device 10 is not limited, for example, it may be, but not limited to, a smart phone, a personal computer (personal computer, PC), a tablet computer, a personal digital assistant (personal digital assistant, PDA), Mobile Internet device (mobile Internet device, MID), web (website) server, data server, computer, mobile Internet device (mobile Internet device, MID) and other devices with processing functions.

结合图2,本发明实施例还提供了一种可应用于上述电子设备10的损伤强度计算方法。其中,所述方法有关的流程所定义的方法步骤可以由所述处理器14实现。下面将对图2所示的具体流程进行详细阐述。With reference to FIG. 2 , an embodiment of the present invention also provides a damage intensity calculation method applicable to the above-mentioned electronic device 10 . Wherein, the method steps defined by the process related to the method may be implemented by the processor 14 . The specific process shown in FIG. 2 will be described in detail below.

步骤S110,获取所述页岩的第一声波时差、第一衰减系数、第一最大振幅以及第一主频。Step S110, acquiring the first acoustic time difference, the first attenuation coefficient, the first maximum amplitude and the first main frequency of the shale.

在本实施例中,所述第一声波时差、第一衰减系数、第一最大振幅以及第一主频基于对所述页岩进行超声波透射处理生成。In this embodiment, the first acoustic time difference, the first attenuation coefficient, the first maximum amplitude, and the first main frequency are generated based on ultrasonic transmission treatment of the shale.

其中,在对所述页岩进行超声波透射处理之前,为保证获取的各参数的有效性和可靠性,可以对提取的页岩进行处理,例如,可以使用空气钻头进行钻取处理以获取该页岩的岩心,并且对该岩心的两端进行切割,以使两个端面与岩心轴线垂直。Wherein, before performing ultrasonic transmission treatment on the shale, in order to ensure the validity and reliability of the obtained parameters, the extracted shale can be processed, for example, an air drill can be used for drilling to obtain the shale The core of the rock, and the two ends of the core are cut so that the two end faces are perpendicular to the axis of the core.

步骤S130,获取所述页岩的第二声波时差、第二衰减系数、第二最大振幅以及第二主频。Step S130, acquiring the second acoustic time difference, the second attenuation coefficient, the second maximum amplitude and the second main frequency of the shale.

在本实施例中,所述第二声波时差、第二衰减系数、第二最大振幅以及第二主频基于对经过水化处理后的页岩进行超声波透射处理生成。In this embodiment, the second acoustic time difference, the second attenuation coefficient, the second maximum amplitude, and the second main frequency are generated based on ultrasonic transmission treatment of shale after hydration treatment.

其中,对页岩进行水化处理的方式不受限制,例如,既可以是通过任意的液体(例如,水)进行,也可以是通过钻井液进行。在本实施例中,为保证水化处理能够更为真实的反映实际应用中的水化效果,可以采用钻井液。Wherein, the manner of hydrating the shale is not limited, for example, it may be performed by any liquid (for example, water), or may be performed by drilling fluid. In this embodiment, in order to ensure that the hydration treatment can more truly reflect the hydration effect in practical applications, drilling fluid can be used.

步骤S150,根据所述第一声波时差和所述第二声波时差、所述第一衰减系数和所述第二衰减系数、所述第一最大振幅和所述第二最大振幅、所述第一主频和所述第二主频分别按照预设公式计算得到第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数。Step S150, according to the first acoustic time difference and the second acoustic time difference, the first attenuation coefficient and the second attenuation coefficient, the first maximum amplitude and the second maximum amplitude, the first The first main frequency and the second main frequency are respectively calculated according to preset formulas to obtain a first damage coefficient, a second damage coefficient, a third damage coefficient and a fourth damage coefficient.

其中,计算所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数的预设公式不受限制,可以根据实际应用需求进行设置,例如,针对声波时差,可以直接将第一声波时差和所述第二声波时差的差值作为第一损伤系数。在本实施例中,为保证执行步骤S170时通过各系数进行处理时具有较高的一致性,该预设公式可以包括:Wherein, the preset formulas for calculating the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient are not limited, and can be set according to actual application requirements. For example, for the acoustic time difference, the first damage coefficient can be directly The difference between the acoustic time difference and the second acoustic time difference is used as the first damage coefficient. In this embodiment, in order to ensure high consistency when performing step S170 through various coefficients, the preset formula may include:

其中,St、Sa、Sr、Sf分别为第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数,Δt(0)和Δt(s)分别为第一声波时差和第二声波时差,At(0)和At(s)分别为第一衰减系数和第二衰减系数,r(0)和r(s)分别为第一最大振幅和第二最大振幅,fre(0)和fre(s)分别为第一主频和第二主频。Among them, S t , S a , S r , and S f are the first damage coefficient, the second damage coefficient, the third damage coefficient, and the fourth damage coefficient, respectively, and Δt(0) and Δt(s) are the first acoustic wave The time difference and the second acoustic time difference, At(0) and At(s) are the first attenuation coefficient and the second attenuation coefficient respectively, r(0) and r(s) are the first maximum amplitude and the second maximum amplitude respectively, fre (0) and fre(s) are the first main frequency and the second main frequency respectively.

步骤S170,根据所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数按照预设公式计算得到所述页岩水化后的损伤强度。Step S170, calculating according to the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient according to a preset formula to obtain the damage intensity of the shale after hydration.

其中,计算所述损伤强度的预设公式不受限制,可以根据实际应用需求进行设置,例如,可以是对四个系数取中值,也可以是对四个系数取均值,还可以是其它的计算方式。在本实施例中,计算所述损伤强度的预设公式可以包括:Wherein, the preset formula for calculating the damage intensity is not limited, and can be set according to actual application requirements, for example, it can be the median value of the four coefficients, or the average value of the four coefficients, or other Calculation. In this embodiment, the preset formula for calculating the damage intensity may include:

其中,S为所述页岩水化后的损伤强度,St、Sa、Sr、Sf分别为第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数。Wherein, S is the damage intensity of the shale after hydration, and S t , S a , S r , and S f are the first damage coefficient, the second damage coefficient, the third damage coefficient, and the fourth damage coefficient, respectively.

进一步地,在本实施例中,通过步骤S110以获取第一声波时差、第一衰减系数、第一最大振幅以及第一主频的方式不受限制,可以根据实际应用需求进行设置,结合图3,步骤S110可以包括步骤S111和步骤S112以得到所述第一声波时差。Further, in this embodiment, the method of obtaining the first acoustic time difference, the first attenuation coefficient, the first maximum amplitude, and the first main frequency through step S110 is not limited, and can be set according to actual application requirements. 3. Step S110 may include steps S111 and S112 to obtain the first acoustic time difference.

步骤S111,分别获取初始首波起跳时间、页岩首波起跳时间以及所述页岩的长度。Step S111 , acquiring the initial first-wave take-off time, the shale first-wave take-off time, and the length of the shale respectively.

在本实施例中,所述初始首波起跳时间基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波起跳时间基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成。In this embodiment, the initial first-wave take-off time is generated based on the ultrasonic transmission process after docking the excitation probe and the receiving probe of the ultrasonic transilluminator, and the shale first-wave take-off time is based on separately connecting the excitation probe and the receiving probe It is installed at both ends of the shale in the longitudinal direction and then generated by ultrasonic transmission treatment.

步骤S112,根据所述初始首波起跳时间、所述页岩首波起跳时间以及所述页岩的长度按照预设规则计算得到所述第一声波时差。Step S112 , according to the initial first-wave take-off time, the first-wave take-off time of the shale, and the length of the shale, calculate the first acoustic time difference according to preset rules.

在本实施例中,计算所述第一声波时差的预设规则可以为:In this embodiment, the preset rule for calculating the first acoustic time difference may be:

其中,Δt为第一声波时差,t1为初始首波起跳时间,t2为页岩首波起跳时间,L为页岩的长度。Among them, Δt is the time difference of the first acoustic wave, t1 is the take-off time of the initial first wave, t2 is the take-off time of the first wave of the shale, and L is the length of the shale.

结合图4,在本实施例中,步骤S110还可以包括步骤S113和步骤S114,以得到所述第一衰减系数。Referring to FIG. 4 , in this embodiment, step S110 may further include step S113 and step S114 to obtain the first attenuation coefficient.

步骤S113,分别获取初始首波幅度、页岩首波幅度以及所述页岩的长度。Step S113, obtaining the initial first-wave amplitude, the first-wave amplitude of the shale, and the length of the shale respectively.

在本实施例中,所述初始首波幅度基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波幅度基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成。In this embodiment, the initial first wave amplitude is generated based on ultrasonic transmission processing after docking the excitation probe and the receiving probe of the ultrasonic transilluminator, and the shale first wave amplitude is based on setting the excitation probe and the receiving probe respectively at The two ends of the shale in the length direction are then formed by ultrasonic transmission treatment.

步骤S114,根据所述初始首波幅度、所述页岩首波幅度以及所述页岩的长度按照预设规则计算得到所述第一衰减系数。Step S114 , according to the initial first wave amplitude, the shale first wave amplitude and the length of the shale, calculate the first attenuation coefficient according to a preset rule.

在本实施例中,计算所述第一衰减系数的预设规则可以为:In this embodiment, the preset rule for calculating the first attenuation coefficient may be:

其中,At为第一衰减系数,A0为初始首波幅度,A为页岩首波幅度,L为页岩的长度。Among them, At is the first attenuation coefficient, A 0 is the amplitude of initial first wave, A is the amplitude of first wave of shale, and L is the length of shale.

结合图5,在本实施例中,步骤S110还可以包括步骤S115和步骤S116,以得到所述第一最大振幅和所述第一主频。Referring to FIG. 5 , in this embodiment, step S110 may further include step S115 and step S116 to obtain the first maximum amplitude and the first main frequency.

步骤S115,获取基于对所述页岩进行超声波透射处理生成的声波时域信号,并从该声波时域信号中得到第一最大振幅。Step S115, acquiring an acoustic time-domain signal generated based on ultrasonic transmission processing of the shale, and obtaining a first maximum amplitude from the acoustic time-domain signal.

步骤S116,将所述声波时域信号进行傅里叶变换处理以得到声波频域信号,并从该声波频域信号中得到第一主频。Step S116, performing Fourier transform processing on the acoustic wave time domain signal to obtain an acoustic wave frequency domain signal, and obtain a first main frequency from the acoustic wave frequency domain signal.

在本实施例中,可以通过傅里叶变换把波动的时域信号按频率顺序展开,以得到声波频域信号,并从该声波频域信号中获取第一主频。其中,傅里叶变换的原理可以为:In this embodiment, the fluctuating time-domain signal can be expanded in order of frequency through Fourier transform to obtain the acoustic frequency-domain signal, and the first main frequency can be obtained from the acoustic frequency-domain signal. Among them, the principle of Fourier transform can be:

其中,f为频率,x(t)为时域函数,X(f)为声波频域的复函数,t为声波传播中的一个时间点。Among them, f is the frequency, x(t) is the time domain function, X(f) is the complex function of the frequency domain of the sound wave, and t is a time point in the sound wave propagation.

其中,在执行步骤S130以获取第二声波时差、第二衰减系数、第二最大振幅以及第二主频的方式不受限制,可以根据实际应用需求进行设置,例如,既可以是与步骤S110的方式相同,也可以是与步骤S110的方式不同。在本实施例中,为保证通过所述第一声波时差和所述第二声波时差、所述第一衰减系数和所述第二衰减系数、所述第一最大振幅和所述第二最大振幅、所述第一主频和所述第二主频计算得到的各损伤系数具有较高的可靠性,步骤S130与步骤S110的中对于参数的获取方式相同,具体地,请结合上文对步骤S110包括的各步骤的解释说明。Wherein, the method of obtaining the second acoustic wave time difference, the second attenuation coefficient, the second maximum amplitude, and the second main frequency in step S130 is not limited, and can be set according to actual application requirements, for example, it can be the same as that of step S110 The manner is the same, or may be different from that of step S110. In this embodiment, in order to ensure that the first acoustic time difference and the second acoustic time difference, the first attenuation coefficient and the second attenuation coefficient, the first maximum amplitude and the second maximum The damage coefficients calculated by the amplitude, the first main frequency, and the second main frequency have high reliability, and the acquisition method of the parameters in step S130 is the same as that in step S110. Specifically, please combine the above for Explanation of each step included in step S110.

进一步地,为保证对页岩的水化损伤的评价具有较高的可靠性,在本实施例中,还可以基于对同一页岩的不同水化时间,以分别进行损伤强度的计算,以得到该页岩的损伤强度与水化时间的一个对应关系。Furthermore, in order to ensure the evaluation of shale hydration damage has high reliability, in this embodiment, the damage intensity can be calculated separately based on different hydration times of the same shale to obtain A corresponding relationship between the damage intensity of the shale and the hydration time.

并且,在本实施例中,还可以对不同的页岩进行水化损伤的评价,以通过将不同的页岩损伤强度进行对比,从而得到更为可靠的评价。Moreover, in this embodiment, the evaluation of hydration damage can also be performed on different shales, so that a more reliable evaluation can be obtained by comparing the damage intensities of different shales.

结合图6,本发明实施例还提供一种可应用于上述电子设备10的损伤强度计算装置100。其中,所述损伤强度计算装置100可以包括第一参数获取模块110、第二参数获取模块130、损伤系数计算模块150以及损伤强度计算模块170。With reference to FIG. 6 , an embodiment of the present invention also provides a damage intensity calculation device 100 applicable to the above-mentioned electronic device 10 . Wherein, the damage intensity calculation device 100 may include a first parameter acquisition module 110 , a second parameter acquisition module 130 , a damage coefficient calculation module 150 and a damage intensity calculation module 170 .

所述第一参数获取模块110,用于获取所述页岩的第一声波时差、第一衰减系数、第一最大振幅以及第一主频,其中,所述第一声波时差、第一衰减系数、第一最大振幅以及第一主频基于对所述页岩进行超声波透射处理生成。在本实施例中,所述第一参数获取模块110可用于执行图2所示的步骤S110,关于所述第一参数获取模块110的具体描述可以参照前文对步骤S110的描述。The first parameter acquisition module 110 is configured to acquire the first acoustic time difference, the first attenuation coefficient, the first maximum amplitude and the first main frequency of the shale, wherein the first acoustic time difference, the first The attenuation coefficient, the first maximum amplitude and the first main frequency are generated based on ultrasonic transmission treatment of the shale. In this embodiment, the first parameter acquisition module 110 may be configured to execute step S110 shown in FIG. 2 , and for a specific description of the first parameter acquisition module 110 , reference may be made to the foregoing description of step S110 .

所述第二参数获取模块130,用于获取所述页岩的第二声波时差、第二衰减系数、第二最大振幅以及第二主频,其中,所述第二声波时差、第二衰减系数、第二最大振幅以及第二主频基于对经过水化处理后的页岩进行超声波透射处理生成。在本实施例中,所述第二参数获取模块130可用于执行图2所示的步骤S130,关于所述第二参数获取模块130的具体描述可以参照前文对步骤S130的描述。The second parameter acquisition module 130 is configured to acquire the second acoustic time difference, second attenuation coefficient, second maximum amplitude and second main frequency of the shale, wherein the second acoustic time difference, second attenuation coefficient , the second maximum amplitude and the second main frequency are generated based on ultrasonic transmission treatment of shale after hydration treatment. In this embodiment, the second parameter acquisition module 130 may be configured to execute step S130 shown in FIG. 2 , and for a specific description of the second parameter acquisition module 130 , reference may be made to the foregoing description of step S130 .

所述损伤系数计算模块150,用于根据所述第一声波时差和所述第二声波时差、所述第一衰减系数和所述第二衰减系数、所述第一最大振幅和所述第二最大振幅、所述第一主频和所述第二主频分别按照预设公式计算得到第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数。在本实施例中,所述损伤系数计算模块150可用于执行图2所示的步骤S150,关于所述损伤系数计算模块150的具体描述可以参照前文对步骤S150的描述。The damage coefficient calculation module 150 is configured to calculate according to the first acoustic time difference and the second acoustic time difference, the first attenuation coefficient and the second attenuation coefficient, the first maximum amplitude and the second The second maximum amplitude, the first main frequency and the second main frequency are respectively calculated according to a preset formula to obtain a first damage coefficient, a second damage coefficient, a third damage coefficient and a fourth damage coefficient. In this embodiment, the damage coefficient calculation module 150 may be configured to execute step S150 shown in FIG. 2 , and for a specific description of the damage coefficient calculation module 150 , reference may be made to the foregoing description of step S150 .

所述损伤强度计算模块170,用于根据所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数按照预设公式计算得到所述页岩水化后的损伤强度。在本实施例中,所述损伤强度计算模块170可用于执行图2所示的步骤S170,关于所述损伤强度计算模块170的具体描述可以参照前文对步骤S170的描述。The damage intensity calculation module 170 is configured to calculate the damage intensity of the shale after hydration according to a preset formula according to the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient. In this embodiment, the damage intensity calculation module 170 can be used to execute step S170 shown in FIG. 2 , and for a specific description of the damage intensity calculation module 170 , reference can be made to the previous description of step S170 .

结合图7,在本实施例中,所述第一参数获取模块110可以包括时间参数获取子模块111和声波时差计算子模块112。Referring to FIG. 7 , in this embodiment, the first parameter acquisition module 110 may include a time parameter acquisition submodule 111 and a sound wave time difference calculation submodule 112 .

所述时间参数获取子模块111,用于分别获取初始首波起跳时间、页岩首波起跳时间以及所述页岩的长度,其中,所述初始首波起跳时间基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波起跳时间基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成。在本实施例中,所述时间参数获取子模块111可用于执行图3所示的步骤S111,关于所述时间参数获取子模块111的具体描述可以参照前文对步骤S111的描述。The time parameter acquisition sub-module 111 is used to acquire the initial first-wave take-off time, the first-wave take-off time of shale and the length of the shale respectively, wherein the initial first-wave take-off time is based on the excitation probe of the ultrasonic transilluminator It is generated by ultrasonic transmission after docking with the receiving probe, and the first wave take-off time of the shale is generated based on the ultrasonic transmission process after the excitation probe and the receiving probe are respectively arranged at both ends of the shale in the length direction. In this embodiment, the time parameter acquisition sub-module 111 can be used to execute step S111 shown in FIG. 3 , and for a specific description of the time parameter acquisition sub-module 111 , refer to the previous description of step S111 .

所述声波时差计算子模块112,用于根据所述初始首波起跳时间、所述页岩首波起跳时间以及所述页岩的长度按照预设规则计算得到所述第一声波时差。在本实施例中,所述声波时差计算子模块112可用于执行图3所示的步骤S112,关于所述声波时差计算子模块112的具体描述可以参照前文对步骤S112的描述。The acoustic time difference calculation sub-module 112 is configured to calculate and obtain the first acoustic time difference according to the initial first-wave take-off time, the first-wave take-off time of the shale, and the length of the shale according to preset rules. In this embodiment, the acoustic time difference calculation sub-module 112 can be used to execute step S112 shown in FIG. 3 , and for a specific description of the acoustic time difference calculation sub-module 112 , reference can be made to the previous description of step S112 .

结合图8,在本实施例中,所述第一参数获取模块110还可以包括幅度参数获取子模块113和衰减系数计算子模块114。Referring to FIG. 8 , in this embodiment, the first parameter acquisition module 110 may further include an amplitude parameter acquisition submodule 113 and an attenuation coefficient calculation submodule 114 .

所述幅度参数获取子模块113,用于分别获取初始首波幅度、页岩首波幅度以及所述页岩的长度,其中,所述初始首波幅度基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波幅度基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成。在本实施例中,所述幅度参数获取子模块113可用于执行图4所示的步骤S113,关于所述幅度参数获取子模块113的具体描述可以参照前文对步骤S113的描述。The amplitude parameter acquisition sub-module 113 is used to respectively acquire the initial first wave amplitude, the shale first wave amplitude and the length of the shale, wherein the initial first wave amplitude is based on the excitation probe and the receiving probe of the ultrasonic transilluminator After docking, it is generated by ultrasonic transmission treatment, and the amplitude of the first wave of the shale is generated based on the ultrasonic transmission treatment after the excitation probe and the receiving probe are respectively arranged at the two ends of the shale in the length direction. In this embodiment, the amplitude parameter acquisition sub-module 113 can be used to execute step S113 shown in FIG. 4 , and for a specific description of the amplitude parameter acquisition sub-module 113 , reference can be made to the previous description of step S113 .

所述衰减系数计算子模块114,用于根据所述初始首波幅度、所述页岩首波幅度以及所述页岩的长度按照预设规则计算得到所述第一衰减系数。在本实施例中,所述衰减系数计算子模块114可用于执行图4所示的步骤S114,关于所述衰减系数计算子模块114的具体描述可以参照前文对步骤S114的描述。The attenuation coefficient calculation sub-module 114 is configured to calculate and obtain the first attenuation coefficient according to a preset rule according to the initial first wave amplitude, the shale first wave amplitude and the length of the shale. In this embodiment, the attenuation coefficient calculation sub-module 114 may be configured to execute step S114 shown in FIG. 4 , and for a specific description of the attenuation coefficient calculation sub-module 114 , reference may be made to the foregoing description of step S114 .

结合图9,在本实施例中,所述第一参数获取模块110还可以包括振幅参数获取子模块115和主频参数获取子模块116。Referring to FIG. 9 , in this embodiment, the first parameter acquisition module 110 may further include an amplitude parameter acquisition submodule 115 and a main frequency parameter acquisition submodule 116 .

所述振幅参数获取子模块115,用于获取基于对所述页岩进行超声波透射处理生成的声波时域信号,并从该声波时域信号中得到第一最大振幅。在本实施例中,所述振幅参数获取子模块115可用于执行图5所示的步骤S115,关于所述振幅参数获取子模块115的具体描述可以参照前文对步骤S115的描述。The amplitude parameter acquisition sub-module 115 is configured to acquire an acoustic time-domain signal generated based on ultrasonic transmission processing of the shale, and obtain the first maximum amplitude from the acoustic time-domain signal. In this embodiment, the amplitude parameter acquisition sub-module 115 can be used to execute step S115 shown in FIG. 5 , and for a specific description of the amplitude parameter acquisition sub-module 115 , reference can be made to the previous description of step S115 .

所述主频参数获取子模块116,用于将所述声波时域信号进行傅里叶变换处理以得到声波频域信号,并从该声波频域信号中得到第一主频。在本实施例中,所述主频参数获取子模块116可用于执行图5所示的步骤S116,关于所述主频参数获取子模块116的具体描述可以参照前文对步骤S116的描述。The main frequency parameter acquisition sub-module 116 is configured to perform Fourier transform processing on the sound wave time domain signal to obtain a sound wave frequency domain signal, and obtain a first main frequency from the sound wave frequency domain signal. In this embodiment, the main frequency parameter acquisition sub-module 116 can be used to execute step S116 shown in FIG. 5 , and for the specific description of the main frequency parameter acquisition sub-module 116 , refer to the previous description of step S116 .

综上所述,本发明提供的损伤强度计算方法和损伤强度计算装置100,通过分别获取需要评价的页岩在水化处理前后的声波时差、衰减系数、最大振幅以及主频,并基于各参数对页岩的损伤强度进行计算,以较为全面的对页岩的水化损伤进行评价,进而改善现有技术中计算得到的页岩水化后的损伤强度可靠性较低的问题。In summary, the damage intensity calculation method and the damage intensity calculation device 100 provided by the present invention obtain the acoustic time difference, attenuation coefficient, maximum amplitude, and dominant frequency of the shale to be evaluated before and after hydration treatment, and based on each parameter The damage strength of the shale is calculated to evaluate the hydration damage of the shale more comprehensively, thereby improving the problem of low reliability of the damage strength of the shale after hydration calculated in the prior art.

在本发明实施例所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置和方法实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本发明的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。In the several embodiments provided by the embodiments of the present invention, it should be understood that the disclosed devices and methods may also be implemented in other ways. The device and method embodiments described above are only illustrative. For example, the flowcharts and block diagrams in the accompanying drawings show possible implementation architectures of devices, methods and computer program products according to multiple embodiments of the present invention, function and operation. In this regard, each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.

另外,在本发明各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。In addition, each functional module in each embodiment of the present invention can be integrated together to form an independent part, or each module can exist independently, or two or more modules can be integrated to form an independent part.

所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,电子设备,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。If the functions are realized in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, an electronic device, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes. . It should be noted that, in this document, the terms "comprising", "comprising" or any other variation thereof are intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1.一种损伤强度计算方法,用于对页岩的水化损伤进行评价,其特征在于,所述方法包括:1. A damage intensity calculation method, used to evaluate the hydration damage of shale, is characterized in that, said method comprises: 获取所述页岩的第一声波时差、第一衰减系数、第一最大振幅以及第一主频,其中,所述第一声波时差、第一衰减系数、第一最大振幅以及第一主频基于对所述页岩进行超声波透射处理生成;Acquiring the first acoustic time difference, first attenuation coefficient, first maximum amplitude and first main frequency of the shale, wherein the first acoustic time difference, first attenuation coefficient, first maximum amplitude and first main frequency The frequency is generated based on ultrasonic transmission treatment of the shale; 获取所述页岩的第二声波时差、第二衰减系数、第二最大振幅以及第二主频,其中,所述第二声波时差、第二衰减系数、第二最大振幅以及第二主频基于对经过水化处理后的页岩进行超声波透射处理生成;Obtaining the second acoustic time difference, second attenuation coefficient, second maximum amplitude, and second main frequency of the shale, wherein the second acoustic time difference, second attenuation coefficient, second maximum amplitude, and second main frequency are based on Generated by ultrasonic transmission treatment of shale after hydration treatment; 根据所述第一声波时差和所述第二声波时差、所述第一衰减系数和所述第二衰减系数、所述第一最大振幅和所述第二最大振幅、所述第一主频和所述第二主频分别按照预设公式计算得到第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数;According to the first acoustic time difference and the second acoustic time difference, the first attenuation coefficient and the second attenuation coefficient, the first maximum amplitude and the second maximum amplitude, the first main frequency The first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient are respectively calculated according to the preset formula with the second main frequency; 根据所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数按照预设公式计算得到所述页岩水化后的损伤强度。The damage intensity after hydration of the shale is calculated according to the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient according to a preset formula. 2.根据权利要求1所述的损伤强度计算方法,其特征在于,获取所述第一声波时差的步骤包括:2. The damage intensity calculation method according to claim 1, wherein the step of obtaining the first acoustic time difference comprises: 分别获取初始首波起跳时间、页岩首波起跳时间以及所述页岩的长度,其中,所述初始首波起跳时间基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波起跳时间基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成;Obtaining the initial first-wave take-off time, the shale first-wave take-off time, and the length of the shale respectively, wherein the initial first-wave take-off time is generated based on ultrasonic transmission processing after docking the excitation probe and the receiving probe of the ultrasonic transilluminator, The take-off time of the first wave of the shale is generated based on ultrasonic transmission treatment after the excitation probe and the receiving probe are respectively arranged at both ends of the shale in the length direction; 根据所述初始首波起跳时间、所述页岩首波起跳时间以及所述页岩的长度按照预设规则计算得到所述第一声波时差。The first acoustic wave time difference is calculated according to the initial first wave take-off time, the first shale wave take-off time and the length of the shale according to a preset rule. 3.根据权利要求1所述的损伤强度计算方法,其特征在于,获取所述第一衰减系数的步骤包括:3. The damage intensity calculation method according to claim 1, wherein the step of obtaining the first attenuation coefficient comprises: 分别获取初始首波幅度、页岩首波幅度以及所述页岩的长度,其中,所述初始首波幅度基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波幅度基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成;Obtain the initial first wave amplitude, the shale first wave amplitude and the length of the shale respectively, wherein the initial first wave amplitude is generated based on ultrasonic transmission processing after docking the excitation probe and the receiving probe of the ultrasonic transilluminator, and the page The rockhead wave amplitude is generated based on ultrasonic transmission processing after the excitation probe and the reception probe are respectively arranged at both ends of the shale in the length direction; 根据所述初始首波幅度、所述页岩首波幅度以及所述页岩的长度按照预设规则计算得到所述第一衰减系数。The first attenuation coefficient is calculated according to a preset rule according to the initial first wave amplitude, the shale first wave amplitude and the length of the shale. 4.根据权利要求1所述的损伤强度计算方法,其特征在于,获取所述第一最大振幅和所述第一主频的步骤包括:4. The damage intensity calculation method according to claim 1, wherein the step of obtaining the first maximum amplitude and the first main frequency comprises: 获取基于对所述页岩进行超声波透射处理生成的声波时域信号,并从该声波时域信号中得到第一最大振幅;Acquiring an acoustic time-domain signal generated based on ultrasonic transmission processing of the shale, and obtaining the first maximum amplitude from the acoustic time-domain signal; 将所述声波时域信号进行傅里叶变换处理以得到声波频域信号,并从该声波频域信号中得到第一主频。The acoustic time domain signal is subjected to Fourier transform processing to obtain an acoustic frequency domain signal, and the first main frequency is obtained from the acoustic frequency domain signal. 5.根据权利要求1-4任意一项所述的损伤强度计算方法,其特征在于,计算所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数的预设公式包括:5. The damage intensity calculation method according to any one of claims 1-4, wherein the preset formulas for calculating the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient include : 其中,St、Sa、Sr、Sf分别为第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数,Δt(0)和Δt(s)分别为第一声波时差和第二声波时差,At(0)和At(s)分别为第一衰减系数和第二衰减系数,r(0)和r(s)分别为第一最大振幅和第二最大振幅,fre(0)和fre(s)分别为第一主频和第二主频。Among them, S t , S a , S r , and S f are the first damage coefficient, the second damage coefficient, the third damage coefficient, and the fourth damage coefficient, respectively, and Δt(0) and Δt(s) are the first acoustic wave The time difference and the second acoustic time difference, At(0) and At(s) are the first attenuation coefficient and the second attenuation coefficient respectively, r(0) and r(s) are the first maximum amplitude and the second maximum amplitude respectively, fre (0) and fre(s) are the first main frequency and the second main frequency respectively. 6.根据权利要求1-4任意一项所述的损伤强度计算方法,其特征在于,计算所述页岩水化后的损伤强度的预设公式包括:6. The damage intensity calculation method according to any one of claims 1-4, wherein the preset formula for calculating the damage intensity after hydration of the shale comprises: 其中,S为所述页岩水化后的损伤强度,St、Sa、Sr、Sf分别为第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数。Wherein, S is the damage intensity of the shale after hydration, and S t , S a , S r , and S f are the first damage coefficient, the second damage coefficient, the third damage coefficient, and the fourth damage coefficient, respectively. 7.一种损伤强度计算装置,用于对页岩的水化损伤进行评价,其特征在于,所述装置包括:7. A damage intensity calculation device for evaluating the hydration damage of shale, characterized in that the device comprises: 第一参数获取模块,用于获取所述页岩的第一声波时差、第一衰减系数、第一最大振幅以及第一主频,其中,所述第一声波时差、第一衰减系数、第一最大振幅以及第一主频基于对所述页岩进行超声波透射处理生成;The first parameter acquisition module is used to acquire the first acoustic time difference, first attenuation coefficient, first maximum amplitude and first main frequency of the shale, wherein the first acoustic time difference, first attenuation coefficient, The first maximum amplitude and the first main frequency are generated based on ultrasonic transmission treatment of the shale; 第二参数获取模块,用于获取所述页岩的第二声波时差、第二衰减系数、第二最大振幅以及第二主频,其中,所述第二声波时差、第二衰减系数、第二最大振幅以及第二主频基于对经过水化处理后的页岩进行超声波透射处理生成;The second parameter acquisition module is used to acquire the second acoustic time difference, the second attenuation coefficient, the second maximum amplitude and the second main frequency of the shale, wherein the second acoustic time difference, the second attenuation coefficient, the second The maximum amplitude and the second main frequency are generated based on ultrasonic transmission treatment of shale after hydration treatment; 损伤系数计算模块,用于根据所述第一声波时差和所述第二声波时差、所述第一衰减系数和所述第二衰减系数、所述第一最大振幅和所述第二最大振幅、所述第一主频和所述第二主频分别按照预设公式计算得到第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数;A damage coefficient calculation module, configured to calculate according to the first acoustic time difference and the second acoustic time difference, the first attenuation coefficient and the second attenuation coefficient, the first maximum amplitude and the second maximum amplitude , the first main frequency and the second main frequency are respectively calculated according to a preset formula to obtain a first damage coefficient, a second damage coefficient, a third damage coefficient and a fourth damage coefficient; 损伤强度计算模块,用于根据所述第一损伤系数、第二损伤系数、第三损伤系数以及第四损伤系数按照预设公式计算得到所述页岩水化后的损伤强度。The damage intensity calculation module is used to calculate and obtain the damage intensity of the shale after hydration according to the first damage coefficient, the second damage coefficient, the third damage coefficient and the fourth damage coefficient according to a preset formula. 8.根据权利要求7所述的损伤强度计算装置,其特征在于,所述第一参数获取模块包括:8. The damage intensity calculation device according to claim 7, wherein the first parameter acquisition module comprises: 时间参数获取子模块,用于分别获取初始首波起跳时间、页岩首波起跳时间以及所述页岩的长度,其中,所述初始首波起跳时间基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波起跳时间基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成;The time parameter acquisition sub-module is used to obtain the initial first-wave take-off time, the first-wave take-off time of the shale and the length of the shale respectively, wherein the initial first-wave take-off time is based on the excitation probe and the receiving probe of the ultrasonic transilluminator Ultrasonic transmission processing is performed after docking, and the first wave take-off time of the shale is generated based on ultrasonic transmission processing after the excitation probe and the receiving probe are respectively arranged at both ends of the shale in the length direction; 声波时差计算子模块,用于根据所述初始首波起跳时间、所述页岩首波起跳时间以及所述页岩的长度按照预设规则计算得到所述第一声波时差。The sonic time difference calculation sub-module is used to calculate and obtain the first sonic time difference according to the initial first wave take-off time, the shale first wave take-off time and the length of the shale according to preset rules. 9.根据权利要求7所述的损伤强度计算装置,其特征在于,所述第一参数获取模块还包括:9. The damage intensity calculation device according to claim 7, wherein the first parameter acquisition module further comprises: 幅度参数获取子模块,用于分别获取初始首波幅度、页岩首波幅度以及所述页岩的长度,其中,所述初始首波幅度基于将超声波透射仪的激发探头和接收探头对接后进行超声波透射处理生成,所述页岩首波幅度基于将所述激发探头和接收探头分别设置于所述页岩长度方向上的两端后进行超声波透射处理生成;The amplitude parameter acquisition sub-module is used to obtain the initial first wave amplitude, the shale first wave amplitude and the length of the shale respectively, wherein the initial first wave amplitude is based on the docking of the excitation probe and the receiving probe of the ultrasonic transilluminator. Generated by ultrasonic transmission processing, the first wave amplitude of the shale is generated based on ultrasonic transmission processing after the excitation probe and the receiving probe are respectively arranged at both ends of the shale in the length direction; 衰减系数计算子模块,用于根据所述初始首波幅度、所述页岩首波幅度以及所述页岩的长度按照预设规则计算得到所述第一衰减系数。The attenuation coefficient calculation sub-module is used to calculate and obtain the first attenuation coefficient according to the initial first wave amplitude, the shale first wave amplitude and the length of the shale according to preset rules. 10.根据权利要求7所述的损伤强度计算装置,其特征在于,所述第一参数获取模块还包括:10. The damage intensity calculation device according to claim 7, wherein the first parameter acquisition module further comprises: 振幅参数获取子模块,用于获取基于对所述页岩进行超声波透射处理生成的声波时域信号,并从该声波时域信号中得到第一最大振幅;The amplitude parameter acquisition sub-module is used to acquire the acoustic wave time-domain signal generated based on the ultrasonic transmission processing of the shale, and obtain the first maximum amplitude from the acoustic wave time-domain signal; 主频参数获取子模块,用于将所述声波时域信号进行傅里叶变换处理以得到声波频域信号,并从该声波频域信号中得到第一主频。The main frequency parameter acquisition sub-module is configured to perform Fourier transform processing on the sound wave time domain signal to obtain the sound wave frequency domain signal, and obtain the first main frequency from the sound wave frequency domain signal.
CN201810392263.XA 2018-04-27 2018-04-27 Damage strength computational methods and damage strength computing device Pending CN108593771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810392263.XA CN108593771A (en) 2018-04-27 2018-04-27 Damage strength computational methods and damage strength computing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810392263.XA CN108593771A (en) 2018-04-27 2018-04-27 Damage strength computational methods and damage strength computing device

Publications (1)

Publication Number Publication Date
CN108593771A true CN108593771A (en) 2018-09-28

Family

ID=63610762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810392263.XA Pending CN108593771A (en) 2018-04-27 2018-04-27 Damage strength computational methods and damage strength computing device

Country Status (1)

Country Link
CN (1) CN108593771A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541688A (en) * 2018-11-30 2019-03-29 中铁第四勘察设计院集团有限公司 A kind of structural plane flaw evaluation method based on energy feature
CN109596713A (en) * 2018-12-29 2019-04-09 西南石油大学 A kind of coal petrography ultrasonic wave attenuation coefficient evaluation method based on Fractal
CN109828031A (en) * 2019-02-15 2019-05-31 西南石油大学 Rock brittleness evaluation method and device
CN109883920A (en) * 2019-03-08 2019-06-14 西南石油大学 Method and apparatus for characterizing thermal damage of rock
CN111855484A (en) * 2020-07-30 2020-10-30 西南石油大学 A method for evaluating the ability of drilling fluid to stabilize wellbore in shale formation based on acoustic and electrical responses
CN113624847A (en) * 2021-08-12 2021-11-09 西南石油大学 Method for establishing prediction model of shale hydration damage coefficient and prediction method
CN113958315A (en) * 2021-06-16 2022-01-21 西南石油大学 A shale formation collapse pressure prediction method based on self-priming-constitutive model

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183585A (en) * 2011-03-09 2011-09-14 西南石油大学 A method of core sampling
CN102519784A (en) * 2011-12-16 2012-06-27 武汉大学 Method for determining rock conjugate damage strength through adopting supersonic waves
CN202305478U (en) * 2011-08-10 2012-07-04 建维科技(深圳)有限公司 Sensor and concrete structure hydration and damage monitoring system
CN102749386A (en) * 2011-04-19 2012-10-24 香港科技大学 System and method for in situ hydration monitoring and damage detection of concrete structures and sensors used therein
CN104502452A (en) * 2014-12-17 2015-04-08 江苏大学 Structural damage assessment method based on ultrasonic guided-wave drive/sensing array
CN104675395A (en) * 2015-02-12 2015-06-03 中国石油大学(北京) Evaluation method for hydration characteristics of layered hard brittle mud shale
CN105863626A (en) * 2016-05-10 2016-08-17 西南石油大学 Evaluation method for physical and chemical action of drilling fluid and shale formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183585A (en) * 2011-03-09 2011-09-14 西南石油大学 A method of core sampling
CN102749386A (en) * 2011-04-19 2012-10-24 香港科技大学 System and method for in situ hydration monitoring and damage detection of concrete structures and sensors used therein
CN202305478U (en) * 2011-08-10 2012-07-04 建维科技(深圳)有限公司 Sensor and concrete structure hydration and damage monitoring system
CN102519784A (en) * 2011-12-16 2012-06-27 武汉大学 Method for determining rock conjugate damage strength through adopting supersonic waves
CN104502452A (en) * 2014-12-17 2015-04-08 江苏大学 Structural damage assessment method based on ultrasonic guided-wave drive/sensing array
CN104675395A (en) * 2015-02-12 2015-06-03 中国石油大学(北京) Evaluation method for hydration characteristics of layered hard brittle mud shale
CN105863626A (en) * 2016-05-10 2016-08-17 西南石油大学 Evaluation method for physical and chemical action of drilling fluid and shale formation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王光兵 等: "硬脆性页岩水化的超声波透射实验研究", 《科学技术与工程》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541688A (en) * 2018-11-30 2019-03-29 中铁第四勘察设计院集团有限公司 A kind of structural plane flaw evaluation method based on energy feature
CN109596713A (en) * 2018-12-29 2019-04-09 西南石油大学 A kind of coal petrography ultrasonic wave attenuation coefficient evaluation method based on Fractal
CN109828031A (en) * 2019-02-15 2019-05-31 西南石油大学 Rock brittleness evaluation method and device
CN109883920A (en) * 2019-03-08 2019-06-14 西南石油大学 Method and apparatus for characterizing thermal damage of rock
CN111855484A (en) * 2020-07-30 2020-10-30 西南石油大学 A method for evaluating the ability of drilling fluid to stabilize wellbore in shale formation based on acoustic and electrical responses
CN111855484B (en) * 2020-07-30 2022-05-20 西南石油大学 Method for evaluating the ability of drilling fluid to stabilize wellbore in shale formation based on acoustic and electrical response
CN113958315A (en) * 2021-06-16 2022-01-21 西南石油大学 A shale formation collapse pressure prediction method based on self-priming-constitutive model
CN113958315B (en) * 2021-06-16 2022-05-17 西南石油大学 A shale formation collapse pressure prediction method based on self-priming-constitutive model
CN113624847A (en) * 2021-08-12 2021-11-09 西南石油大学 Method for establishing prediction model of shale hydration damage coefficient and prediction method
CN113624847B (en) * 2021-08-12 2022-07-08 西南石油大学 Method for establishing prediction model of shale hydration damage coefficient and prediction method

Similar Documents

Publication Publication Date Title
CN108593771A (en) Damage strength computational methods and damage strength computing device
Zhu Bootstrapping the portmanteau tests in weak auto-regressive moving average models
CN110058310B (en) Seismic Wave Velocity Dispersion and Attenuation Prediction Method and Device for Seismic Rocks
CN109410178A (en) A kind of workpiece crack detection method and system
US9753170B2 (en) Sourceless density determination apparatus, methods, and systems
CN107420092B (en) Down-hole string leak point positioning method and device
US20220236226A1 (en) Two methods of determining permeabilities of naturally fractured rocks from laboratory measurements
Liu et al. Reducing computation cost by Lax-Wendroff methods with fourth-order temporal accuracy
Liang et al. The Process of High‐Data‐Rate Mud Pulse Signal in Logging While Drilling System
Wang et al. Investigation of regularized techniques for boundary knot method
Chen et al. Dyadic wavelet analysis of bender element signals in determining shear wave velocity
Cheng Can we ever trust the shear-wave log?
CN111502647B (en) Method and device for determining drilling geological environment factors and storage medium
JP7187555B2 (en) Measuring Water Cut in Hydrocarbon Fluids in Production Pipes
CN108387937B (en) A fast cross-dipole anisotropy inversion method and system
Atefi et al. Rapid estimation of earthquake magnitude by a new wavelet‐based proxy
CN108171376B (en) Total organic carbon prediction method and device, electronic equipment and storage medium
CN111027892A (en) Method and device for determining reservoir permeability of gas well and server
CN113805225B (en) Phase constraint high-resolution seismic inversion method and computer equipment
WO2024207639A1 (en) Resistivity logging-based oil-gas well skin factor calculation method and related apparatus
CN110967773A (en) Method and device for calculating water-rich property in coal seam and electronic equipment
Yagoda‐Biran et al. Never fear velocity reversals
US11762116B2 (en) System and method of hydrocarbon detection using nonlinear model frequency slope
CN115292886A (en) A motion parameter estimation system and estimation method for elastic submarine sound source based on sound field interference phenomenon
US20160177710A1 (en) Systems and Methods for Evaluating Gas-Contaminated Cement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180928