CN108574306A - 一种基于自适应下垂系数的虚拟同步机励磁调节方法 - Google Patents
一种基于自适应下垂系数的虚拟同步机励磁调节方法 Download PDFInfo
- Publication number
- CN108574306A CN108574306A CN201711396944.5A CN201711396944A CN108574306A CN 108574306 A CN108574306 A CN 108574306A CN 201711396944 A CN201711396944 A CN 201711396944A CN 108574306 A CN108574306 A CN 108574306A
- Authority
- CN
- China
- Prior art keywords
- voltage
- virtual synchronous
- synchronous machine
- adjustment
- field excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/50—Controlling the sharing of the out-of-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/14—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
- H02P9/36—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using armature-reaction-excited machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2103/00—Controlling arrangements characterised by the type of generator
- H02P2103/20—Controlling arrangements characterised by the type of generator of the synchronous type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明提供了一种基于自适应下垂控制的虚拟同步机励磁调节方法,该方法针对目前虚拟同步机的电压控制方法进行了改进,引入自适应的下垂控制方法来调节虚拟同步机的输出电压。首先建立虚拟同步机与电网接口的等效模型,其次构建虚拟同步机励磁调节模块,把检测到的负荷变化情况输入调节单元,对下垂控制系数进行修正计算,得到修正计算后的电压偏差指令并输出至虚拟同步机,从而起到对虚拟同步机端口电压的调节作用。在改进后的下垂系数作用下,能够达到虚拟同步机端口电压维持在合理的范围内,实现电压响应负荷波动的自适应调节目标。
Description
技术领域
本发明涉及电力电子变流器控制领域,更具体地,涉及一种基于自适应下垂系数的虚拟同步机励磁调节方法。
背景技术
近年来,随着化石燃料的不断消耗,全球范围内的能源危机和环境问题日益加剧。为应对这一问题,风能、太阳能等分布式的新能源越来越受到人们的关注,新能源的分布式发电并入大电网也成为今后电网发展的主要趋势。但是,诸如太阳能等形式的新能源输出为多直流电,需要经过不同形式的电力电子装置进行逆变后再接入电网,并且分布式电源输出的功率具有波动性、不确定性等特点,这就给传统的电网带来了新的稳定性的挑战,在这样的背景下,如何实现分布式新能源与电网接口点的正常稳定运行成为亟待解决的热点研究问题。
分布式电源一般是通过逆变器接口与电网相连,逆变器的控制方法是重要的研究内容之一,尤其是在孤岛运行状态下,分布式电源构成的微网必须自行实现对电压的调节控制。采用传统的下垂控制时,有别于有功-频率控制,无功-电压控制容易受到线路阻抗、负荷波动等因素的影响,使得最终的控制结果偏离了预设的下垂控制目标,导致无功功率无法精确分配等问题。
综上所述,为了取得更好的电压控制效果,提高供电可靠性以及系统稳定性,研究采用何种控制方法来维持系统电压运行在合理范围之内具有重要意义。
发明内容
针对上述现象中已有技术的缺陷和不足,本发明在此基础上提出一种基于自适应下垂控制的虚拟同步机励磁调节方法,起到控制电网接口输出无功功率,同时提高端口电压的稳定性。
为实现上述目的,本发明通过以下技术方案来实现:
一种基于自适应下垂系数的虚拟同步机励磁调节方法,该励磁调节方法包括如下步骤:步骤1:建立虚拟同步机与电网接口等效数学模型;步骤2:建立虚拟同步发电机的虚拟励磁调节模块;步骤3:引入下垂特性控制系数的自适应调节,使得下垂控制系数随负荷变化情况进行调整。
优选地,在步骤1中,所述虚拟同步机与电网接口等效数学模型的电压方程为:其中,Ls和Rs分别为定子电感和电阻,is为定子端口输出电流,Es为虚拟同步电机感应电势,us为同步发电机的机端电压。
优选地,在步骤2中,与同步电机通过励磁调节器来调节其无功输出及机端电压相类似,可以通过调节虚拟同步发电机模型的虚拟感应电势Es来调节其机端电压和无功,其电压偏差输出指令公式为:ΔEs=ΔEQ+ΔEU,所述虚拟励磁调节模块包含无功调节单元和电压调节单元。
优选地,在步骤2中,所述无功调节单元采用模拟传统发电机系统下垂特性的比例调节器,所述无功调节单元的输出公式为:ΔEQ=kQ(Qn-Q),其中,kQ为无功功率控制系数,Qn为电网接口的额定无功功率指令,Q为电网接口输出瞬时无功功率。
优选地,所述电网接口输出瞬时无功功率的计算公式为:
优选地,,在步骤2中,所述电压调节单元考虑虚拟同步发电机的机端电压,采用等效于同步发电机自动励磁调节控制的电压调节单元,所述电压调节单元的输出公式为:ΔEU=kU(Un-U),其中,Un为电网接口端电压的期望值,U为电网接口端电压实际值,kU为电压调节系数。
优选地,在步骤3中,当负荷发生变化时,虚拟同步机电网接口的电压偏离额定值,用变化后的端口电压U1和无功功率Q1,对步骤2中所述调节单元中的无功控制系数kQ和电压调节系数kU进行修改,得到修改后无功调节系数为kQ`=kQQn/Q1,电压调节系数为kU`=kUUn/U1,返回步骤2,利用kQ'和kU`重新计算负载变化后新的励磁调节单元输出ΔEQ和ΔEU,得出电压偏差指令ΔE并输出,进而计算出虚拟同步发电机的机端输出电压,判断调整后的无功和电压是否满足稳定运行条件,若满足,则结束调整,若不满足,则重复步骤3。
本发明的有益效果在于,采用本发明提出的自适应下垂控制的虚拟同步机励磁调节方法,能保证虚拟同步机与电网接口的输出电压维持在合理的范围内,并且能够较好的跟随负荷变化进行自适应调节,从而提高其稳定运行能力。
附图说明
图1为本发明的基于自适应下垂系数的虚拟同步机励磁调节方法的流程图。
图2为本发明的虚拟同步机与电网接口的等效模型。
图3为本发明的基于自适应下垂系数的虚拟同步机励磁调节方法的控制原理框图。
图4为本发明的下垂控制Q-U特性图。
具体实施方式
下面结合附图对本发明作进一步详细的说明,图1示出了基于自适应下垂系数的虚拟同步机励磁调节方法的流程图,该励磁调节方法包括如下步骤:
步骤1:如图2所示,建立虚拟同步机与电网接口等效数学模型;
步骤2:如图3所示,建立虚拟同步发电机的虚拟励磁调节模块;
步骤3:如图4所示,引入下垂特性控制系数的自适应调节,使得下垂控制系数随负荷变化情况进行调整。
在进一步优选的实施例中,在步骤1中,所述虚拟同步机与电网接口等效数学模型的电压方程为:
其中,Ls和Rs分别为定子电感和电阻,is为定子端口输出电流,Es为虚拟同步电机感应电势,us为同步发电机的机端电压。
在进一步优选的实施例中,在步骤2中,与同步电机通过励磁调节器来调节其无功输出及机端电压相类似,可以通过调节虚拟同步发电机模型的虚拟感应电势Es来调节其机端电压和无功,其电压偏差输出指令公式为:ΔEs=ΔEQ+ΔEU,
所述虚拟励磁调节模块包含无功调节单元和电压调节单元,其控制原理框图如图3所示。
在进一步优选的实施例中,在步骤2中,所述无功调节单元采用模拟传统发电机系统下垂特性的比例调节器,其无功-电压下垂特性如图4所示,所述无功调节单元的输出公式为:
ΔEQ=kQ(Qn-Q),
其中,kQ为无功功率控制系数,Qn为电网接口的额定无功功率指令,Q为电网接口输出瞬时无功功率。
在进一步优选的实施例中,所述电网接口输出瞬时无功功率的计算公式为:
在进一步优选的实施例中,在步骤2中,所述电压调节单元考虑虚拟同步发电机的机端电压,采用等效于同步发电机自动励磁调节控制的电压调节单元,所述电压调节单元的输出公式为:
ΔEU=kU(Un-U),
其中,Un为电网接口端电压的期望值,U为电网接口端电压实际值,kU为电压调节系数。
在进一步优选的实施例中,在步骤3中,引入下垂特性控制系数的自适应调节,使得下垂控制系数随负荷变化情况进行调整的目的在于,提高端口电压的稳定性。具体地,当负荷发生变化时,虚拟同步机电网接口的电压偏离额定值,系统运行点从图4的A点转移到B点,用变化后的端口电压U1和无功功率Q1,对步骤2中所述调节单元中的无功控制系数kQ和电压调节系数kU进行修改,得到修改后无功调节系数为kQ`=kQQn/Q1,电压调节系数为kU`=kUUn/U1,返回步骤2,利用kQ'和kU`重新计算负载变化后新的励磁调节单元输出ΔEQ和ΔEU,得出电压偏差指令ΔE并输出,进而计算出虚拟同步发电机的机端输出电压,下垂特性曲线相应抬升,系统运行点向C点过渡,判断调整后的无功和电压是否满足稳定运行条件,若满足,则结束调整,若不满足,则重复步骤3,端口电压随之抬升直至恢复至额定电压Un附近。
本发明的有益效果在于,采用本发明提出的自适应下垂控制的虚拟同步机励磁调节方法,能保证虚拟同步机与电网接口的输出电压维持在合理的范围内,并且能够较好的跟随负荷变化进行自适应调节,从而提高其稳定运行能力。
Claims (7)
1.一种基于自适应下垂系数的虚拟同步机励磁调节方法,其特征在于,该励磁调节方法包括如下步骤:
步骤1:建立虚拟同步机与电网接口等效数学模型;
步骤2:建立虚拟同步发电机的虚拟励磁调节模块;
步骤3:引入下垂特性控制系数的自适应调节,使得下垂控制系数随负荷变化情况进行调整。
2.如权利要求1所述的一种基于自适应下垂系数的虚拟同步机励磁调节方法,其特征在于,在步骤1中,所述虚拟同步机与电网接口等效数学模型的电压方程为:
其中,Ls和Rs分别为定子电感和电阻,is为定子端口输出电流,Es为虚拟同步电机感应电势,us为同步发电机的机端电压。
3.如权利要求2所述的一种基于自适应下垂系数的虚拟同步机励磁调节方法,其特征在于,在步骤2中,与同步电机通过励磁调节器来调节其无功输出及机端电压相类似,可以通过调节虚拟同步发电机模型的虚拟感应电势Es来调节其机端电压和无功,其电压偏差输出指令公式为:ΔEs=ΔEQ+ΔEU,
所述虚拟励磁调节模块包含无功调节单元和电压调节单元。
4.如权利要求3所述的一种基于自适应下垂系数的虚拟同步机励磁调节方法,其特征在于,在步骤2中,所述无功调节单元采用模拟传统发电机系统下垂特性的比例调节器,所述无功调节单元的输出公式为:
ΔEQ=kQ(Qn-Q),
其中,kQ为无功功率控制系数,Qn为电网接口的额定无功功率指令,Q为电网接口输出瞬时无功功率。
5.如权利要求4所述的一种基于自适应下垂系数的虚拟同步机励磁调节方法,其特征在于,所述电网接口输出瞬时无功功率的计算公式为:
6.如权利要求3所述的一种基于自适应下垂系数的虚拟同步机励磁调节方法,其特征在于,在步骤2中,所述电压调节单元考虑虚拟同步发电机的机端电压,采用等效于同步发电机自动励磁调节控制的电压调节单元,所述电压调节单元的输出公式为:
ΔEU=kU(Un-U),
其中,Un为电网接口端电压的期望值,U为电网接口端电压实际值,kU为电压调节系数。
7.如权利要求3-6任一项所述的一种基于自适应下垂系数的虚拟同步机励磁调节方法,其特征在于,在步骤3中,当负荷发生变化时,虚拟同步机电网接口的电压偏离额定值,用变化后的端口电压U1和无功功率Q1,对步骤2中所述调节单元中的无功控制系数kQ和电压调节系数kU进行修改,得到修改后无功调节系数为kQ`=kQQn/Q1,电压调节系数为kU`=kUUn/U1,返回步骤2,利用kQ'和kU`重新计算负载变化后新的励磁调节单元输出ΔEQ和ΔEU,得出电压偏差指令ΔE并输出,进而计算出虚拟同步发电机的机端输出电压,判断调整后的无功和电压是否满足稳定运行条件,若满足,则结束调整,若不满足,则重复步骤3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711396944.5A CN108574306B (zh) | 2017-12-21 | 2017-12-21 | 一种基于自适应下垂系数的虚拟同步机励磁调节方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711396944.5A CN108574306B (zh) | 2017-12-21 | 2017-12-21 | 一种基于自适应下垂系数的虚拟同步机励磁调节方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108574306A true CN108574306A (zh) | 2018-09-25 |
CN108574306B CN108574306B (zh) | 2020-12-18 |
Family
ID=63575923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711396944.5A Active CN108574306B (zh) | 2017-12-21 | 2017-12-21 | 一种基于自适应下垂系数的虚拟同步机励磁调节方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108574306B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110854915A (zh) * | 2019-12-06 | 2020-02-28 | 华北电力科学研究院有限责任公司 | Pq模式虚拟同步发电机控制方法、装置及下垂控制器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104638679A (zh) * | 2015-02-06 | 2015-05-20 | 芜湖大学科技园发展有限公司 | 一种采用自适应调节的虚拟同步发电机频率控制方法 |
CN105811400A (zh) * | 2016-03-18 | 2016-07-27 | 国网上海市电力公司 | 一种低压微电网模式的自适应控制方法 |
CN106712027A (zh) * | 2017-01-17 | 2017-05-24 | 燕山大学 | 一种基于动态基准的低压微电网改进下垂控制策略 |
CN107221957A (zh) * | 2017-06-26 | 2017-09-29 | 国网青海省电力公司 | 光储并网接口系统控制方法 |
-
2017
- 2017-12-21 CN CN201711396944.5A patent/CN108574306B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104638679A (zh) * | 2015-02-06 | 2015-05-20 | 芜湖大学科技园发展有限公司 | 一种采用自适应调节的虚拟同步发电机频率控制方法 |
CN105811400A (zh) * | 2016-03-18 | 2016-07-27 | 国网上海市电力公司 | 一种低压微电网模式的自适应控制方法 |
CN106712027A (zh) * | 2017-01-17 | 2017-05-24 | 燕山大学 | 一种基于动态基准的低压微电网改进下垂控制策略 |
CN107221957A (zh) * | 2017-06-26 | 2017-09-29 | 国网青海省电力公司 | 光储并网接口系统控制方法 |
Non-Patent Citations (1)
Title |
---|
孙孝峰等: "微电网逆变器自适应下垂控制策略", 《电网技术》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110854915A (zh) * | 2019-12-06 | 2020-02-28 | 华北电力科学研究院有限责任公司 | Pq模式虚拟同步发电机控制方法、装置及下垂控制器 |
CN110854915B (zh) * | 2019-12-06 | 2022-02-01 | 华北电力科学研究院有限责任公司 | Pq模式虚拟同步发电机控制方法、装置及下垂控制器 |
Also Published As
Publication number | Publication date |
---|---|
CN108574306B (zh) | 2020-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saha et al. | Design optimization and dynamic performance analysis of a stand-alone hybrid wind–diesel electrical power generation system | |
CN105429170B (zh) | 一种基于可调虚拟阻抗的微网逆变器下垂控制方法 | |
US20130131878A1 (en) | Reactive Following for Distributed Generation and Loads of Other Reactive Controller(s) | |
CN108599264B (zh) | 一种基于虚拟同步发电机控制的频率电压无差调节方法 | |
CN107612025B (zh) | 微网中电流控制型逆变器改进控制方法 | |
CN105226716B (zh) | 一种分布式双馈风力发电机组自动电压控制方法 | |
Han et al. | A doubly fed induction generator controlled in single-sided grid connection for wind turbines | |
CN105226720A (zh) | 永磁同步发电机组网侧变换器改进下垂控制方法 | |
Liang et al. | An interconnected microgrids-based transactive energy system with multiple electric springs | |
Zhang et al. | Investigations of large-scale voltage-dependent loads for damping inter-area oscillations: Mechanism and robust decentralized control | |
Akhbari et al. | Efficient and seamless power management of hybrid generation system based-on DFIG wind sources and microturbine in DC microgrid | |
Benlahbib et al. | Fractional order PID controller for DC link voltage regulation in hybrid system including wind turbine-and battery packs-experimental validation | |
CN107069797B (zh) | 一种含双馈型风力发电机的分散式风电场并网方法 | |
CN109217346B (zh) | 基于虚拟同步机的背靠背直流输电系统及控制方法 | |
CN108574306A (zh) | 一种基于自适应下垂系数的虚拟同步机励磁调节方法 | |
Tarrasó et al. | Synchronous power controller for distributed generation units | |
Dyanamina et al. | SEIG voltage regulation with STATCOM Regulator using Fuzzy logic controller | |
CN110912181A (zh) | 发电机的控制方法 | |
Peters et al. | Static VAR compensation of a fixed speed stall control wind turbine during start-up | |
CN106340905B (zh) | 一种基于虚拟同步控制的并网逆变器功率分配方法 | |
Mohanty et al. | Fuzzy logic controller based STATCOM for voltage profile improvement in a micro-grid | |
Im et al. | Reactive power control strategy for inverter-based distributed generation system with a programmable limit of the voltage variation at PCC | |
Gandhar et al. | Application of SSSC for compensation assessment of interconnected power system | |
Marei et al. | A flexible wind energy scheme for voltage compensation and flicker mitigation | |
Penangsang et al. | A dual UPQC to mitigate sag/swell, interruption, and harmonics on three phase low voltage distribution system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |