CN108570512A - Staphylococcus aureus, Escherichia coli, the primer of salmonella triple fluorescent quantitative PCR detections, probe and method foundation - Google Patents

Staphylococcus aureus, Escherichia coli, the primer of salmonella triple fluorescent quantitative PCR detections, probe and method foundation Download PDF

Info

Publication number
CN108570512A
CN108570512A CN201810599552.7A CN201810599552A CN108570512A CN 108570512 A CN108570512 A CN 108570512A CN 201810599552 A CN201810599552 A CN 201810599552A CN 108570512 A CN108570512 A CN 108570512A
Authority
CN
China
Prior art keywords
salmonella
staphylococcus aureus
primer
probe
escherichia coli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810599552.7A
Other languages
Chinese (zh)
Inventor
黄梅清
郑敏
陈秀琴
蔡羲
吴南洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Animal Husbandry and Veterinary of Fujian Academy of Agricultural Sciences
Original Assignee
Institute of Animal Husbandry and Veterinary of Fujian Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Animal Husbandry and Veterinary of Fujian Academy of Agricultural Sciences filed Critical Institute of Animal Husbandry and Veterinary of Fujian Academy of Agricultural Sciences
Priority to CN201810599552.7A priority Critical patent/CN108570512A/en
Publication of CN108570512A publication Critical patent/CN108570512A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

It is established the present invention relates to primer, probe and method for staphylococcus aureus, Escherichia coli, the PCR detections of salmonella triple fluorescent quantitative, belongs to technical field of biological.The present invention provides the primer and probes that staphylococcus aureus, Escherichia coli, salmonella triple fluorescent quantitative PCR are detected, including respectively with staphylococcus aureus nuc genes, Escherichia coli O 157:H7 wzx genes, salmonella invA genes are three groups of primer and probes of object, and establish staphylococcus aureus, colon bacillus 0157:H7, salmonella triple fluorescent quantitative PCR method.The present invention PCR detection method high sensitivity and with well repeatability.

Description

Staphylococcus aureus, Escherichia coli, the PCR detections of salmonella triple fluorescent quantitative Primer, probe and method establish
Technical field
The invention belongs to technical field of biological, and in particular to staphylococcus aureus, Escherichia coli, salmonella three Primer, probe and the method for weight fluorescence quantitative PCR detection are established.
Background technology
This 3 kinds of bacteriums of staphylococcus aureus, Escherichia coli, salmonella are the important diseases for causing mankind's food origin disease Opportunistic pathogen.
Staphylococcus aureus is staphylococcus member, is one kind in gram-positive cocci, most grapes Coccus is not pathogenic, and minority can cause mankind or animal to be caused a disease, and belong to infecting both domestic animals and human pathogenic bacteria.And staphylococcus aureus causes Characteristic of disease is most strong, other than the change arm inflammation for often causing skin, tissue and organ, the enterotoxin generated can also pollute pork and Cause to poison by food.
Escherichia coli O 157:H7 is the typical strain in enterohemorrhagic escherichia coli, with stronger acid resistance, 37 DEG C Under, in pH2.5-3.0, it can tolerate 5h.Escherichia coli O 157:H7 is important food-borne pathogens, can be for a long time in animal Exist in vivo, and constantly ambient enviroment and animal carcasses is polluted, it is easy to lead to food pollution from internal discharge.
Salmonella is the brevibacterium of both ends blunt circle, Gram-negative bacteria, no pod membrane and brood cell, removes avian infectious bronchitis nephritis virus There is whole body flagellum outside with S. pullonum, can move, it is most of that there is pili.It is divided into kind of an antigenic structure, and thalline is anti- Former (O), flagellar antigen (H) and surface antigen (Vi).The bacterium is not high to nutritional requirement, is grown on plain agar culture medium good It is good, aerobic and facultative anaerobic bacteria.Growth temperature range is 5-46 DEG C, and the temperature of the most suitable growth is 35-37 DEG C, the pH of the most suitable growth It is in mix only length in liquid medium for 6.8-7.8.
In recent years, the detection of pathogenic bacteria is had been a hot spot of research both at home and abroad, detection method includes mainly conventional detection Method, immunological detection method and molecular biology for detection etc.
It is many that conventional PCR method has that quick, accurate, easy to operate, sensitivity and specificity are high, testing cost is low etc. Advantage, however in food production and circulation, business and government portion mouth is both needed to carry out large quantities of food in the detection of pathogenic bacteria, sample Amount is big, and the time is anxious, meanwhile, often existing pathogenic bacteria type is more in food samples, and once experiment can only be examined conventional PCR Survey a kind of pathogenic bacteria.
Individual staphylococcus aureus, Escherichia coli, salmonella fluorescent quantitative PCR detection method technology are ripe And there is special detection kit product, but the associated detecting method of three kinds of bacteriums not yet.If needing to examine with portion sample Above-mentioned three kinds of pathogenic bacteria are surveyed, then need with different system and sample size, that is, to detect above-mentioned three kinds of pathogenic bacteria and need to do to try three times It tests, be unfavorable for high-volume while detecting above-mentioned three kinds of pathogenic bacteria.Therefore there is an urgent need for a set of systems and method to be capable of detecting when above-mentioned three The pollution condition of kind bacterium.
Invention content
A kind of staphylococcus aureus, Escherichia coli, sand are provided the purpose of the present invention is overcome the deficiencies in the prior art Primer, probe and the method for door Salmonella triple fluorescent quantitative PCR detections are established.
The present invention adopts the following technical scheme that:
The primer and probe that staphylococcus aureus, Escherichia coli, salmonella triple fluorescent quantitative PCR are detected, including Respectively with staphylococcus aureus nuc genes, Escherichia coli O 157:H7wzx genes, three that salmonella invA genes are object Group primer and probe, three groups of primer and probes are respectively provided with following base-pair:
Using staphylococcus aureus nuc genes as object:
Sense primer (5 ' -3 ') TTGTAGTTTCAAGTCTAAGTAGCTCAGC
Downstream primer (5 ' -3 ') TTGCACTATATACTGTTGGATCTTCAG
Probe (5 ' -3 ') FAM-TGCATCACAAACAGATAACGGCGTAAATAG-BHQ1;
With colon bacillus 0157:H7wzx genes are object:
Sense primer (5 ' -3 ') TCATGCACGCAATGATACTCAA
Downstream primer (5 ' -3 ') CGAACACTACTAATATGAAGGCCA
Probe (5 ' -3 ') CY5-AGACGCTCAGAACATCATTGAAAATAGTGGG-BHQ2;
Using salmonella invA genes as object:
Sense primer (5 ' -3 ') CCTGATCGCACTGAATATCGTACT
Downstream primer (5 ' -3 ') GTGGTAATTAACAGTACCGCAGGA
Probe (5 ' -3 ') Vic-ATATTGGTGTTTATGGGGTCGTTCTACATTGAC-BHQ1.
The staphylococcus aureus, Escherichia coli, the PCR detections of salmonella triple fluorescent quantitative primer and probe In staphylococcus aureus, colon bacillus 0157:H7, salmonella triple fluorescent quantitative PCR method foundation in application, packet Include following steps:
Step 1:Design three groups of primer and probes;
Step 2:Primer specificity detects;
Step 3:Staphylococcus aureus nuc genes, Escherichia coli O 157:H7wzx genes, salmonella invA genes Clone and plasmid extraction identification;
Step 4:Staphylococcus aureus, salmonella, Escherichia coli are carried out with probe substance specific assay respectively;
Step 5:Sonde method multiple specific detects;
Step 6:Multiple condition is explored;
Step 7:Standard curve is established.
Further, when primer specificity described in step 2 detects,
PCR system is as follows:
PCR reaction conditions are as follows:
Colon bacillus 0157:The PCR reaction conditions of H7 and salmonella:
The PCR reaction conditions of staphylococcus aureus:
Further, when substance specific assay described in step 4, qPCR systems are as follows:
QPCR conditions are as follows:50 DEG C, 2min;95 DEG C, 5min;(95 DEG C, 40s;60 DEG C, 40s;) × 40 recycle.
Further, when sonde method multiple specific described in step 5 detects, by staphylococcus aureus, Salmonella Bacterium, Escherichia coli are placed on the same system and are expanded, and qPCR systems are as follows:
Further, when multiple condition described in step 6 is explored, Mix fixes 30 μ L, and probe sets 3 concentration (0.4 μ L, 0.3 μ L, 0.2 μ L), finally selected concentration and probe concentration is 0.4 μ L;Probe is fixed as 0.4 μ L, mix and sets 30 μ L, 40 μ L, 35 mix μ L finally select a concentration of 30 μ L of mix.
Further, the standard curve established in step 7 is:
Staphylococcus aureus:Y=-4.929X+58.824R2=0.999Eff%=86.721
Salmonella:Y=-4.74X+57.046R2=0.996Eff%=90.775
Escherichia coli O 157 H7:Y=-4.277X+52.119R2=0.997Eff%=84.861.
Compared with prior art, the present invention having the advantages that:
First, PCR detection method high sensitivity of the invention:Staphylococcus aureus and salmonella sensitivity are 105 Copies/ μ L, and Escherichia coli sensitivity 104copies/μL。
Second, the triple fluorescent RT-PCR that the present invention establishes have repeatability well, at 5 gradient variation within batch coefficients Between 0.09%-1.71%, it is less than 10%, there is high repeatability, 5 gradient interassay coefficient of variation to be in 0.05%- Between 6.62%, it is less than 15%-20%, there is high repeatability.
Description of the drawings
Fig. 1 is bacterial primers specificity identification electrophoretogram, wherein M:500DNAMarker 1、3、5:Staphylococcus aureus Bacterium, Escherichia coli, salmonella negative control, 2, staphylococcus aureus (96bp), 4, Escherichia coli (104bp), 6, sramana Salmonella (108bp);
Fig. 2 is bacterium target gene plasmid identification electrophoretogram, wherein M:2000DNA Marker 1, staphylococcus aureus (96bp), 2, Escherichia coli (104bp), 3, salmonella (108bp), 4, negative control;
Fig. 3-1 is staphylococcus aureus probe substance specific outcome figure;
Fig. 3-2 is salmonella probe substance specific outcome figure;
Fig. 3-3 is Escherichia coli probe substance specific outcome figure;
Fig. 4 is probe multiple specific outcome figure;
Fig. 5-1 is that probe multiple specificity mix fixation probes grope result figure (total figure);
Fig. 5-2 is that mix is fixed as 30 μ L, and 0.2 μ L of probe grope result figure (component);
Fig. 5-3 is that mix is fixed as 30 μ L, and 0.3 μ L of probe grope result figure (component);
Fig. 5-4 is that mix is fixed as 30 μ L, and 0.4 μ L of probe grope result figure (component);
Fig. 6-1 is that probe multiple specific probe fixation mix gropes result figure;
It is that 30 μ L grope result figure that Fig. 6-2 is fixed as 0.4 μ L, mix for probe;
It is that 35 μ L grope result figure that Fig. 6-3 is fixed as 0.4 μ L, mix for probe;
It is that 40 μ L grope result figure that Fig. 6-4 is fixed as 0.4 μ L, mix for probe;
Fig. 7-1 is three kinds of bacterium canonical plottings (total figure), and wherein abscissa Quantity is copy number gradient concentration, indulges and sits It is designated as CT values;
Fig. 7-2 is three kinds of bacterium standard items amplification curve diagrams (total figure);
Fig. 8-1 is staphylococcus aureus canonical plotting (component), Y=-4.929X+58.824R2=0.999Eff% =86.721, wherein abscissa Quantity are copy number gradient concentration, and ordinate is CT values;
Fig. 8-2 is staphylococcus aureus standard items amplification curve diagram (component);
Fig. 9-1 is salmonella gene standard curve result figure (component), Y=-4.74X+57.046R2= 0.996Eff%=90.775, wherein abscissa Quantity are copy number gradient concentration, and ordinate is CT values;
Fig. 9-2 is salmonella standard items amplification curve diagram (component);
Figure 10-1 is bacillus coli gene standard curve result figure (component), Y=-4.277X+52.119R2= 0.997Eff%=84.861, wherein abscissa Quantity are copy number gradient concentration, and ordinate is CT values;
Figure 10-2 is Escherichia coli standard items amplification curve diagram (component);
Figure 11-1 is triple qPCR sensitivitys amplification curves (total figure);
Figure 11-2 is triple middle salmonella sensitivity amplification curves (component);
Figure 11-3 is triple middle Escherichia coli sensitivity amplification curves (component);
Figure 11-4 is triple middle staphylococcus aureus sensitivity amplification curves (component).
Specific implementation mode
Below by specific implementation mode, invention is further described in detail, but those skilled in the art will manage Solution, the following example is merely to illustrate the present invention, and should not be taken as limiting the scope of the invention.
Embodiment
S1 primers are designed with probe
Respectively with staphylococcus aureus nuc genes, Escherichia coli O 157:H7wzx genes, salmonella invA genes are Object, through ncbi database sequence alignment design primer:
S1.1 staphylococcus aureus nuc genes, 96bp
Sense primer (5 ' -3 ') TTGTAGTTTCAAGTCTAAGTAGCTCAGC (SEQ ID NO.1)
Downstream primer (5 ' -3 ') TTGCACTATATACTGTTGGATCTTCAG (SEQ ID NO.2)
Probe (5 ' -3 ') FAM-TGCATCACAAACAGATAACGGCGTAAATAG-BHQ1 (SEQ ID NO.3)
S1.2 colon bacillus 0157s:H7wzx genes, 104bp
Sense primer (5 ' -3 ') TCATGCACGCAATGATACTCAA (SEQ ID NO.4)
Downstream primer (5 ' -3 ') CGAACACTACTAATATGAAGGCCA (SEQ ID NO.5)
Probe (5 ' -3 ') CY5-AGACGCTCAGAACATCATTGAAAATAGTGGG-BHQ2 (SEQ ID NO.6)
S1.3 salmonella invA genes, 108bp
Sense primer (5 ' -3 ') CCTGATCGCACTGAATATCGTACT (SEQ ID NO.7)
Downstream primer (5 ' -3 ') GTGGTAATTAACAGTACCGCAGGA (SEQ ID NO.8)
Probe (5 ' -3 ') Vic-ATATTGGTGTTTATGGGGTCGTTCTACATTGAC-BHQ1 (SEQ ID NO.9)
S2 primer specificities detect
S2.1 PCR systems:
S2.2 PCR reaction conditions
Colon bacillus 0157:The PCR reaction conditions of H7 and salmonella:
The PCR reaction conditions of staphylococcus aureus:
S2.3 specificity identification electrophoretograms:
Primer specificity qualification result is shown in Fig. 1, and as seen from the figure, each target gene amplifies respective strap.
The clone of tri- kinds of bacterial genes of S3 and plasmid extraction identification
Plasmid PCR is carried out with Escherichia coli, salmonella, the sense primer of staphylococcus aureus and downstream primer respectively Identification, gained PCR product carry out 6g/L agarose gel electrophoresis identifications.The correct recombinant plasmid of PCR Preliminary Identifications is sent Company carries out sequencing.
S3.1 target gene is cloned and plasmid identification
PCR product is purified with small measuring cylinder DNA QIAquick Gel Extraction Kits after agarose gel electrophoresis is identified and recycles DNA.
Respectively by after purification target fragment and 16 DEG C of carrier T (size 3928bp) connection 2h, by connection product convert to DH5 α competent cells, 37 DEG C of constant incubators, are incubated overnight.
Picking white monoclonal colonies are inoculated in the LB liquid medium containing Amp, 200r/min, 37 DEG C of culture 12h.Simultaneously Bacterium colony PCR is carried out to same bacterium colony, plasmid extraction is carried out to the bacterium solution of the bacterium colony PCR positives.Three kinds of bacterium target gene plasmid mirror Determine result and sees 2.
S3.2 plasmid order-checking results
By sequencing, three kinds of bacterium specificity target gene all obtain correct verification.
(SEQ ID NO.10) is sequenced in S3.2.1 staphylococcus aureuses
GCTACTAGATACGGCGATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATG GATATCTGCAGAATTGCCCTTTGTAGTTTCAAGTCTAAGTAGCTCAGCAAATGCATCACA AACAGATAATGGCGTAAATAGAAGTGGTTCTGAAGATCCAACAGTATATAGTGCAAAAG GGCAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGG CGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAA CATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCA CATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGC ATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCT TCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCA CTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGT GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT CCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGC GAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGC TCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC GTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCC AAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAA CTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAG
(SEQ ID NO.11) is sequenced in S3.2.2 Escherichia coli
GGGCTACTCTATAGGGGCGATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGT GATGGATATCTGCAGAATTGCCCTTCGAACACTACTAATATGAAGGCCAATAAGAATGAT GAAATACCCACTATTTTCAATGATGTTCTGAGCGTCTTTTTTATAAATTGAGTATCATTGCG TGCATGAAAGGGCAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTA CCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAA TTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTG AGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCG TGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCG CTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGG TATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGA AAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTA
AAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAA AATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGT TTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACC TGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATC TCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCCGTTCA GCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACG ACTTA
(SEQ ID NO.12) is sequenced in S3.2.3 salmonellas
GCAGACTCTATAGGGCGATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGA TGGATATCTGCAGAATTGCCC
TTGTGGTAATTAACAGTACCGCAGGAAACGTTGAAAAACTGAGGATTCTGTCAATGTAG AACGACCCCATAAACACCAATATCGCCAGTACGATATTCAGTGCGATCAGGAAGGGCAA TTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGGCGTAA TCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATAC GAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTA ATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAA TGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTC GCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAA AGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGC AAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCAT AGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCT CCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG GCGCTTTCTCATAGCTCACGCTGTAGTATCTCAGTTCGGTGTAGTCGTTCGCTCCAAGCT GGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCCTTATCCGGTAACTAT CGTCTTGAGTCCAACCCGGTAAGACACGACTTA
S4 quantitative fluorescent PCR substance specific detections
Staphylococcus aureus, salmonella, Escherichia coli are carried out with probe substance specific assay respectively, as a result substance PCR amplifies corresponding curve, sees Fig. 3-1 to Fig. 3-3.
QPCR systems are as shown in table 1 below:
1 qPCR systems of table
QPCR conditions (following all same) are as shown in table 2 below:
2 qPCR conditions of table
S5 sonde method multiple specifics detect
Staphylococcus aureus, salmonella, Escherichia coli are placed on the same system to expand, as a result 3 kinds of bacterium are all Special linearity curve is amplified, sees Fig. 4.
QPCR systems are as shown in table 3 below:
3 qPCR systems of table
S6 multiple conditions are groped
S6.1 Mix fix 30 μ L, and probe sets 3 concentration (0.4 μ L, 0.3 μ L, 0.2 μ L), and finally selected concentration and probe concentration is 0.4 μ L, are as a result shown in Fig. 5-1 to Fig. 5-4.
QPCR systems are as shown in table 4 below:
4 qPCR systems of table
S6.2 probes are fixed as 0.4 μ L, mix and set 30 μ L, 40 μ L, 35 mix μ L, finally a concentration of 30 μ L of selected mix, knot Fruit sees Fig. 6-1 to Fig. 6-4.
QPCR systems are as shown in table 5 below:
5 qPCR systems of table
S7 standard curves are established
QPCR systems are as shown in table 6 below:
6 qPCR systems of table
Three kinds of plasmids measure a concentration of through microplate reader:Staphylococcus aureus:36ng/ μ L, Escherichia coli:45ng/ μ L, sand Door Salmonella:46.5ng/μL.
Copy number calculates:
The mass concentration of DNA copy number=DNA/DNA average molecular weight * 6.02 × 1023(unit:copies/μL);
The base logarithm * 660Da of the average molecular weight of DNA=total;
The mass concentration of L-form staphylococcus aureus copy number=DNA/DNA average molecular weight * 6.02 × 1023
=(36 × 10-9/96*660)*6.02×1023
≈3.4×1011=3.4E+11
The mass concentration of e. coli dna copy number=DNA/DNA average molecular weight * 6.02 × 1023
=(45 × 10-9/104*660)*6.02×1023
≈3.94×1011=3.94E+11
The mass concentration of salmonella DNA copy number=DNA/DNA average molecular weight * 6.02 × 1023
=(46.5 × 10-9/104*660)*6.02×1023
≈3.92×1011=3.92E+11
Each bacterium starting template is pressed 10×Standard items are established by being diluted, then use 105、106、107、108、109、 1010Copy number gradient concentration template establishes standard curve, such as Fig. 7-1 and Fig. 7-2:
Standard curve is from top to bottom:
Staphylococcus aureus (Fig. 8-1 and 8-2):Y=-4.929X+58.824R2=0.999Eff%=86.721
Salmonella (Fig. 9-1 and 9-2):Y=-4.74X+57.046R2=0.996Eff%=90.775
Escherichia coli O 157 H7 (Figure 10-1 and 10-2):Y=-4.277X+52.119R2=0.997Eff%=84.861
Amplification efficiency meets the requirements between 80%-110%;
R2It is all higher than 0.99, is met the requirements.
S8 sensitivity Detections
Due to the foundation of standard curve, multiple sensitivity examines us from 106It is diluted to 102The gradient concentration of copy number Sensitivity inspection is carried out, positive findings judgement is generally limited with 35 cycles, the result is shown in Figure 1 1-1 to Figure 11-4:Golden yellow grape Coccus and salmonella sensitivity are 105Copies/ μ L, and Escherichia coli sensitivity 104copies/μL。
S9 repeatability
Take 105-1095 gradients template, each gradient carries out 10 repetitions, calculate separately log concentration value batch in The coefficient of variation and interassay coefficient of variation, the results are shown in Table 7.
The coefficient of variation (CV)=standard deviation SD/ means X 100%
Repeatability in batch:Reproducibility of the multiple multiple pipes of same sample in primary measure, CV are less than 10%.
Repeatability between batch:Same sample measured at more batches between reproducibility, CV be less than 15%-20%.
Show that the triple fluorescent RT-PCR established has repeatability well.
Table 7-1 triple fluorescent PCR system Repeatability checkings (first)
Table 7-2 triple fluorescent PCR system Repeatability checkings (second batch)
5 gradient variation within batch coefficients are between 0.09%-1.71%, are less than 10%, have high repeatability.
Repeatability checking between table 7-3 triple fluorescent PCR systems batch
5 gradient interassay coefficient of variation are between 0.05%-6.62%, are less than 15%-20%, have high repetition Property.
Sequence involved in the application:
Staphylococcus aureus nuc genes, 96bp
Sense primer (5 ' -3 ') TTGTAGTTTCAAGTCTAAGTAGCTCAGC (SEQ ID NO.1)
Downstream primer (5 ' -3 ') TTGCACTATATACTGTTGGATCTTCAG (SEQ ID NO.2)
Probe (5 ' -3 ') FAM-TGCATCACAAACAGATAACGGCGTAAATAG-BHQ1 (SEQ ID NO.3)
Colon bacillus 0157:H7wzx genes, 104bp
Sense primer (5 ' -3 ') TCATGCACGCAATGATACTCAA (SEQ ID NO.4)
Downstream primer (5 ' -3 ') CGAACACTACTAATATGAAGGCCA (SEQ ID NO.5)
Probe (5 ' -3 ') CY5-AGACGCTCAGAACATCATTGAAAATAGTGGG-BHQ2 (SEQ ID NO.6)
Salmonella invA genes, 108bp
Sense primer (5 ' -3 ') CCTGATCGCACTGAATATCGTACT (SEQ ID NO.7)
Downstream primer (5 ' -3 ') GTGGTAATTAACAGTACCGCAGGA (SEQ ID NO.8)
Probe (5 ' -3 ') Vic-ATATTGGTGTTTATGGGGTCGTTCTACATTGAC-BHQ1 (SEQ ID NO.9)
(SEQ ID NO.10) is sequenced in staphylococcus aureus
GCTACTAGATACGGCGATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATG GATATCTGCAGAATTGCCCTTTGTAGTTTCAAGTCTAAGTAGCTCAGCAAATGCATCACA AACAGATAATGGCGTAAATAGAAGTGGTTCTGAAGATCCAACAGTATATAGTGCAAAAG GGCAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGG CGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAA CATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCA CATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGC ATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCT TCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCA CTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGT GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT CCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGC GAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGC TCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC GTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCC AAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAA CTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAG
(SEQ ID NO.11) is sequenced in Escherichia coli
GGGCTACTCTATAGGGGCGATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGT GATGGATATCTGCAGAATTGCCCTTCGAACACTACTAATATGAAGGCCAATAAGAATGAT GAAATACCCACTATTTTCAATGATGTTCTGAGCGTCTTTTTTATAAATTGAGTATCATTGCG TGCATGAAAGGGCAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTA CCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAA TTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTG AGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCG TGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCG CTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGG TATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGA AAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTA
AAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAA AATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGT TTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACC TGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATC TCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCCGTTCA GCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACG ACTTA
(SEQ ID NO.12) is sequenced in salmonella
GCAGACTCTATAGGGCGATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGA TGGATATCTGCAGAATTGCCC
TTGTGGTAATTAACAGTACCGCAGGAAACGTTGAAAAACTGAGGATTCTGTCAATG TAGAACGACCCCATAAACACCAATATCGCCAGTACGATATTCAGTGCGATCAGGAAGGG CAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGGCG TAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACA TACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACA TTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCAT TAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTC CTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACT CAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTG AGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTC CATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGC GAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGC TCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC GTGGCGCTTTCTCATAGCTCACGCTGTAGTATCTCAGTTCGGTGTAGTCGTTCGCTCCAA GCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCCTTATCCGGTAAC TATCGTCTTGAGTCCAACCCGGTAAGACACGACTTA
Embodiment described above is only to absolutely prove that preferred embodiment that is of the invention and being lifted, protection domain are unlimited In this.Those skilled in the art on the basis of the present invention made by equivalent substitute or transformation, the present invention protection Within the scope of, protection scope of the present invention is subject to claims.
Sequence table
<110>Fujian Province Academy Of Agricultural Sciences Animal Husbandry And Veterinary Medicine Institute
<120>Primer, probe and the side that staphylococcus aureus, Escherichia coli, salmonella triple fluorescent quantitative PCR are detected Method is established
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 28
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 1
ttgtagtttc aagtctaagt agctcagc 28
<210> 2
<211> 27
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 2
ttgcactata tactgttgga tcttcag 27
<210> 3
<211> 30
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 3
tgcatcacaa acagataacg gcgtaaatag 30
<210> 4
<211> 22
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 4
tcatgcacgc aatgatactc aa 22
<210> 5
<211> 24
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 5
cgaacactac taatatgaag gcca 24
<210> 6
<211> 31
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 6
agacgctcag aacatcattg aaaatagtgg g 31
<210> 7
<211> 24
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 7
cctgatcgca ctgaatatcg tact 24
<210> 8
<211> 24
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 8
gtggtaatta acagtaccgc agga 24
<210> 9
<211> 33
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 9
atattggtgt ttatggggtc gttctacatt gac 33
<210> 10
<211> 1000
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 10
gctactagat acggcgattg ggccctctag atgcatgctc gagcggccgc cagtgtgatg 60
gatatctgca gaattgccct ttgtagtttc aagtctaagt agctcagcaa atgcatcaca 120
aacagataat ggcgtaaata gaagtggttc tgaagatcca acagtatata gtgcaaaagg 180
gcaattccag cacactggcg gccgttacta gtggatccga gctcggtacc aagcttggcg 240
taatcatggt catagctgtt tcctgtgtga aattgttatc cgctcacaat tccacacaac 300
atacgagccg gaagcataaa gtgtaaagcc tggggtgcct aatgagtgag ctaactcaca 360
ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat 420
taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc ttccgcttcc 480
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc agctcactca 540
aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca 600
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg 660
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg 720
acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt 780
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt 840
tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc caagctgggc 900
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt 960
gagtccaacc cggtaagaca cgacttatcg ccactggcag 1000
<210> 11
<211> 1000
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 11
gggctactct ataggggcga ttgggccctc tagatgcatg ctcgagcggc cgccagtgtg 60
atggatatct gcagaattgc ccttcgaaca ctactaatat gaaggccaat aagaatgatg 120
aaatacccac tattttcaat gatgttctga gcgtcttttt tataaattga gtatcattgc 180
gtgcatgaaa gggcaattcc agcacactgg cggccgttac tagtggatcc gagctcggta 240
ccaagcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca 300
attccacaca acatacgagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg 360
agctaactca cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg 420
tgccagctgc attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc 480
tcttccgctt cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta 540
tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag 600
aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 660
tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 720
tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg 780
cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 840
agcgtggcgc tttctcatag ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc 900
tccaagctgg gctgtgtgca cgaacccccc cgttcagccc gaccgctgcg ccttatccgg 960
taactatcgt cttgagtcca acccggtaag acacgactta 1000
<210> 12
<211> 1000
<212> DNA
<213>Artificial sequence (Artificial Sequence)
<400> 12
gcagactcta tagggcgatt gggccctcta gatgcatgct cgagcggccg ccagtgtgat 60
ggatatctgc agaattgccc ttgtggtaat taacagtacc gcaggaaacg ttgaaaaact 120
gaggattctg tcaatgtaga acgaccccat aaacaccaat atcgccagta cgatattcag 180
tgcgatcagg aagggcaatt ccagcacact ggcggccgtt actagtggat ccgagctcgg 240
taccaagctt ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca 300
caattccaca caacatacga gccggaagca taaagtgtaa agcctggggt gcctaatgag 360
tgagctaact cacattaatt gcgttgcgct cactgcccgc tttccagtcg ggaaacctgt 420
cgtgccagct gcattaatga atcggccaac gcgcggggag aggcggtttg cgtattgggc 480
gctcttccgc ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg 540
tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa 600
agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg 660
cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga 720
ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg 780
tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg 840
gaagcgtggc gctttctcat agctcacgct gtagtatctc agttcggtgt agtcgttcgc 900
tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc ccttatccgg 960
taactatcgt cttgagtcca acccggtaag acacgactta 1000

Claims (7)

1. the primer and probe that staphylococcus aureus, Escherichia coli, salmonella triple fluorescent quantitative PCR are detected, feature It is, including respectively with staphylococcus aureus nuc genes, Escherichia coli O 157:H7wzx genes, salmonella invA genes For three groups of primer and probes of object, three groups of primer and probes are respectively provided with following base-pair:
Using staphylococcus aureus nuc genes as object:
Sense primer (5 ' -3 ') TTGTAGTTTCAAGTCTAAGTAGCTCAGC
Downstream primer (5 ' -3 ') TTGCACTATATACTGTTGGATCTTCAG
Probe (5 ' -3 ') FAM-TGCATCACAAACAGATAACGGCGTAAATAG-BHQ1;
With colon bacillus 0157:H7wzx genes are object:
Sense primer (5 ' -3 ') TCATGCACGCAATGATACTCAA
Downstream primer (5 ' -3 ') CGAACACTACTAATATGAAGGCCA
Probe (5 ' -3 ') CY5-AGACGCTCAGAACATCATTGAAAATAGTGGG-BHQ2;
Using salmonella invA genes as object:
Sense primer (5 ' -3 ') CCTGATCGCACTGAATATCGTACT
Downstream primer (5 ' -3 ') GTGGTAATTAACAGTACCGCAGGA
Probe (5 ' -3 ') Vic-ATATTGGTGTTTATGGGGTCGTTCTACATTGAC-BHQ1.
2. what staphylococcus aureus described in claim 1, Escherichia coli, salmonella triple fluorescent quantitative PCR were detected draws Object and probe are in staphylococcus aureus, colon bacillus 0157:H7, salmonella triple fluorescent quantitative PCR method foundation in Application, which is characterized in that include the following steps:
Step 1:Design three groups of primer and probes;
Step 2:Primer specificity detects;
Step 3:Staphylococcus aureus nuc genes, Escherichia coli O 157:Gram of H7wzx genes, salmonella invA genes The identification of grand and plasmid extraction;
Step 4:Staphylococcus aureus, salmonella, Escherichia coli are carried out with probe substance specific assay respectively;
Step 5:Sonde method multiple specific detects;
Step 6:Multiple condition is explored;
Step 7:Standard curve is established.
3. staphylococcus aureus according to claim 2, Escherichia coli, the PCR detections of salmonella triple fluorescent quantitative Primer and probe in staphylococcus aureus, colon bacillus 0157:H7, salmonella triple fluorescent quantitative PCR method are built Application in vertical, which is characterized in that when primer specificity described in step 2 detects,
PCR system is as follows:
PCR reaction conditions are as follows:
Colon bacillus 0157:The PCR reaction conditions of H7 and salmonella:
The PCR reaction conditions of staphylococcus aureus:
4. staphylococcus aureus according to claim 2, Escherichia coli, the PCR detections of salmonella triple fluorescent quantitative Primer and probe in staphylococcus aureus, colon bacillus 0157:H7, salmonella triple fluorescent quantitative PCR method are built Application in vertical, which is characterized in that when substance specific assay described in step 4,
QPCR systems are as follows:
QPCR conditions are as follows:50 DEG C, 2min;95 DEG C, 5min;(95 DEG C, 40s;60 DEG C, 40s;) × 40 recycle.
5. staphylococcus aureus according to claim 2, Escherichia coli, the PCR detections of salmonella triple fluorescent quantitative Primer and probe in staphylococcus aureus, colon bacillus 0157:H7, salmonella triple fluorescent quantitative PCR method are built Application in vertical, which is characterized in that when sonde method multiple specific described in step 5 detects, by staphylococcus aureus, sand Door Salmonella, Escherichia coli are placed on the same system and are expanded, and qPCR systems are as follows:
6. staphylococcus aureus according to claim 2, Escherichia coli, the PCR detections of salmonella triple fluorescent quantitative Primer and probe in staphylococcus aureus, colon bacillus 0157:H7, salmonella triple fluorescent quantitative PCR method are built Application in vertical, which is characterized in that when multiple condition described in step 6 is explored, Mix fixes 30 μ L, and probe sets 3 concentration (0.4 μ L, 0.3 μ L, 0.2 μ L), finally selected concentration and probe concentration is 0.4 μ L;Probe is fixed as 0.4 μ L, mix set 30 μ L, 40 μ L, 35 μ L of mix finally select a concentration of 30 μ L of mix.
7. staphylococcus aureus according to claim 2, Escherichia coli, the PCR detections of salmonella triple fluorescent quantitative Primer and probe in staphylococcus aureus, colon bacillus 0157:H7, salmonella triple fluorescent quantitative PCR method are built Application in vertical, which is characterized in that the standard curve established in step 7 is:
Staphylococcus aureus:Y=-4.929X+58.824 R2=0.999 Eff%=86.721
Salmonella:Y=-4.74X+57.046 R2=0.996 Eff%=90.775
Escherichia coli O 157 H7:Y=-4.277X+52.119 R2=0.997 Eff%=84.861.
CN201810599552.7A 2018-06-12 2018-06-12 Staphylococcus aureus, Escherichia coli, the primer of salmonella triple fluorescent quantitative PCR detections, probe and method foundation Pending CN108570512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810599552.7A CN108570512A (en) 2018-06-12 2018-06-12 Staphylococcus aureus, Escherichia coli, the primer of salmonella triple fluorescent quantitative PCR detections, probe and method foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810599552.7A CN108570512A (en) 2018-06-12 2018-06-12 Staphylococcus aureus, Escherichia coli, the primer of salmonella triple fluorescent quantitative PCR detections, probe and method foundation

Publications (1)

Publication Number Publication Date
CN108570512A true CN108570512A (en) 2018-09-25

Family

ID=63573188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810599552.7A Pending CN108570512A (en) 2018-06-12 2018-06-12 Staphylococcus aureus, Escherichia coli, the primer of salmonella triple fluorescent quantitative PCR detections, probe and method foundation

Country Status (1)

Country Link
CN (1) CN108570512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950029A (en) * 2018-06-21 2018-12-07 齐鲁工业大学 The multiple PCR detection primer and detection method of Escherichia coli O 157
CN110878366A (en) * 2019-11-27 2020-03-13 安序源生物科技(深圳)有限公司 Nucleic acid composition, detection kit for intestinal pathogenic bacteria and use method of detection kit
CN111961705A (en) * 2020-08-11 2020-11-20 佛山科学技术学院 Detection method of salmonella

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316391A (en) * 2014-06-23 2016-02-10 北京市理化分析测试中心 Method of detecting salmonella, shigella and staphylococcus aureus
CN105463063A (en) * 2014-06-19 2016-04-06 中粮营养健康研究院有限公司 Multiplex PCR detection primer set, multiplex PCR detection kit and multiplex PCR detection method for three pathogenic bacteria in food

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463063A (en) * 2014-06-19 2016-04-06 中粮营养健康研究院有限公司 Multiplex PCR detection primer set, multiplex PCR detection kit and multiplex PCR detection method for three pathogenic bacteria in food
CN105316391A (en) * 2014-06-23 2016-02-10 北京市理化分析测试中心 Method of detecting salmonella, shigella and staphylococcus aureus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHITRITA DEBROY等: "Detection of Shiga toxin-producing Escherichia coli O26, O45, O103, O111, O113, O121, O145, and O157 serogroups by multiplex polymerase chain reaction of the wzx gene of the O-antigen gene cluster", 《FOODBORNE PATHOG DIS》 *
关正萍等: "猪肉中五种致病菌多重PCR快速检测方法及金黄色葡萄球菌生长预测模型研究", 《中国博士学位论文全文数据库 农业科技辑》 *
肖琳等: "《环境微生物实验技术》", 31 July 2004, 中国环境科学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950029A (en) * 2018-06-21 2018-12-07 齐鲁工业大学 The multiple PCR detection primer and detection method of Escherichia coli O 157
CN110878366A (en) * 2019-11-27 2020-03-13 安序源生物科技(深圳)有限公司 Nucleic acid composition, detection kit for intestinal pathogenic bacteria and use method of detection kit
CN111961705A (en) * 2020-08-11 2020-11-20 佛山科学技术学院 Detection method of salmonella

Similar Documents

Publication Publication Date Title
CN108570512A (en) Staphylococcus aureus, Escherichia coli, the primer of salmonella triple fluorescent quantitative PCR detections, probe and method foundation
Guo et al. A test strip platform based on a whole-cell microbial biosensor for simultaneous on-site detection of total inorganic mercury pollutants in cosmetics without the need for predigestion
CA2486392C (en) Method for the stable expression of nucleic acids in transgenic plants, controlled by a parsley-ubiquitin promoter
Qin et al. Development and application of real-time PCR for detection of subgroup J avian leukosis virus
CN107663543B (en) Triple fluorescent PCR primer probe set, kit and method for detecting six avian-derived components
CN107841575A (en) A kind of nanometer multiple PCR method for distinguishing four kinds of serotype aviadenovirus I groups
CN102559731A (en) Pseudovirion vector and preparation method and application thereof
CN113444785B (en) SSc-miR-122-5p related to piglet C-type clostridium perfringens infectious diarrhea and application thereof
CN106987655B (en) Norovirus tracing method and primer, kit and application thereof
Dong et al. Development and evaluation of a droplet digital PCR assay for the detection of fowl adenovirus serotypes 4 and 10 in attenuated vaccines
CN105648055A (en) Multi-PCR detection kit for poultry salmonella and non-diagnostic detection method of poultry salmonella
Zhang et al. Global transcriptional analysis of model of persistent FMDV infection reveals critical role of host cells in persistence
CN106834500B (en) Specific primer for detecting salmonella pullorum, kit containing primer and application of kit
Li et al. A new strategy for the detection of chicken infectious anemia virus contamination in attenuated live vaccine by droplet digital PCR
Niture et al. Characterization of buffalo, poultry and human rotaviruses in Western India.
CN112410248A (en) Mycoplasma synoviae culture medium and preparation method thereof
Gu et al. Effects of fructooligosaccharides (FOS) on the composition of cecal and fecal microbiota and the quantitative detection of FOS‐metabolizing bacteria using species‐specific primers
Finkler et al. Chicken parvovirus and its associations with malabsorption syndrome
CN112111505B (en) Method for gene knockout in gluconobacter oxydans
CN102559892A (en) Primer for quickly determining enterotoxigenic eschericha coli in feed sample and application for primer
CN112852857B (en) Method for knocking out multiple genes in gluconobacter oxydans
Liu et al. Emergence of spontaneously occurring neoplastic disease caused by reticuloendotheliosis virus in breeding Muscovy ducks in China, 2019
CN111719020B (en) Kit, primer and probe for detecting bovine rotavirus
Nakayama et al. Multiplex reverse transcription quantitative PCR detection of a single‐stranded RNA virus HcRNAV infecting the bloom‐forming dinoflagellate Heterocapsa circularisquama
CN112094843B (en) Method for inhibiting genes in gluconobacter oxydans

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination