CN108557760A - 利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法 - Google Patents

利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法 Download PDF

Info

Publication number
CN108557760A
CN108557760A CN201810498760.8A CN201810498760A CN108557760A CN 108557760 A CN108557760 A CN 108557760A CN 201810498760 A CN201810498760 A CN 201810498760A CN 108557760 A CN108557760 A CN 108557760A
Authority
CN
China
Prior art keywords
plastics
biomass
load
calcium oxide
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810498760.8A
Other languages
English (en)
Inventor
周利民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Priority to CN201810498760.8A priority Critical patent/CN108557760A/zh
Publication of CN108557760A publication Critical patent/CN108557760A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,利用纳米CaCO3浸渍Ni2(NO)3溶液负载Ni2+,再在氢气气氛下高温加热纳米碳酸钙使其分解,同时使Ni2+还原成Ni0,得到负载Ni0的纳米CaO,用于催化生物质/塑料共气化过程以提高生物质/塑料共气化H2产率并减少结焦;生物质/塑料于650℃共气化时纳米CaO通过反应CaO+CO2→CaCO3实时吸附气体中CO2,促使生物质/塑料共气化制氢反应平衡向右移动,从而提高气相产物中H2含量;共气化完成后的负载Ni的CaCO3在850℃及H2气氛中加热再生,重新得到负载Ni0的纳米CaO(Ni‑CaO),从而有效提高原料利用率。

Description

利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法
技术领域
本发明涉及新能源技术领域,尤其涉及一种利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法。
背景技术
农林生产加工废弃的生物质(如木屑、秸杆等)及工业生产废弃的塑料(如聚乙烯、聚丙烯等)来源极为丰富,而此类生物质和废塑料也是城市垃圾的主要组成部分,通常采用填埋、焚烧等方法处理废弃的生物质及塑料不仅占用大量的土地,同时也带来较严重的环境污染。利用气化将废弃生物质及塑料转化为高附加值燃气或富氢合成气是极为有效的处理方法,但生物质气化时所得气体热值较低,塑料分解温度高,气化时易结焦;利用生物质/塑料共气化技术使生物质与塑料同时转化,可得到具有高热值气体,同时有效减少气化结焦,因此成为具有良好应用前景的新技术。
生物质/塑料共气化所得产物气体主要成分包括H2、CH4、CO和CO2,利用Ni催化剂催化生物质/塑料共气化过程可得到高含氢量的富氢合成气,富氢合成气可用于F-T合成制备烃类燃料,也可用于生产醇类等化学品。
目前用于生物质/塑料共气化制氢的Ni催化剂通常利用氧化铝为催化剂载体,但此类Ni催化剂成本较高,且在气化时易于积碳结焦,进而导致Ni催化剂失活,从而影响其催化效果,也由此降低了生物质/塑料共气化制备H2的产率。
发明内容
本发明所解决的技术问题在于提供一种利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,以解决上述背景技术中的缺点。
本发明所解决的技术问题采用以下技术方案来实现:
利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,具体步骤如下:
(1)制备负载Ni0的纳米氧化钙
1)将适量纳米CaCO3加至Ni2(NO)3溶液中,于室温下充分搅拌12h混匀得固相产物,而后将固相产物过滤分离,于110℃条件下真空干燥后,再进一步研磨分散,得负载Ni2+的纳米氧化钙;
2)将步骤1)制备的负载Ni2+的纳米氧化钙置于高温炉中,在氢气气氛下高温加热,促使纳米碳酸钙分解成CaO,同时使Ni2+还原成Ni0,得负载Ni0的纳米氧化钙;
(2)将干生物质粉末、塑料粉末及步骤2)制备的负载Ni0的纳米氧化钙按照一定质量比充分混匀后,加至管式反应器中,通N2载气吹扫30min;
(3)利用电加热将管式反应器加热至650℃,以N2为载气,使生物质/塑料在650℃下共气化,而后收集气相产物。
在本发明中,步骤1)中,Ni2(NO)3溶液浓度为1mol/L。
在本发明中,步骤2)中,在氢气气氛下对负载Ni2+的纳米氧化钙加热温度为850℃。
在本发明中,步骤(2)中,干生物质粉末与塑料粉末的质量比为5:1,干生物质粉末与负载Ni0的纳米氧化钙的质量比为5:0.5~2。
在本发明中,步骤(2)中,通N2载气的速度为50mL/min。
在本发明中,待步骤(3)的生物质/塑料共气化完成后,利用N2载气继续吹扫30min,通N2载气的速度为50mL/min。
有益效果:
1)本发明利用纳米碳酸钙浸渍Ni2(NO)3溶液以负载Ni2+,再在氢气气氛下高温加热纳米碳酸钙使其分解,同时利用氢气气氛使Ni2+还原成Ni0纳米晶,得负载Ni0的纳米CaO,用于催化生物质/塑料共气化过程,由此降低催化剂成本(氧化钙价格低于氧化铝载体)、提高H2产率并减少催化剂结焦和失活;
2)本发明中生物质/塑料于650℃共气化时,纳米CaO通过反应CaO+CO2→CaCO3实时吸附气体中CO2,以促使生物质/塑料共气化制氢反应平衡向右移动,从而进一步提高气相产物(富氢合成气)中H2含量;
3)本发明中共气化完成后的负载Ni2+的CaCO3在850℃及H2气氛中加热再生,促使纳米碳酸钙分解,重新得到负载Ni0的纳米CaO(Ni-CaO),因此可有效提高原料利用率。
附图说明
图1为本发明的最佳实施例的制氢示意图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
实施例1(按Ni–CaO/生物质质量比为10%实施)
利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,具体步骤如下:
(1)制备负载Ni0的纳米CaO(简称Ni-CaO)
1)将5.0g纳米CaCO3加至1mol/L的Ni2(NO)3溶液中,于室温下充分搅拌12h混匀得固相产物,而后将固相产物过滤分离,于110℃条件下真空干燥12h后,再进一步研磨分散,得负载Ni2+的纳米氧化钙(简称Ni2+-CaCO3,Ni2+负载量约105mg Ni/g CaCO3);
2)将步骤1)制备的Ni2+-CaCO3置于高温炉中,在氢气气氛下高温(850℃)加热,促使纳米碳酸钙分解成CaO,同时使Ni2+还原成Ni0,得负载Ni0的纳米CaO(Ni-CaO);
(2)将5.0g干生物质(松木屑)粉末、1.0g塑料(低密度聚乙烯)粉末、及0.5g Ni-CaO(Ni–CaO/生物质质量比10%)充分混匀后,加至管式反应器中,通N2载气(50mL/min)吹扫30min;
(3)在利用电加热将管式反应器加热至650℃,以N2为载气,使生物质/塑料在650℃下共气化,收集气相产物,利用气相色谱测定气体中氢含量;
(4)待生物质/塑料共气化完成后(共气化约需30min完成),利用N2载气(50mL/min)继续吹扫30min,气化结束;在共气化完成后继续吹扫N2,使管式反应器在惰性气氛中冷却,用于防止生物质焦接触空气燃烧进而发生危险。
实验结果表明,在气化温度650℃、气化时间30min、生物质/塑料质量比5:1、Ni–CaO/生物质质量比为10%条件下,气相中H2含量为41%(体积分率)。
实施例2(按Ni–CaO/生物质质量比为20%实施)
利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,具体步骤如下:
(1)负载Ni0的纳米氧化钙(简称Ni-CaO)制备
1)将5.0g纳米CaCO3加至1mol/L的Ni2(NO)3溶液中,于室温下充分搅拌12h混匀得固相产物,而后将固相产物过滤分离,于110℃条件下真空干燥12h后,再进一步研磨分散,得负载Ni2+的纳米氧化钙(简称Ni2+-CaCO3,Ni2+负载量约105mg Ni/g CaCO3);
2)将步骤1)制备的Ni2+-CaCO3置于高温炉中,在氢气气氛下高温(850℃)加热,促使纳米碳酸钙分解成CaO,同时使Ni2+还原成Ni0,得负载Ni0的纳米CaO(Ni-CaO);
(2)将5.0g干生物质(松木屑)粉末、1.0g塑料(低密度聚乙烯)粉末、以及1.0g Ni-CaO(Ni–CaO/生物质质量比20%)充分混匀后,加至管式反应器中,通N2载气(50mL/min)吹扫30min;
(3)在利用电加热将管式反应器加热至650℃,以N2为载气,使生物质/塑料在650℃下共气化,收集气相产物,利用气相色谱测定气体中氢含量;
(4)待生物质/塑料共气化完成后(共气化约需30min完成),利用N2载气(50mL/min)继续吹扫30min,气化结束。
实验结果表明,在气化温度650℃、气化时间30min、生物质/塑料质量比5:1、Ni–CaO/生物质质量比为20%条件下,气相中H2含量为53%(体积分率)。
实施例3(按Ni–CaO/生物质质量比为30%实施)
利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,具体步骤如下:
(1)负载Ni0的纳米氧化钙(简称Ni-CaO)制备
1)将5.0g纳米CaCO3加至1mol/L的Ni2(NO)3溶液中,于室温下充分搅拌12h混匀得固相产物,而后将固相产物过滤分离,于110℃条件下真空干燥12h后,再进一步研磨分散,得负载Ni2+的纳米氧化钙(简称Ni2+-CaCO3,Ni2+负载量约105mg Ni/g CaCO3);
2)将步骤1)制备的Ni2+-CaCO3置于高温炉中,在氢气气氛下高温(850℃)加热,促使纳米碳酸钙分解成CaO,同时使Ni2+还原成Ni0,得负载Ni0的纳米CaO(Ni-CaO);
(2)将5.0g干生物质(松木屑)粉末、1.0g塑料(低密度聚乙烯)粉末、以及1.5g的Ni-CaO(Ni–CaO/生物质质量比为30%)充分混匀后,加至管式反应器中,通N2载气(50mL/min)吹扫30min;
(3)在利用电加热将管式反应器加热至650℃,以N2为载气,使生物质/塑料在650℃下共气化,收集气相产物,利用气相色谱测定气体中氢含量;
(4)待生物质/塑料共气化完成后(共气化约需30min完成),利用N2载气(50mL/min)继续吹扫30min,气化结束。
实验结果表明,在气化温度650℃、气化时间30min、生物质/塑料质量比5:1、Ni–CaO/生物质质量比30%条件下,气相中H2含量达61%(体积分率)。
通过对实施例1~实施例3制备的气相产物测试可知:Ni–CaO/生物质质量比为30%时,气相产物中H2含量最高,达61%(体积分率);进一步实验结果表明,适当增加Ni–CaO,有利于提高生物质/塑料共气化H2含量,但当进一步增加Ni–CaO/生物质质量比(如40%),此时H2含量为64%(体积分率),说明再增加Ni–CaO用量对H2含量提高幅度影响不大。
以上显示和描述了本发明的基本原理、主要特征和主要优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,其特征在于,具体步骤如下:
(1)制备负载Ni0的纳米氧化钙
1)将适量纳米CaCO3加至Ni2(NO)3溶液中,于室温下充分搅拌12h混匀得固相产物,而后将固相产物过滤分离,于110℃条件下真空干燥后,再进一步研磨分散,得负载Ni2+的纳米氧化钙;
2)将步骤1)制备的负载Ni2+的纳米氧化钙置于高温炉中,在氢气气氛下高温加热,促使纳米碳酸钙分解成CaO,同时使Ni2+还原成Ni0,得负载Ni0的纳米氧化钙;
(2)将干生物质粉末、塑料粉末及步骤2)制备的负载Ni0的纳米氧化钙按照一定质量比充分混匀后,加至管式反应器中,通N2载气吹扫30min;
(3)利用电加热将管式反应器加热至650℃,以N2为载气,使生物质/塑料在650℃下共气化,而后收集气相产物。
2.根据权利要求1所述的利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,其特征在于,步骤1)中,Ni2(NO)3溶液浓度为1mol/L。
3.根据权利要求1所述的利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,其特征在于,步骤2)中,在氢气气氛下对负载Ni2+的纳米氧化钙加热温度为850℃。
4.根据权利要求1所述的利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,其特征在于,步骤(2)中,干生物质粉末与塑料粉末的质量比为5:1,干生物质粉末与负载Ni0的纳米氧化钙的质量比为5:0.5~2。
5.根据权利要求4所述的利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,其特征在于,干生物质粉末与负载Ni0的纳米氧化钙的最佳质量比为5:1.5。
6.根据权利要求1所述的利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,其特征在于,步骤(2)中,通N2载气的速度为50mL/min。
7.根据权利要求1所述的利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法,其特征在于,待步骤(3)的生物质/塑料共气化完成后,利用N2载气继续吹扫30min,通N2载气的速度为50mL/min。
CN201810498760.8A 2018-05-23 2018-05-23 利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法 Pending CN108557760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810498760.8A CN108557760A (zh) 2018-05-23 2018-05-23 利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810498760.8A CN108557760A (zh) 2018-05-23 2018-05-23 利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法

Publications (1)

Publication Number Publication Date
CN108557760A true CN108557760A (zh) 2018-09-21

Family

ID=63539462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810498760.8A Pending CN108557760A (zh) 2018-05-23 2018-05-23 利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法

Country Status (1)

Country Link
CN (1) CN108557760A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286436B2 (en) 2019-02-04 2022-03-29 Eastman Chemical Company Feed location for gasification of plastics and solid fossil fuels
US11447576B2 (en) 2019-02-04 2022-09-20 Eastman Chemical Company Cellulose ester compositions derived from recycled plastic content syngas
US11939406B2 (en) 2019-03-29 2024-03-26 Eastman Chemical Company Polymers, articles, and chemicals made from densified textile derived syngas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752256A (zh) * 2014-01-15 2014-04-30 南京理工大学 一种镍改性的钙基双功能颗粒的制备方法
CN103785389A (zh) * 2012-11-01 2014-05-14 中国石油化工股份有限公司 一种高活性载氧体及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785389A (zh) * 2012-11-01 2014-05-14 中国石油化工股份有限公司 一种高活性载氧体及其制备方法和应用
CN103752256A (zh) * 2014-01-15 2014-04-30 南京理工大学 一种镍改性的钙基双功能颗粒的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANZHUANG XU ET AL: "Gas production by catalytic pyrolysis of herb residues using Ni/CaO catalysts", 《JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS》 *
JON ALVATEZ ET AL: "Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
SUFANG WU ET AL: "A micro-sphere catalyst complex with nano CaCO3 precursor for hydrogen production used in ReSER process", 《ENGINEERING SCIENCES》 *
肖志良等: "生物质气化与催化剂的研究进展", 《生物质化学工程》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286436B2 (en) 2019-02-04 2022-03-29 Eastman Chemical Company Feed location for gasification of plastics and solid fossil fuels
US11312914B2 (en) 2019-02-04 2022-04-26 Eastman Chemical Company Gasification of plastics and solid fossil fuels to produce organic compounds
US11370983B2 (en) 2019-02-04 2022-06-28 Eastman Chemical Company Gasification of plastics and solid fossil fuels
US11447576B2 (en) 2019-02-04 2022-09-20 Eastman Chemical Company Cellulose ester compositions derived from recycled plastic content syngas
US11802251B2 (en) 2019-02-04 2023-10-31 Eastman Chemical Company Feed location for gasification of plastics and solid fossil fuels
US11939547B2 (en) 2019-02-04 2024-03-26 Eastman Chemical Company Gasification of plastics and solid fossil fuels
US11939546B2 (en) 2019-02-04 2024-03-26 Eastman Chemical Company Gasification of plastics and solid fossil fuels to produce organic compounds
US11939406B2 (en) 2019-03-29 2024-03-26 Eastman Chemical Company Polymers, articles, and chemicals made from densified textile derived syngas

Similar Documents

Publication Publication Date Title
Esfahani et al. H2-rich syngas production through mixed residual biomass and HDPE waste via integrated catalytic gasification and tar cracking plus bio-char upgrading
CN103979491B (zh) 一种污泥与生物质共混气化制氢的方法
CN107934938A (zh) 二段法催化裂解废弃塑料制备碳纳米管的方法
CN108557760A (zh) 利用纳米氧化钙负载Ni0催化生物质/塑料共气化制氢的方法
CN102977927A (zh) 基于双流化床生物质气化制备合成气的装置及其制备方法
CN101638590A (zh) 一种可燃固体废弃物化学链气化制合成气的方法及串行流化床反应器
Lv et al. Steam co-gasification of different ratios of spirit-based distillers’ grains and anthracite coal to produce hydrogen-rich gas
CN108085032B (zh) 一种碱金属复合盐催化木屑热解制气的方法
CN105385473A (zh) 一种基于化学链气化的煤制氢气及甲烷的工艺
CN106336879A (zh) 一种生物质热解‑重整制氢方法
CN103387853A (zh) 生物炭微波气化制合成气的方法
WO2018227842A1 (zh) 一种用于生产富芳烃生物燃油的催化剂及其制备方法
CN105623685B (zh) 一种连续式生物质原料原位催化裂解气、炭联产的方法与设备
Xu et al. Synthesis of zeolite-based porous catalysts from coal gasification fine slag for steam reforming of toluene
CN112063394A (zh) 一种废弃生物质气化生产富氢合成气的方法
Shen et al. Novel synthesis of activated biochar-supported catalysts for pyrolysis of cardboard waste derived from express package
CN107916141B (zh) 生物质和低阶煤气化-闪速热解分级利用方法
SHI et al. Preparation and characterization of Ni/TPC catalyst and applied in straw pyrolysis gas reforming
CN104053754A (zh) 生物甲烷的生产方法
CN111377398B (zh) 生物质热解气化制取氢气和一氧化碳的方法
CN115123999A (zh) 一种含碳固体制氢的方法
CN113426448A (zh) 一种新型的生物炭基焦油裂解催化剂的制备方法及其应用
Rozhan et al. Mechanism of carbon deposition within char derived from oil palm empty fruit bunch
CN220926689U (zh) 一种生物质循环流化床分级气化制高品质合成气装置
CN101275086B (zh) 生产甲醇和合成氨的原料气的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180921

RJ01 Rejection of invention patent application after publication