CN108554467A - 一种制作三维微流控芯片的方法 - Google Patents

一种制作三维微流控芯片的方法 Download PDF

Info

Publication number
CN108554467A
CN108554467A CN201810248246.9A CN201810248246A CN108554467A CN 108554467 A CN108554467 A CN 108554467A CN 201810248246 A CN201810248246 A CN 201810248246A CN 108554467 A CN108554467 A CN 108554467A
Authority
CN
China
Prior art keywords
printing
dimensional
control chip
silicone polymer
dimethyl silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810248246.9A
Other languages
English (en)
Inventor
刘赵淼
王飓
赵圣伟
逄燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201810248246.9A priority Critical patent/CN108554467A/zh
Publication of CN108554467A publication Critical patent/CN108554467A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

本发明公开了一种制作三维微流控芯片的方法,属于微流控技术领域。本发明选用水溶性材料,基于3D打印技术加工出微流控芯片内部三维流道的中空模型;通过蘸水并迅速烘干处理,降低中空模型的外表面粗糙度;再对聚二甲基硅氧烷进行二次浇筑,待固化后,切除中空结构出、入口的预留封边,利用热水浴使水溶性材料溶解,得到具有三维通道结构、光滑内壁面的微流控芯片。本发明提供的制作方法同时具有实施难度低,步骤简单,成本低廉等优点,制作的三维微流控芯片可具有高度复杂的三维结构,其内表面粗糙度低,可视化程度高。

Description

一种制作三维微流控芯片的方法
技术领域
本发明涉及一种制作三维微流控芯片的方法,属于微流控技术领域。
背景技术
微流控技术(Microfluidics)将生物、化学实验室功能集成到一枚数厘米尺寸的芯片上,可有效实现分析、检测、反应等多种功能的微型化、自动化、集成化和便携化。现已成为一个生物、化学、医学、电子、机械和材料等多个学科交叉的崭新研究领域。
微流控芯片是微流控技术实现的重要平台,微流控芯片的主要特征是其内部的微通道、反应室、捕获腔等结构尺寸都在微米级。其比表面积的增加使得流体在微米尺度下会显示出区别于宏观尺度下的物理特性。主要表现为高效率的传热-传质性能、粘性力占主导以及更大的表面能。这些新特性推动了微流控芯片在疾病诊断、细胞研究、药物筛选、环境监测、绿色能源和材料合成等领域的广泛应用。其中,具有三维微通道结构的微流控芯片更是由于其表现出的高混合效率而成为微化工等相关领域所关注的焦点。
目前微流控芯片的制作方法主要是利用模塑法,即光刻方法制作出一面带有微纳米尺寸微通道的凸模基底,再在上面浇筑易固化的并使其固化,脱模以后再在带有凹槽的一面盖上同样的高分子材料基底并键合。该方法能够多次快速复制微通道结构,但该方法有许多不足:
(1)只能制作平面结构的微通道,想要制作三维结构只能通过层层平面结构的叠加来实现,稍微复杂的结构便难以实现;
(2)基底的加工步骤复杂、价格昂贵。研究人员和工程师在多数情况下需要通过不断进行实验和修改设计方案才能得到能实现所需功能的微流控芯片结构,多次的基底加工将花费大量的成本。
为了解决现有制作方法的不足,近年来许多专业人员提出了不同的解决方案。申请号为CN201610258525.4的中国发明专利申请公开了一种多层薄膜贴合的三维微流控芯片制作方法,该方法采用分层构造的方式,依次在薄膜上加工出每层的微流道结构。再按照切片顺序在芯片底面上进行贴合,制成三维薄膜微流控芯片。制作的三维微流控芯片具有加工过程灵活、材料成本低、无需芯片键合设备等特点。但是依次贴片使得该方法工艺繁琐,生产效率较低,且实施起来难度较大。
申请号为CN201310203688.9的中国发明专利申请公开了一种聚合物微流控芯片的制备方法。其特征在于该微流控芯片是使用高分子聚合物为原材料,采用3D立体打印技术制备而成。具体的制作步骤包括:1)使用计算机辅助设计软件设计和绘制微流控芯片的三维立体结构模型;2)选择聚合物材料,使用3D打印机直接加工出微流控芯片;3)成型后处理。本发明中提出的基于3D打印技术的聚合物微流控芯片的制备方法,具有加工成本低廉、速度快、周期短、一次成型。然而3D打印的材料往往不具透明性,且微观下表面相对粗糙,不利于对内部流体的流动进行实验观测。
发明内容
基于目前的背景,为了简化现有三维微流控芯片的制作工艺,降低其制作成本,制作出具有复杂结构、低表面粗糙度的三维微流控芯片。本发明选用水溶性材料,基于3D打印技术加工出微流控芯片内部三维流道的中空模型;通过蘸水并迅速烘干处理,降低中空模型的外表面粗糙度;再对聚二甲基硅氧烷(PDMS)进行二次浇筑,待固化后,切除中空结构出、入口的预留封边,利用热水浴使水溶性材料溶解,得到具有三维通道结构、光滑内壁面的微流控芯片。本发明提供的制作方法同时具有实施难度低,步骤简单,成本低廉等优点,制作的三维微流控芯片可具有高度复杂的三维结构,其内表面粗糙度低,可视化程度高。
本发明提供了一种制作三维微流控芯片的方法,包括以下步骤:
步骤(1):利用三维绘图软件绘制微流控芯片内部流道的三维模型;
步骤(2):对三维模型进行3D打印,得到微流控芯片内部流道的3D打印模型,3D打印模型的微流控芯片内部流道设有出入口预留部分;
步骤(3):调配聚二甲基硅氧烷(PDMS)和固化剂的混合液;
步骤(4):将混合液倒入培养皿,再往培养皿放入微流控芯片内部流道的3D打印模型打印模型;
步骤(5):把培养皿放入烘箱,待第一层聚二甲基硅氧烷(PDMS)加热固化;
步骤(6):取出培养皿并倒入第二层聚二甲基硅氧烷(PDMS),后放入烘箱待第二层聚二甲基硅氧烷(PDMS)加热固化;
步骤(7):取出步培养皿中已经固化的聚二甲基硅氧烷(PDMS),切除3D打印模型的出入口预留部分;
步骤(8):将步骤(7)所述的切除后的聚二甲基硅氧烷(PDMS)浸没在热水浴中,待3D打印材料溶解;
步骤(9):将3D打印材料溶解后的聚二甲基硅氧烷(PDMS)芯片烘干,得到三维微流控芯片。
为了更详尽地描述本发明所提供的方法,使得本领域普通技术人员能够顺利实施本方法并得到本发明中所叙述的效果,下面对上述每个步骤作进一步的说明:
所述步骤(1)中,按照需求,设计建立微流控芯片内部流道的三维模型采用Solidworks、Creo或Inventor等商业计算机辅助设计软件绘制。所绘制的三维模型具有内部中空的特征,内部中空有利于步骤(8)中的热水浴的水流进入,加快3D打印材料的溶解速率;
所绘制三维模型具有出、入口封闭的特征,该特征有利于防止步骤(4)中聚二甲基硅氧烷(PDMS)流入三维模型内部的中空区域;所绘制流道三维模型具有预留多余出、入口长度的特征,有利于避免步骤(7)过程中切除内部流道的设计部分;所绘制流道三维模型的通道和局部结构不应具有过小的尺寸,三维模型中各结构的最小尺寸大于250微米,根据3D打印精度适当提高或降低最小尺寸,使各结构尺寸误差保持在设计值的10%以内,以避免尺寸误差影响芯片的设计效果。
步骤(2)中,对三维模型进行3D打印采用现有成熟技术,使用具备25微米或更高打印精度的3D打印机。3D打印所选的耗材具有水溶性的特征,该特征有利于步骤(8)将3D打印材料在热水浴中溶解,使用聚乙烯醇(PVA)材料;3D打印完成以后需将3D打印模型在冷水中轻蘸,并迅速烘干,由于3D打印模型表面粗糙主要是由表面亚微米尺度的小台阶引起的,这些小台阶具有较大的比表面积,接触水分发生溶解后使其发生钝化,降低表面粗糙度,而水温越低,溶解速率越低,冷水可以仅使得具有较大比表面积的小台阶发生溶解变形而不影响3D打印模型的整体设计尺寸,使用小于等于10摄氏度的蒸馏水。
步骤(3)中,将聚二甲基硅氧烷(PDMS)和固化剂按10:1的比例混合。混合液在倒入步骤(4)培养皿后液面高度高于步骤(2)所述的3D打印模型。
步骤(4)中,当先往培养皿中倒入较薄一层的步骤(3)所述混合液,再将步骤(2)所述3D打印模型放入盛有混合液的培养皿。当步骤(2)所述3D打印模型受到的浮力和重力相等时,其有一部分会浸没在混合液中。3D打印模型与培养皿的底部不接触,若触底必须适当倒入步骤(3)所述混合液,使步骤(2)所述3D打印模型悬浮于倒入培养皿的步骤(3)所述混合液中。
步骤(5)中,所述烘箱已有成熟的技术,采用现有的商业产品。加热时间设为30分钟,温度为恒温80摄氏度。
步骤(6)中,所述烘箱已有成熟的技术,采用现有的商业产品。加热时间设为30分钟,温度为恒温80摄氏度。由于步骤(4)中3D打印模型的一部分已经浸没在聚二甲基硅氧烷(PDMS)中,又经过步骤(5)中发生固化,因此当再次倒入聚二甲基硅氧烷(PDMS)时3D打印模型已被固定,不会发生上浮,第二层的聚二甲基硅氧烷(PDMS)必须完全浸没3D打印模型,第二层聚二甲基硅氧烷(PDMS)液面高于3D打印模型4mm,以保证微流控芯片工作时不会因壁面过薄而发生较大变形,影响设计效果。
所述步骤(8)中,热水浴浸没经步骤(7)处理所得到聚二甲基硅氧烷(PDMS)微流控芯片,使得水溶性打印材料聚乙烯醇(PVA)完全接触热水;水温设置为大于等于95摄氏度,,以保证水溶性打印材料聚乙烯醇(PVA)完全溶解。
与现有技术相比,本发明具有如下有益效果。
1、本发明提供一种制作三维微流控芯片的方法,该方法能够实现内部具有高度复杂结构的微流控芯片的制作,精度高,尺寸形状可控。相较于现有基于3D打印技术制作的微流控芯片而言,其通道内表面粗糙度低,进行实验时可实现高度的可视化;
2、本发明提供一种制作三维微流控芯片的方法,制作过程简便快捷,实施难度低,制作效率高,且不需要表面键合等后处理工艺,可提高本专业科研人员和工程师所设计微流控芯片的迭代速度;
3、本发明提供一种制作三维微流控芯片的方法,所选材料价格低廉,能够有效降低微流控芯片的制作成本。相对于模塑法等相对昂贵的加工方式,本发明提出的方法亦可以作为本专业科研人员和工程师廉价的设计试样,用于测试所设计微流控芯片的效果,该益处有利于促进微流控芯片产品的迭代更新。
附图说明
为了更清楚地说明本发明实施中的技术方案,下面对实施例中所需适用的附图作简单说明。显然,所描述的附图只是本发明的一部分实施例而不是全部实施例,相关领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他类似特征的设计方案和设计方案附图。
图1是本发明一种制作三维微流控芯片的方法实施步骤流程图;
图2是本发明一种制作三维微流控芯片的方法实施例中微流控芯片流道的三维模型图;
图3是本发明一种制作三维微流控芯片的方法实施例中流道3D打印模型一部分结构浸没在第一层聚二甲基硅氧烷(PDMS)中的示意图;
图4是本发明一种制作三维微流控芯片的方法实施例中切除预留封边后的内嵌空心打印材料聚乙烯醇(PVA)的微流控芯片示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结果以及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的,特征以及效果。显然,所描述的附图只是本发明的一部分实施例而不是全部实施例,相关领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,以及具有类似特征组合的发明设计,均属于本发明的保护范围。本发明创造中的各个技术特征,在不相互矛盾冲突的前提下可以和其他创造性特征交互组合。
为了更详尽地描述本发明所提供的方法,使得本专业普通技术人员能够顺利实施本方法并得到本发明中所叙述的效果,下面实施例中所提及的附图已放大必要的特征细节,显然,实际微流控芯片产品中各尺寸都是非常小的。
实施例1:
1)使用商业计算机辅助设计软件Solidworks绘制具有内部中空特征的微流控芯片内部流道的三维模型,且三维模型设有出入口预留部分用于后续切除,模型如图2所示。该流道模型为呈螺旋线状,可用于微混合操作,相比平面结构可具有更高的混合效率;
2)使用3D打印机,装上聚乙烯醇(PVA)耗材,将三维模型导入3D打印机,得到聚乙烯醇(PVA)材料的3D打印模型。打开烘箱,设置为80摄氏度,预热20分钟。3D打印完成以后把聚乙烯醇(PVA)3D打印模型放在10摄氏度冷水中轻蘸,并迅速放入预热好的烘箱烘干,烘箱温度设为45摄氏度;
3)按照质量为10:1的比例,调配聚二甲基硅氧烷(PDMS)和固化剂的混合液,将混合液倒入培养皿,液面高度为4mm,再往培养皿放入3D打印模型。当所受浮力等于所受重力时,3D打印模型将有一定下沉,如图3所示。将培养皿放入烘箱,设置为80摄氏度,等待30分钟,待第一层聚二甲基硅氧烷(PDMS)加热固化;
4)取出培养皿并倒入第二层聚二甲基硅氧烷(PDMS),倒入后液面高于3D打印模型最高点5mm。后把培养皿再次放入烘箱加热30分钟,温度为恒温80摄氏度,待第二层聚二甲基硅氧烷(PDMS)加热固化;
5)取出培养皿,取出培养皿中固化的聚二甲基硅氧烷(PDMS),切除3D打印模型出入口预留部分,即切除出入口位置的聚乙烯醇(PVA)封边,如图4所示,将切除预留部分后的聚二甲基硅氧烷(PDMS)浸没在95摄氏度热水浴中,等待1小时,随后用镊子夹住聚二甲基硅氧烷(PDMS)芯片在热水中振荡,直至打印材料完全溶解。将打印材料溶解后的聚二甲基硅氧烷(PDMS)芯片烘干,得到三维微流控芯片。
以上对本发明较佳的实施方式进行了具体说明。需要强调的是,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变型或者替换,这些具有类似特征的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

1.一种制作三维微流控芯片的方法,其特征在于:包括以下步骤:
步骤(1):利用三维绘图软件绘制微流控芯片内部流道的三维模型;
步骤(2):对三维模型进行3D打印,得到微流控芯片内部流道的3D打印模型,3D打印模型的微流控芯片内部流道设有出入口预留部分;
步骤(3):调配聚二甲基硅氧烷和固化剂的混合液;
步骤(4):将混合液倒入培养皿,再往培养皿放入微流控芯片内部流道的3D打印模型打印模型;
步骤(5):把培养皿放入烘箱,待第一层聚二甲基硅氧烷加热固化;
步骤(6):取出培养皿并倒入第二层聚二甲基硅氧烷,后放入烘箱待第二层聚二甲基硅氧烷加热固化;
步骤(7):取出步培养皿中已经固化的聚二甲基硅氧烷,切除3D打印模型的出入口预留部分;
步骤(8):将步骤(7)所述的切除后的聚二甲基硅氧烷浸没在热水浴中,待3D打印材料溶解;
步骤(9):将3D打印材料溶解后的聚二甲基硅氧烷芯片烘干,得到三维微流控芯片。
2.根据权利要求所述的一种制作三维微流控芯片的方法,其特征在于:所述步骤(1)中,按照需求,设计建立微流控芯片内部流道的三维模型采用Solidworks、Creo或Inventor商业计算机辅助设计软件绘制;所绘制的三维模型具有内部中空的特征,内部中空有利于步骤(8)中的热水浴的水流进入,加快3D打印材料的溶解速率。
3.根据权利要求所述的一种制作三维微流控芯片的方法,其特征在于:所绘制三维模型具有出、入口封闭,有利于防止步骤(4)中聚二甲基硅氧烷流入三维模型内部的中空区域;所绘制流道三维模型具有预留多余出、入口长度,有利于避免步骤(7)过程中切除内部流道的设计部分;所绘制流道三维模型的通道和局部结构不具有过小的尺寸,三维模型中各结构的最小尺寸大于250微米。
4.根据权利要求所述的一种制作三维微流控芯片的方法,其特征在于:步骤(2)中,对三维模型进行3D打印,3D打印所选的耗材具有水溶性,有利于步骤(8)将3D打印材料在热水浴中溶解,使用聚乙烯醇材料;3D打印完成以后需将3D打印模型在冷水中轻蘸,并迅速烘干,由于3D打印模型表面粗糙主要是由表面亚微米尺度的小台阶引起的,这些小台阶具有较大的比表面积,接触水分发生溶解后使其发生钝化,降低表面粗糙度,而水温越低,溶解速率越低,冷水可以仅使得具有较大比表面积的小台阶发生溶解变形而不影响3D打印模型的整体设计尺寸,使用小于等于10摄氏度的蒸馏水。
5.根据权利要求所述的一种制作三维微流控芯片的方法,其特征在于:步骤(3)中,将聚二甲基硅氧烷和固化剂按10:1的比例混合;混合液在倒入步骤(4)培养皿后液面高度高于步骤(2)所述的3D打印模型。
6.根据权利要求所述的一种制作三维微流控芯片的方法,其特征在于:步骤(4)中,当先往培养皿中倒入较薄一层的步骤(3)所述混合液,再将步骤(2)所述3D打印模型放入盛有混合液的培养皿;当步骤(2)所述3D打印模型受到的浮力和重力相等时,有一部分会浸没在混合液中;3D打印模型与培养皿的底部不接触,若触底必须适当倒入步骤(3)所述混合液,使步骤(2)所述3D打印模型悬浮于倒入培养皿的步骤(3)所述混合液中。
7.根据权利要求所述的一种制作三维微流控芯片的方法,其特征在于:步骤(5)中,所述烘箱已有成熟的技术,采用现有的商业产品;加热时间设为30分钟,温度为恒温80摄氏度。
8.根据权利要求所述的一种制作三维微流控芯片的方法,其特征在于:步骤(6)中,所述烘箱已有成熟的技术,采用现有的商业产品;加热时间设为30分钟,温度为恒温80摄氏度;由于步骤(4)中3D打印模型的一部分已经浸没在聚二甲基硅氧烷中,又经过步骤(5)中发生固化,因此当再次倒入聚二甲基硅氧烷时3D打印模型已被固定,不会发生上浮,第二层的聚二甲基硅氧烷必须完全浸没3D打印模型,第二层聚二甲基硅氧烷液面高于3D打印模型4mm。
9.根据权利要求所述的一种制作三维微流控芯片的方法,其特征在于:所述步骤(8)中,热水浴浸没经步骤(7)处理所得到聚二甲基硅氧烷微流控芯片,使得水溶性打印材料聚乙烯醇完全接触热水;水温设置为大于等于95摄氏度,以保证水溶性打印材料聚乙烯醇完全溶解。
CN201810248246.9A 2018-03-24 2018-03-24 一种制作三维微流控芯片的方法 Pending CN108554467A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810248246.9A CN108554467A (zh) 2018-03-24 2018-03-24 一种制作三维微流控芯片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810248246.9A CN108554467A (zh) 2018-03-24 2018-03-24 一种制作三维微流控芯片的方法

Publications (1)

Publication Number Publication Date
CN108554467A true CN108554467A (zh) 2018-09-21

Family

ID=63532043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810248246.9A Pending CN108554467A (zh) 2018-03-24 2018-03-24 一种制作三维微流控芯片的方法

Country Status (1)

Country Link
CN (1) CN108554467A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307613A (zh) * 2018-10-18 2019-02-05 中国石油天然气股份有限公司 一种制备人造岩心的方法及装置
CN109622076A (zh) * 2018-12-07 2019-04-16 西安电子科技大学 一种3d打印开设有蜿蜒的微流通道的微流控芯片及其中微流通道的设计方法
CN109674558A (zh) * 2019-03-08 2019-04-26 北京工业大学 一种基于等离子电晕法制备高度光滑和透明主动脉根部的方法
CN109847819A (zh) * 2019-04-09 2019-06-07 厦门大学 含多级微纳结构器件的纳米纤维自支撑增材制造方法
CN109968656A (zh) * 2019-03-18 2019-07-05 北京工业大学 一种基于pdms制备真实弹性模量带瓣主动脉根部的方法
CN110004059A (zh) * 2019-04-11 2019-07-12 西安电子科技大学 一种3d打印类河弯截面微流通道的微流控芯片及微流通道的设计方法
CN110841728A (zh) * 2019-09-30 2020-02-28 武夷学院 一种3d微通道的制作方法
CN111220518A (zh) * 2018-11-23 2020-06-02 中国石油天然气股份有限公司 致密油气岩心模型制造方法及装置
CN114029099A (zh) * 2021-10-15 2022-02-11 东北电力大学 基于高分子溶解技术三维微流控芯片制作平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962107A (zh) * 2012-11-13 2013-03-13 浙江大学 三维微流控芯片的制作方法
CN103273592A (zh) * 2013-05-27 2013-09-04 苏州扬清芯片科技有限公司 一种微流控芯片模具的制备方法
CN103895226A (zh) * 2014-03-24 2014-07-02 浙江大学 基于3d打印的三维微流控芯片的加工方法及打印装置
EP2826814A1 (en) * 2013-07-19 2015-01-21 Danmarks Tekniske Universitet Method of Manufacturing A Porous Polymer Component Involving Use of A Dissolvable, Sacrificial Material
WO2016155760A1 (en) * 2015-03-27 2016-10-06 Wageningen Universiteit A method of manufacturing a microfluidic device
CN107283859A (zh) * 2017-06-14 2017-10-24 上海大学 一种通过3d打印制备分形结构微通道的方法
CN107824232A (zh) * 2017-10-25 2018-03-23 中国科学院电子学研究所 用于肌酐检测的微流控芯片、其制备方法及肌酐检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962107A (zh) * 2012-11-13 2013-03-13 浙江大学 三维微流控芯片的制作方法
CN103273592A (zh) * 2013-05-27 2013-09-04 苏州扬清芯片科技有限公司 一种微流控芯片模具的制备方法
EP2826814A1 (en) * 2013-07-19 2015-01-21 Danmarks Tekniske Universitet Method of Manufacturing A Porous Polymer Component Involving Use of A Dissolvable, Sacrificial Material
CN103895226A (zh) * 2014-03-24 2014-07-02 浙江大学 基于3d打印的三维微流控芯片的加工方法及打印装置
WO2016155760A1 (en) * 2015-03-27 2016-10-06 Wageningen Universiteit A method of manufacturing a microfluidic device
CN107283859A (zh) * 2017-06-14 2017-10-24 上海大学 一种通过3d打印制备分形结构微通道的方法
CN107824232A (zh) * 2017-10-25 2018-03-23 中国科学院电子学研究所 用于肌酐检测的微流控芯片、其制备方法及肌酐检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邹士博: "基于3D打印技术的化学合成的微反应器快速制造工艺研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307613A (zh) * 2018-10-18 2019-02-05 中国石油天然气股份有限公司 一种制备人造岩心的方法及装置
CN111220518A (zh) * 2018-11-23 2020-06-02 中国石油天然气股份有限公司 致密油气岩心模型制造方法及装置
CN111220518B (zh) * 2018-11-23 2022-10-04 中国石油天然气股份有限公司 致密油气岩心模型制造方法及装置
CN109622076A (zh) * 2018-12-07 2019-04-16 西安电子科技大学 一种3d打印开设有蜿蜒的微流通道的微流控芯片及其中微流通道的设计方法
CN109674558A (zh) * 2019-03-08 2019-04-26 北京工业大学 一种基于等离子电晕法制备高度光滑和透明主动脉根部的方法
CN109968656A (zh) * 2019-03-18 2019-07-05 北京工业大学 一种基于pdms制备真实弹性模量带瓣主动脉根部的方法
CN109968656B (zh) * 2019-03-18 2021-05-25 北京工业大学 一种基于pdms制备真实弹性模量带瓣主动脉根部的方法
CN109847819A (zh) * 2019-04-09 2019-06-07 厦门大学 含多级微纳结构器件的纳米纤维自支撑增材制造方法
CN109847819B (zh) * 2019-04-09 2020-10-23 厦门大学 含多级微纳结构器件的纳米纤维自支撑增材制造方法
CN110004059B (zh) * 2019-04-11 2021-10-29 西安电子科技大学 一种3d打印类河弯截面微流通道的微流控芯片及微流通道的设计方法
CN110004059A (zh) * 2019-04-11 2019-07-12 西安电子科技大学 一种3d打印类河弯截面微流通道的微流控芯片及微流通道的设计方法
CN110841728A (zh) * 2019-09-30 2020-02-28 武夷学院 一种3d微通道的制作方法
CN110841728B (zh) * 2019-09-30 2021-09-14 武夷学院 一种3d微通道的制作方法
CN114029099A (zh) * 2021-10-15 2022-02-11 东北电力大学 基于高分子溶解技术三维微流控芯片制作平台
CN114029099B (zh) * 2021-10-15 2022-12-09 东北电力大学 基于高分子溶解技术三维微流控芯片制作平台

Similar Documents

Publication Publication Date Title
CN108554467A (zh) 一种制作三维微流控芯片的方法
CN103895226B (zh) 基于3d打印的三维微流控芯片的加工方法及打印装置
CN107176588B (zh) 一种中空微通道结构的制备方法
CN103920544B (zh) 一种pdms微流控芯片制备方法
CN107442191A (zh) 一种用于油包水液滴生成的离心式微流控芯片
CN104191548B (zh) 一种透明胶带雕刻微流控芯片模具的快速制备方法
CN101598717A (zh) 以水凝胶平面微图案化为基础的液塑法制备聚二甲基硅氧烷芯片的方法
CN109701671A (zh) 一种微液滴阵列芯片及其制造和使用方法
CN102411060A (zh) 一种具有高深宽比微流道的微流控芯片及其制作方法
CN106349487A (zh) 一种具有微流体通道的水凝胶的制备方法
CN108405003B (zh) 一种剥离双乳液滴壳层的微流控芯片及使用方法
CN111974471A (zh) 一种基于3d打印的微流控电学检测芯片加工方法
US20220332048A1 (en) Rapid wash system for additive manufacturing
CN109317224A (zh) 使用数字切割机加工结合液塑法制备微流控芯片的方法
Goodrich et al. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers
CN109025983B (zh) 一种模拟致密油藏微观模型制作方法
CN207680633U (zh) 一种用于油包水液滴生成的离心式微流控芯片
CN104190482B (zh) 以感光干膜为抗腐蚀掩膜制作玻璃微流体装置的方法
KR101053772B1 (ko) 마이크로 플루이딕 칩 몰드를 제조하기 위한 성형 모듈, 이를 이용한 마이크로 플루이딕 칩 몰드 제조 방법 및 이에 의해 제조된 마이크로 플루이딕 칩 몰드
CN113351269B (zh) 一种pdms微流控芯片上半球腔制备工艺
CN105036061A (zh) 下壁面内凹的微通道的制作方法
CN209894658U (zh) 一种细胞分布分析装置
CN108212234A (zh) 一种微流控芯片加工方法以及用于加工该芯片的工具箱
CN105536897A (zh) 上下两壁面可动的微流控芯片的制作方法
KR101106022B1 (ko) 세포 기반 주화성 키트 및 이의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180921