CN108550863B - 一种可自再生乙醇燃料电池阳极催化剂的制备方法 - Google Patents

一种可自再生乙醇燃料电池阳极催化剂的制备方法 Download PDF

Info

Publication number
CN108550863B
CN108550863B CN201810295404.6A CN201810295404A CN108550863B CN 108550863 B CN108550863 B CN 108550863B CN 201810295404 A CN201810295404 A CN 201810295404A CN 108550863 B CN108550863 B CN 108550863B
Authority
CN
China
Prior art keywords
tio
fuel cell
self
pdm
ethanol fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810295404.6A
Other languages
English (en)
Other versions
CN108550863A (zh
Inventor
朱爱梅
刘贤虎
张秋根
刘庆林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810295404.6A priority Critical patent/CN108550863B/zh
Publication of CN108550863A publication Critical patent/CN108550863A/zh
Application granted granted Critical
Publication of CN108550863B publication Critical patent/CN108550863B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种可自再生乙醇燃料电池阳极催化剂的制备方法,依次制备TiO2、f‑TiO2、PdM/f‑TiO2复合材料和可自再生乙醇燃料电池阳极催化剂。以f‑TiO2为催化剂载体,以NaBH4为还原剂一步还原金属Pd与M的前驱体溶液,得PdM/f‑TiO2复合材料。利用电化学溶出法,将部分助催化金属纳米粒子优先溶出,提高催化剂的电化学活性表面积,得具有超高稳定性的、可自再生的乙醇燃料电池阳极PdM/f‑TiO2催化剂。采用环境友好、简单易行的途径制备稳定性超高、可自再生的直接乙醇电催化氧化PdM/f‑TiO2纳米催化剂。为解决直接乙醇燃料电池阳极催化剂价格昂贵、长期稳定性差的问题提供途径。

Description

一种可自再生乙醇燃料电池阳极催化剂的制备方法
技术领域
本发明涉及燃料电池催化剂,尤其是涉及一种可自再生乙醇燃料电池阳极催化剂的制备方法。
背景技术
燃料电池技术实现了对于CO、SOX、NOX等有毒有害物质的零排放,是一种对环境友好、绿色的能源技术。生物乙醇是天然存在物,燃烧产生的CO2量恰巧就是自然界通过光合作用合成乙醇所需要的物质的量,所以乙醇燃烧的温室效应可以忽略。因此直接乙醇燃料电池(DEFC)的研究极具吸引力,但乙醇燃料电池技术的发展受到其催化剂不能大规模工业化的制约。现如今的乙醇燃料电池阳极催化剂因其合成工艺复杂,对设备要求高,且催化剂的长期稳定性不足、不可自再生等,无法实现大规模工业化。因此开发一种简单、快速的,具有超高稳定性的、可自再生乙醇燃料电池阳极催化剂合成方法是广大科研工作者的共同目标。
浸渍还原法是制备PdM/TiO2复合材料的一种常用方法。目前常用的还原剂有NaBH4、水合肼(N2H4·H2O)等。Yue等人利用NaBH4为还原剂制备了Pd-Pedot/graphene系列乙醇燃料电池催化剂(Yue,R.;Wang,H.;Bin,D.;Xu,J.;Du,Y.;Lu,W.;Guo,J.,Facile one-pot synthesis of Pd–PEDOT/graphene nanocomposites with hierarchical structureand high electrocatalytic performance for ethanoloxidation.J.Mater.Chem.A2015,3,1077-1088.),但该方法前期处理步骤复杂,且合成的催化剂稳定性与商用Pd/C催化剂稳定性相比较并没有很大的提升。Ahmed等人利用N2H4·H2O为还原剂制备了PdNi/graphene二元体系催化剂(Ahmed,M.S.;Jeon,S.,Highly ActiveGraphene-Supported NixPd100–x Binary Alloyed Catalysts for Electro-Oxidation ofEthanol in an Alkaline Media.ACS Catal.2014,4,1830-1837.),但该体系催化剂载体合成方法复杂,且合成的催化剂不可自再生。Huang等人用低温溶液法制备了Pd/Ni(OH)2/rGO系列催化剂(Huang,W.;Ma,X.Y.;Wang,H.;Feng,R.;Zhou,J.;Duchesne,P.N.;Zhang,P.;Chen,F.;Han,N.;Zhao,F.;Zhou,J.;Cai,W.B.;Li,Y.,Promoting Effect of Ni(OH)2on Palladium Nanocrystals Leads to Greatly Improved Operation Durability forElectrocatalytic Ethanol Oxidation in Alkaline Solution.Adv Mater 2017,29.),该体系催化剂在电化学性能测试之后经过电化学处理即可恢复活性,但这种需要处理步骤才能恢复活性的方法会增大燃料电池催化剂应用的难度。
发明内容
本发明的目的在于针对现有的乙醇燃料电池长期稳定性不足、不可自再生等问题,提供简单、快速,具有超高稳定性的一种可自再生乙醇燃料电池阳极催化剂的制备方法。
本发明包括以下步骤:
1)制备TiO2
在步骤1)中,所述制备TiO2的具体方法可为:将钛前驱体加入醇类溶剂中,再加入丙酮溶液,继续搅拌,反应后得到乳白色固体,经洗涤、干燥后得到产物TiO2;所述钛前驱体可选自钛酸异丙脂、钛酸四正丁酯、四氯化钛等中的一种;所述醇类溶剂可选自乙二醇、聚乙二醇等中的一种;所述加入丙酮溶液可搅拌8h后快速加入丙酮溶液;所述反应的时间可为1h。
2)制备f-TiO2
在步骤2中,所述制备f-TiO2的具体方法可为:将TiO2分散在乙醇溶液中,加入功能化试剂后搅拌,反应后,经洗涤、干燥即得对应的功能化f-TiO2;所述功能化试剂可采用硅烷偶联剂,所述硅烷偶联剂可选自APTMS、APTES等中的一种。
3)制备PdM/f-TiO2复合材料;
在步骤3)中,所述制备PdM/f-TiO2复合材料的具体方法可为:将步骤2)得到的f-TiO2超声分散于乙二醇中,加入主催化金属Pd前驱体和助金属前驱体,均匀后加入pH调节剂调节体系的pH值,再加入还原剂后,离心、洗涤即得PdM/f-TiO2复合材料;所述助金属(M)可选自Ru、Ni、Sn、Co、Au、Ag等中的一种;所述pH调节剂可为NaOH等,所述还原剂可为NaBH4等;所述加入还原剂可在室温下搅拌3h。
4)制备可自再生乙醇燃料电池阳极催化剂。
在步骤4)中,所述制备可自再生乙醇燃料电池阳极催化剂的具体方法可为:将步骤3)得到的PdM/f-TiO2复合材料溶于H2O中制成溶液,然后制作工作电极,将工作电极置于NaOH溶液中,进行循环扫描(CV),使得部分助金属纳米粒子优先溶出,即得可自再生乙醇燃料电池阳极催化剂,即为PdM/f-TiO2催化剂;所述循环扫描时可在-0.8~0.6V的电势范围内进行。
本发明以f-TiO2为催化剂载体,以NaBH4为还原剂一步还原金属Pd与M(M=Ru、Ni、Sn、Co、Au、Ag…)的前驱体溶液,得PdM/f-TiO2复合材料。利用电化学溶出法,将部分助催化金属纳米粒子优先溶出,提高催化剂的电化学活性表面积,即可得具有超高稳定性的、可自再生的乙醇燃料电池阳极PdM/f-TiO2催化剂。
本发明的优点为:采用环境友好、简单易行的途径制备稳定性超高、可自再生的直接乙醇电催化氧化PdM/f-TiO2纳米催化剂。为解决直接乙醇燃料电池阳极催化剂价格昂贵、长期稳定性差的问题提供途径,为实现直接乙醇燃料电池阳极催化剂的大规模工业化扫清障碍。
附图说明
图1为制备的PdM/f-TiO2复合材料(助金属M=Ru)的电化学活性表面积图;
图2为PdM/f-TiO2复合材料(助金属M=Ru)在电势范围0.4~0.6V进行电化学溶出后得到的PdM/f-TiO2催化剂(助金属M=Ru)的电化学活性表面积图;
图3为制备的PdM/f-TiO2催化剂(助金属M=Ru)的计时电流性能图(稳定性测试),该催化剂循环了15次,总计150000s;
图4为f-TiO2样品的SEM图;
图5为制备的PdM/f-TiO2复合材料(助金属M=Ru)的SEM图;
图6为制备的PdM/f-TiO2催化剂(助金属M=Ru)的SEM图。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
实施例1:
1)取0.5mL正钛酸四乙酯加入10mL乙二醇中,搅拌8h后快速加入50mL的丙酮溶液,继续搅拌,反应1h后得到乳白色固体,经洗涤、干燥后得到产物TiO2
2)取56mg TiO2分散在32mL乙醇溶液中,加入2mL水、2mL氨水,加入1.4mL的功能化试剂APTMS后混合均匀并搅拌,在室温下反应12h后,经洗涤、干燥即得对应的功能化TiO2
3)取10mg f-TiO2超声分散于25mL乙二醇中,加入0.09M PdCl2前驱体溶液0.5mL和0.0303M RuCl3前驱体溶液1.0mL,然后混合均匀,加入NaOH溶液调节体系的pH值至10以上,加入25mL 2mg/mL的NaBH4溶液作为还原剂在室温下搅拌3h,离心、洗涤后即可得PdRu/f-TiO2复合材料。
4)取制得的PdRu/f-TiO2复合材料溶于H2O中制成2mg/mL的溶液,然后制作工作电极。将电极置于NaOH溶液中,在-0.8~0.6V的电势范围内进行循环扫描(CV),使得部分Ru金属纳米粒子优先溶出,即得产物PdRu/f-TiO2催化剂。
制备的PdM/f-TiO2复合材料(助金属M=Ru)的电化学活性表面积图参见图1,PdM/f-TiO2复合材料(助金属M=Ru)在电势范围0.4~0.6V进行电化学溶出后得到的PdM/f-TiO2催化剂(助金属M=Ru)的电化学活性表面积图参见图2;制备的PdM/f-TiO2催化剂(助金属M=Ru)的计时电流性能图(稳定性测试)参见图3;f-TiO2样品的SEM图参见图4;制备的PdM/f-TiO2复合材料(助金属M=Ru)的SEM图参见图5;制备的PdM/f-TiO2催化剂(助金属M=Ru)的SEM图参见图5。
实施例2:
本实施例与实施例1的不同之处在于:步骤(1)所用的钛前驱体溶液为四氯化钛溶液。
实施例3:
本实施例与实施例1的不同之处在于:步骤(1)所用的丙酮中加入了微量的水。
实施例4:
本实施例与实施例1的不同之处在于:步骤(2)所用的助金属前驱体溶液改为0.04M的NiCl2溶液。
实施例5:
本实施例与实施例1的不同之处在于:步骤(2)所用的助金属前驱体溶液改为0.056M的SnCl2溶液。
实施例6:
本实施例与实施例1的不同之处在于:步骤(2)所用的助金属前驱体溶液改为0.038M的HAuCl4溶液。
实施例7:
本实施例与实施例1的不同之处在于:步骤(2)所用的助金属前驱体溶液改为0.04M的AgNO3溶液。
本发明是由Pd作为主催化金属,亲氧性金属M(M=Ru、Ni、Sn、Co、Au、Ag…)为助催化金属,f-TiO2为催化剂载体的Pd基催化体系(PdM/f-TiO2)。以表面功能化的TiO2作为催化剂载体,以NaBH4为还原剂一步还原金属Pd与M(M=Ru、Ni、Sn、Co、Au、Ag…)的前驱体溶液,经过一定时间的沉积后Pd与M(M=Ru、Ni、Sn、Co、Au、Ag…)金属纳米粒子负载在f-TiO2表面,即得PdM/f-TiO2复合材料。在一定的电势范围内,将所制备的PdM/f-TiO2复合材料置于NaOH溶液中进行电化学溶出,即可得具有超高稳定性的、可自再生的乙醇燃料电池阳极PdM/f-TiO2催化剂。本发明简单,快速,且合成过程无加热、冷却环节,有利于催化剂的大规模工业化。

Claims (6)

1.一种可自再生乙醇燃料电池阳极催化剂的制备方法,其特征在于包括以下步骤:
1)制备TiO2:将钛前驱体加入醇类溶剂中,再加入丙酮溶液,继续搅拌,反应后得到乳白色固体,经洗涤、干燥后得到产物TiO2
2)制备f-TiO2:将TiO2分散在乙醇溶液中,加入功能化试剂后搅拌,反应后,经洗涤、干燥即得对应的功能化f-TiO2
3)制备PdM/f-TiO2复合材料:将步骤2)得到的f-TiO2超声分散于乙二醇中,加入主催化金属Pd前驱体和助金属前驱体,均匀后加入pH调节剂调节体系的pH值,再加入还原剂后,离心、洗涤即得PdM/f-TiO2复合材料;
4)制备可自再生乙醇燃料电池阳极催化剂:将步骤3)得到的PdM/f-TiO2复合材料溶于H2O中制成溶液,然后制作工作电极,将工作电极置于NaOH溶液中,进行循环扫描,使得部分助金属纳米粒子优先溶出,即得可自再生乙醇燃料电池阳极催化剂,即为PdM/f-TiO2催化剂。
2.如权利要求1所述一种可自再生乙醇燃料电池阳极催化剂的制备方法,其特征在于在步骤1)中,所述钛前驱体选自钛酸异丙酯、钛酸四正丁酯、四氯化钛中的一种;所述醇类溶剂选自乙二醇、聚乙二醇中的一种。
3.如权利要求1所述一种可自再生乙醇燃料电池阳极催化剂的制备方法,其特征在于在步骤1)中,所述加入丙酮溶液是搅拌8h后快速加入丙酮溶液;所述反应的时间为1h。
4.如权利要求1所述一种可自再生乙醇燃料电池阳极催化剂的制备方法,其特征在于在步骤2)中,所述功能化试剂采用硅烷偶联剂,所述硅烷偶联剂选自APTMS、APTES中的一种。
5.如权利要求1所述一种可自再生乙醇燃料电池阳极催化剂的制备方法,其特征在于在步骤3)中,所述助金属选自Ru、Ni、Sn、Co、Au、Ag中的一种;所述pH调节剂为NaOH,所述还原剂为NaBH4;所述加入还原剂是在室温下搅拌3h。
6.如权利要求1所述一种可自再生乙醇燃料电池阳极催化剂的制备方法,其特征在于在步骤4)中,所述循环扫描时是在-0.8~0.6V的电势范围内进行。
CN201810295404.6A 2018-04-04 2018-04-04 一种可自再生乙醇燃料电池阳极催化剂的制备方法 Expired - Fee Related CN108550863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810295404.6A CN108550863B (zh) 2018-04-04 2018-04-04 一种可自再生乙醇燃料电池阳极催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810295404.6A CN108550863B (zh) 2018-04-04 2018-04-04 一种可自再生乙醇燃料电池阳极催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN108550863A CN108550863A (zh) 2018-09-18
CN108550863B true CN108550863B (zh) 2020-05-08

Family

ID=63514165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810295404.6A Expired - Fee Related CN108550863B (zh) 2018-04-04 2018-04-04 一种可自再生乙醇燃料电池阳极催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108550863B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040143A2 (en) * 2000-11-10 2002-05-23 The Ohio State University Catalyst and method of use in the reduction of nitrogen oxides using lower hydrocarbons
CN103657643A (zh) * 2013-10-10 2014-03-26 南京工业大学 一种制备纳米钯金属催化剂的方法
CN104043451A (zh) * 2014-06-11 2014-09-17 上海电力学院 一种具有氨基修饰的Pd/TiO2/C纳米复合催化剂的制备方法
CN104888767A (zh) * 2014-03-05 2015-09-09 中国科学院大连化学物理研究所 一种贵金属氧化物催化剂及其制备和应用
CN106910900A (zh) * 2017-02-28 2017-06-30 上海电力学院 一种APTMS功能化的Pd基燃料电池催化剂及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040143A2 (en) * 2000-11-10 2002-05-23 The Ohio State University Catalyst and method of use in the reduction of nitrogen oxides using lower hydrocarbons
CN103657643A (zh) * 2013-10-10 2014-03-26 南京工业大学 一种制备纳米钯金属催化剂的方法
CN104888767A (zh) * 2014-03-05 2015-09-09 中国科学院大连化学物理研究所 一种贵金属氧化物催化剂及其制备和应用
CN104043451A (zh) * 2014-06-11 2014-09-17 上海电力学院 一种具有氨基修饰的Pd/TiO2/C纳米复合催化剂的制备方法
CN106910900A (zh) * 2017-02-28 2017-06-30 上海电力学院 一种APTMS功能化的Pd基燃料电池催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN108550863A (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
He et al. Identification of FeN4 as an efficient active site for electrochemical N2 reduction
Shi et al. Au sub‐nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions
Shi et al. Rational catalyst design for N2 reduction under ambient conditions: strategies toward enhanced conversion efficiency
Du et al. Critical assessment of the electrocatalytic activity of vanadium and niobium nitrides toward dinitrogen reduction to ammonia
Qi et al. Efficient photoredox-mediated C–C coupling organic synthesis and hydrogen production over engineered semiconductor quantum dots
Zhen et al. Fabrication of low adsorption energy Ni–Mo cluster cocatalyst in metal–organic frameworks for visible photocatalytic hydrogen evolution
Huang et al. Photoimmobilized Ni clusters boost photodehydrogenative coupling of amines to imines via enhanced hydrogen evolution kinetics
Song et al. Selective photocatalytic synthesis of haloanilines from halonitrobenzenes over multifunctional AuPt/monolayer titanate nanosheet
CN102078811B (zh) 均相沉淀-原位还原法制备炭载Pd纳米粒子催化剂的方法
CN102891326A (zh) 氮掺杂中空碳球负载的钯基催化剂及其制备方法和应用该催化剂的乙醇燃料电池
Koh et al. Turning water from a hindrance to the promotor of preferential electrochemical nitrogen reduction
CN101862656A (zh) 用于甲醛溶液催化制氢的负载型纳米铜磁性催化剂及其制备方法
CN101143330B (zh) 一种纳米晶WC-Co-Ni催化剂
Shilpa et al. Co–Ni layered double hydroxide for the electrocatalytic oxidation of organic molecules: An approach to lowering the overall cell voltage for the water splitting process
Ma et al. An efficient metal-free photocatalytic system with enhanced activity for NADH regeneration
CN105837391B (zh) 一种无金属加氢催化剂在催化苯加氢反应中的应用
Zhang et al. Photocatalytic chemoselective transfer hydrogenation of quinolines to tetrahydroquinolines on hierarchical NiO/In2O3–CdS microspheres
Yang et al. Decorating Zn0. 5Cd0. 5S with C, N co-doped CoP: An efficient dual-functional photocatalyst for H2 evolution and 2, 5-diformylfuran oxidation
Jafarpour et al. Tandem photocatalysis protocol for hydrogen generation/olefin hydrogenation using Pd-g-C3N4-Imine/TiO2 nanoparticles
Sun et al. Amine-functionalized carbon bowl-supported Pd-La (OH) 3 for formic acid dehydrogenation
CN107008478A (zh) 一种磁性纳米催化剂的制备方法
Gong et al. Ni–Co Alloy Nanoparticles Catalyze Selective Electrochemical Coupling of Nitroarenes into Azoxybenzene Compounds in Aqueous Electrolyte
Kar et al. Pd-Embedded Ti metal–organic framework nanostructures for photocatalytic reductive N-Formylation of nitroarenes in water
Zhang et al. Electrocatalytic reductive amination and simultaneous oxidation of biomass-derived 5-hydroxymethylfurfural
Su et al. Nitrogen and phosphorus dual-coordinated single-atom Mn: MnN2P active sites for catalytic transfer hydrogenation of nitroarenes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200508