CN108535365B - 方形管道外检测电磁超声探伤换能器结构 - Google Patents

方形管道外检测电磁超声探伤换能器结构 Download PDF

Info

Publication number
CN108535365B
CN108535365B CN201810331439.0A CN201810331439A CN108535365B CN 108535365 B CN108535365 B CN 108535365B CN 201810331439 A CN201810331439 A CN 201810331439A CN 108535365 B CN108535365 B CN 108535365B
Authority
CN
China
Prior art keywords
coil
magnet
detection
electromagnetic ultrasonic
protection cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810331439.0A
Other languages
English (en)
Other versions
CN108535365A (zh
Inventor
邢燕好
张佳
孙自强
吴丹
杨理践
高松巍
桂珺
李飞
徐加欣
周宇浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201810331439.0A priority Critical patent/CN108535365B/zh
Publication of CN108535365A publication Critical patent/CN108535365A/zh
Application granted granted Critical
Publication of CN108535365B publication Critical patent/CN108535365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明属于电磁超声检测领域,涉及一种方形管道外检测电磁超声探伤换能器结构,包括固定板、磁铁、保护筒和线圈,其特征在于:所述磁铁包括上下左右四块矩形磁铁,固定板有两个,磁铁固定于两个固定板之间,保护筒位于磁铁内部并与磁铁紧贴,保护筒内设有方形的线圈,线圈的导线为等间距折线形排列,相邻导线的电流方向相反。对线圈通以交变电流,在工件近表面内部形成涡流;磁铁产生偏置磁场,在偏置磁场的作用下,交变涡流受到交变洛伦兹力;涡流质点在交变洛伦兹力的作用下,形成机械振动,产生超声波进而完成不同情况下对管道有无损伤的判定。

Description

方形管道外检测电磁超声探伤换能器结构
技术领域
本发明属于电磁超声波无损检测技术应用领域,具体涉及一种有探伤作用的方形管道外检测电磁超声探伤换能器结构。
背景技术
金属是人类应用最早的材料之一,其冶炼、加工、应用技术的提高也伴随着人类历史的向前发展。现代人们的生活离不开金属,现代工业中金属更是有着举足轻重的作用。金属材料的应用涉及国民经济的各个领域:高层建筑、深层地下和海洋设施、大跨度重载桥梁、轻型节能汽车、高速船舶、石油开采和长距离油气输送管线、大型储存容器、工程机械、精密仪器、航空航天、高速铁路、能源设施等。因此,金属材料不仅关系到国家的经济发展,同时也起到了维护国家安全的作用。金属板材是工业生产的主要形式,是众多工业领域中必不可少的原材料,航天工业、汽车制造、精密仪表等行业对金属板材质量要求较高,其表面质量的好坏,如制造过程中的表面刮伤、孔洞、分层,或使用过程中的裂纹、腐蚀等缺陷,会直接影响设备的运行性能和使用寿命,甚至带来安全隐患。因此,金属板材在使用之前,需要进行质量检测,即使投入使用之后,也要定期对其表面状态进行监测。无损检测技术作为一种缺陷检测方式,利用物质的声、光、磁和电等特性,在不损害被检测对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷大小,位置,性质和数量等信息,在工业生产中提升了产品的质量,保证了生产安全,对改进制造工艺、保证设备可靠运转具有重要意义。
常用的探伤检测方法可分为:射线探伤、漏磁探伤、渗透探伤、超声波探伤等。射线探伤是利用X射线的穿透性,射线探伤对被检工件的要求不高,可用于复杂复合材料等的厚度检测,但放射源会对人体带来危害,检测时对防护要求很高,这使得应用该种方法时,对现场的检测环境及防护成本都非常高,不利于一般情况下的推广使用。漏磁探伤是利用工件磁化时表面或近表面缺陷处磁阻增大而产生漏磁进行检测,适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。渗透检测利用毛细现象使渗透液渗入缺陷,经清洗使表面渗透液去除再吸附出缺陷中残留渗透液而达到检验缺陷的目的,但不适用于结构疏松的粉末冶金零件及其他多孔性材料,相比以上三种检测方法,利用超声波的特性进行探伤检测具有波的发射回收简单、重复性好、对工件要求不高、抗干扰能量强、适用环境广的众多优点。超声法在金属无损检测、测厚方面受到人们的追捧。超声波在工业、医疗、海洋探测等方向的研究越来越深入,并广泛的应用于相关领域。
传统的压电超声检测方法是一种比较成熟的无损检测方法,是利用压电陶瓷的压电效应工作的。以其结构简单、换能效率高、使用方便等特点,已经广泛的应用于各个领域。但由于其使用过程中必须使用耦合剂,而耦合剂具有高温下不稳定、易挥发等特点,使其在高温检测方面无法适用。而且其检测时对被测物体的表面要求较高,一旦表面光洁度不够还需要对其进行打磨,这大大限制了压电超声在在线检测方面的应用。
电磁超声(简称EMAT),是无损检测领域出现的新技术,该技术利用电磁耦合法激励和接收超声波。相对于常规超声波检测,电磁超声具有以下优点:1.非接触检测,不需要耦合剂。2.产生波形形式多样,适合做表面缺陷检测。EMAT在检测的过程中满足一定的激发条件时,会产生表面波、SH波和Lamb波等,可以实现波形模式的选择。3.适合高温检测。4.对被探工件表面质量要求不高。5.检测速度快。6.声波传播距离远。7.所用通道与探头数量少。8.发现自然缺陷的能力强,EMAT对于钢管表面存在的折叠、重皮、孔洞等不易检出的缺陷都能准确发现。因此,在工业应用中,电磁超声越来越受到人们的关注和重视,超声探伤的应用已经扩展到高温、高速和在线检测等领域,是无损检测的发展前沿技术之一。
国内首先进行电磁超声换能器应用研究的是北京钢铁研究总院的张广纯教授等人,1977年他们利用高频脉冲发射器获得大的激发电流,在钢板和铝板中激发出超声波,能够清晰地获得人工和自然缺陷的回波。清华大学的黄松岭教授等人设计了一种基于磁致伸缩原理的电磁超声裂纹检测系统,北京航空航天大学的周正干教授等人提出了一种电磁超声和涡流组合检测的新方法,利用电磁超声激励信号在被测金属表面感生出的涡流实现表面和近表面缺陷的涡流检测,还可以对试件进行超声波检测,同时还提出一种基于超外差接收正交相敏检波技术的电磁超声信号处理方法,在电磁超声检测中可以起到去噪、提高信噪比的作用。
但是在过往的研究中,并没有针对可以应用于工业生产,实时监测等实际情况下的电磁超声探伤换能器进行设计研究。实际应用时,可能需要面对湿度变化大、温差大、多尘、多灰、偶发的机械碰撞等多种多样的环境变化,这要求所设计出的电磁超声探伤换能器可以在多变的实际生产检测环境中始终保持检测的高可靠性和高精确性。
发明内容
发明目的
为了实现对方形管道有无损伤的测量,提高方形管道探伤检测时的精度,增加测量结果的可靠性,延长线圈在工程应用时的使用寿命。提供了一种方形管道外检测电磁超声探伤换能器结构,保证实际工业生产中具有高可靠性和高精确性。
技术方案
一种方形管道外检测电磁超声探伤换能器结构,包括固定板、磁铁、保护筒和线圈,其特征在于:所述磁铁包括上下左右四块矩形磁铁,固定板有两个,磁铁固定于两个固定板之间,保护筒位于磁铁内部并与磁铁紧贴,保护筒内设有方形的线圈,线圈的导线为等间距折线形排列。
所述保护筒包括内保护筒和外保护筒,内保护筒位于线圈的内侧,外保护筒位于线圈的外侧。
所述磁铁为四块矩形磁铁组成的具有矩形腔体的组合体,上下两块矩形磁铁相同,左右两块矩形磁铁相同,由四个绝缘胶块填充磁铁外部四个角部,磁铁和绝缘胶块外轮廓呈正方形,每块磁铁和绝缘胶块上均贯穿有螺孔。
所述线圈引出的导线包覆有一个固定件,固定件一端设有导线通道另一端设有接插件固定槽,导线通道与接插件固定槽连通,接插件固定槽安装有接插件,线圈引出的导线穿过固定件与接插件连接固定在一起。
所述固定板、绝缘胶块、磁铁、保护筒和线圈通过螺钉或螺栓相紧固。
所述线圈是由单根导线组成的方形线圈,线圈为单根交错相对应等间距折线形排列。
所述线圈是由双根或多根导线组成的方形线圈,线圈为多根交错相对应等间距折线形排列。
所述线圈的单根导线是由多根细导线排列固定组成的扁平式导线。
所述保护筒加工有多个透气孔。
优点及效果
本发明方形管道外检测电磁超声探伤换能器结构,具有如下优点:
换能器的固定筒设计并采用绝缘树脂材料,有一定柔软性和粘滞性,可以使线圈和固定筒、磁铁和固定筒相互贴合没有缝隙,提高测量精度和系统可靠性,固定筒可以缓冲受到的热震和机械冲击,保护线圈,延长线圈使用寿命,实现工程检测应用;
不同布线方式线圈的设计使用可以满足实际工程检测时出现的需求,可以选择收发一体式或收发分离式线圈设计,灵活应对不同情况下判断损伤的需求。
附图说明
图1是本发明总装图;
图2是本发明结构爆炸图;
图3是收发一体探伤线圈图;
图4是收发一体探伤线圈搭配的固定件结构图;
图5是接插件结构图;
图6是收发分离探伤线圈图;
图7是单根导线剖视图。
附图标记说明:
1.固定板、2.绝缘胶块、3.磁铁、4.保护筒、5.线圈、6.固定件、7.导线通道、8.接插件固定槽、9.接插件。
具体实施方式
下面结合附图对本发明做进一步的说明:
如图1、图2、图3、图4、图5和图6所示,一种方形管道外检测电磁超声探伤换能器结构,包括固定板1、磁铁3、保护筒4和线圈5,保护筒4加工有多个透气孔,装置产生振动保证换能器内腔和换能器外侧气压平衡,保持线圈形状稳定,保持检测精确度。保护筒4包括内保护筒4-1和外保护筒4-2,内保护筒4-1位于线圈5的内侧,外保护筒4-2位于线圈5的外侧。磁铁3为四块矩形磁铁组成的具有矩形腔体的组合体,上下两块矩形磁铁相同,左右两块矩形磁铁相同,由四个绝缘胶块2填充磁铁3外部四个角部,磁铁3和绝缘胶块2外轮廓呈正方形,每块磁铁3和绝缘胶块2上均贯穿有螺孔。四个绝缘胶块2填充磁铁3外部四个角部的结构使得磁铁3在使用时发生的振动被绝缘胶块2吸收,加长磁铁的使用寿命,使得检测更为精准。固定板1有两个,磁铁3固定于两个固定板1之间,保护筒4位于磁铁3内部并与磁铁3紧贴,保护筒4内设有方形的线圈5,线圈5的导线为等间距折线形排列,相邻导线的电流方向相反。线圈5引出的导线包覆有一个固定件6,固定件6一端设有导线通道7另一端设有接插件固定槽8,导线通道7与接插件固定槽8连通,接插件固定槽8安装有接插件9,线圈5引出的导线穿过固定件6与接插件9连接固定在一起。线圈5是由单根、双根或多根导线组成的方形线圈,线圈5为交错相对应等间距折线形排列。如图7所示,线圈5的单根导线是由多根细导线排列固定组成的扁平式导线。保护筒4和固定件6为绝缘树脂材料。绝缘树脂材料具有较好柔软性、较高粘滞性的特点,可以紧贴磁铁,不产生空隙,对电磁超声换能器的精度不产生影响,良好的电气性能、较低的放热性使得固定筒的使用不会对系统稳定性产生影响,分离式的固定筒的可以当线圈损坏时只更换线圈,降低成本。
固定板1、绝缘胶块2、磁铁3、保护筒4和线圈5通过螺钉或螺栓相紧固。
上述保护筒4可以是分离式保护筒也可以是浇注一体式把线圈包覆在内的保护筒。浇注式保护筒使用软性及半软性绝缘树脂材料,浇注成未填充系统,在浇注式固定筒中注入缠绕紧密的线圈,软性及半软性绝缘树脂系统对零件造成的应力最小,可以缓冲受到的热震及机械冲击,浇注式固定筒安装简单,固定筒与线圈之间没有缝隙,可以保证更高的精度和稳定性,不会随撞击次数的增多而产生错位。
实际生产中,无法对中空方形环状磁铁进行注磁,所以采用四块方形磁铁拼接,由绝缘胶块填充,既满足磁场强度,又将经济利益最大化。
本发明工作原理如下:
方形管道外检测电磁超声探伤换能器线圈等间距蛇形排列,相邻导线电流方向相反,检测时,对线圈通以交变电流,磁铁产生交变偏置磁场,磁感线方向垂直于管壁指向径内,处于交变磁场中的金属导体,其内部将产生涡流,同时由于任何电流在磁场中受到洛伦兹力的作用,而金属介质在交变应力的作用下将产生应力波,频率在超声波范围内的应力波即为超声波。与此相反,由于此效应呈现可逆性,返回声压使质点的振动在磁场作用下也会使涡流线圈两端的电压发生变化,因此可以通过接收装置进行接收并放大显示。以此判定方形管道有无损伤,内外固定筒使线圈和磁铁间没有空隙,提高了测量精度和系统的可靠性,固定壳选择以环氧树脂材料为代表的绝缘树脂材料,密度小,比强度和比模量高,减轻构件重量,避免因共振而产生的早期破损,在实际检测过程中缓冲一定当量的机械冲击,保护线圈,延长线圈使用寿命,磁铁及其固定系统,线圈及其保护系统,前固定板,后固定板组成的方形管道外检测电磁超声探伤换能器实际检测时放置于方形管道外壁,解决了方形管道坯料的探伤检测,保证了生产线生产出的方形管道较高的完好性以及方形管道端口不具有开放性条件下进行探伤检测的检测工程应用的技术难题。
实施例1
收发一体式探伤线圈采用单股周向折线形布线设计,厚度0.05mm、宽1mm的导线(以一条高65mm基准线为轴),缠绕成一空心正方体体结构,导线伸入端位于正方体侧面上,长度与正方体边长相等,布线时导线在距伸入端0.8mm处呈折线形弯折,缠绕成的空心正方体结构边长65mm,相邻导线间距2mm。
采用该线圈的换能器结构伸到管道外侧,能够探测出管道缺陷。
实施例2
收发分离式探伤线圈采用双股折线形布线设计,两股厚度0.05mm、宽1mm的导线平行嵌套,(以一条高65mm基准线为轴),缠绕成一空心正方体结构,两股导线伸入端相互平行且相距1.5mm,均位于正方体侧面上,长度与正方体高相等,布线时导线在距伸入端0.8mm处呈几字型弯折,单股相邻导线间距2mm,双股间相邻导线间距0.5mm(相邻导线间距0.5mm),缠绕成的空心正方体结构边长65mm。
采用该线圈的换能器结构伸到管道外侧,能够探测出管道缺陷。
以上内容是结合优选技术方案对本发明所做的详细说明,不能认定发明的具体实施仅限于这些,对于在不脱离本发明思想前提下做出的简单推演及替换,都应当视为本发明的保护范围。

Claims (4)

1.一种方形管道外检测电磁超声探伤换能器结构,包括固定板、磁铁、保护筒和线圈,其特征在于:所述磁铁包括上下左右四块矩形磁铁,固定板有两个,磁铁固定于两个固定板之间,保护筒位于磁铁内部并与磁铁紧贴,保护筒内设有方形的线圈,线圈的导线为等间距折线形排列,所述磁铁为四块矩形磁铁组成的具有矩形腔体的组合体,上下两块矩形磁铁相同,左右两块矩形磁铁相同,由四个绝缘胶块填充磁铁外部四个角部,磁铁和绝缘胶块外轮廓呈正方形,每块磁铁和绝缘胶块上均贯穿有螺孔;
所述固定板、绝缘胶块、磁铁、保护筒和线圈通过螺钉或螺栓相紧固;
所述保护筒加工有多个透气孔。
2.根据权利要求1所述的方形管道外检测电磁超声探伤换能器结构,其特征在于:所述保护筒包括内保护筒和外保护筒,内保护筒位于线圈的内侧,外保护筒位于线圈的外侧。
3.根据权利要求1所述的方形管道外检测电磁超声探伤换能器结构,其特征在于:所述线圈引出的导线包覆有一个固定件,固定件一端设有导线通道另一端设有接插件固定槽,导线通道与接插件固定槽连通,接插件固定槽安装有接插件,线圈引出的导线穿过固定件与接插件连接固定在一起。
4.根据权利要求1所述的方形管道外检测电磁超声探伤换能器结构,其特征在于:所述线圈的单根导线是由多根细导线排列固定组成的扁平式导线。
CN201810331439.0A 2018-04-13 2018-04-13 方形管道外检测电磁超声探伤换能器结构 Active CN108535365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810331439.0A CN108535365B (zh) 2018-04-13 2018-04-13 方形管道外检测电磁超声探伤换能器结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810331439.0A CN108535365B (zh) 2018-04-13 2018-04-13 方形管道外检测电磁超声探伤换能器结构

Publications (2)

Publication Number Publication Date
CN108535365A CN108535365A (zh) 2018-09-14
CN108535365B true CN108535365B (zh) 2020-10-23

Family

ID=63480412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810331439.0A Active CN108535365B (zh) 2018-04-13 2018-04-13 方形管道外检测电磁超声探伤换能器结构

Country Status (1)

Country Link
CN (1) CN108535365B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618200B (zh) * 2019-08-28 2022-04-26 江苏大学 一种基于特征导波的焊缝缺陷检测阵列式传感器柔性探头
CN112414337A (zh) * 2020-12-01 2021-02-26 湖北工业大学 一种外穿过式环形阵列电磁超声测厚探头
CN117969669B (zh) * 2024-03-29 2024-05-28 江苏三合声源超声波科技有限公司 一种六角型方管自动超声波探伤检测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196713A (ja) * 1996-01-16 1997-07-31 Mitsubishi Heavy Ind Ltd 音響センサ据付交換治具
CN104122330A (zh) * 2014-07-22 2014-10-29 华中科技大学 基于电磁超声纵向导波的管道缺陷检测方法与装置
CN204731207U (zh) * 2015-05-07 2015-10-28 中国神华能源股份有限公司 一种适用于电站管线结构监测的超声导波换能器及其模具
CN205844277U (zh) * 2016-07-15 2016-12-28 武汉大学 一种新型超声导波换能器
CN206696244U (zh) * 2017-05-05 2017-12-01 湖州市特种设备检测研究院 一种检测管道缺陷的电磁超声探头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895856A (en) * 1994-08-02 1999-04-20 The United States Of America As Represented By The Secretary Of Commerce Electromagnetic acoustic transducer and methods of determining physical properties of cylindrical bodies using an electromagnetic acoustic transducer
JP5618223B2 (ja) * 2011-06-22 2014-11-05 新日鐵住金株式会社 超音波探傷方法、及び超音波アレイ探触子
GB201419219D0 (en) * 2014-10-29 2014-12-10 Imp Innovations Ltd Electromagnetic accoustic transducer
CN105992108A (zh) * 2015-02-03 2016-10-05 孙振华 自滤波电磁密封低音换能器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196713A (ja) * 1996-01-16 1997-07-31 Mitsubishi Heavy Ind Ltd 音響センサ据付交換治具
CN104122330A (zh) * 2014-07-22 2014-10-29 华中科技大学 基于电磁超声纵向导波的管道缺陷检测方法与装置
CN204731207U (zh) * 2015-05-07 2015-10-28 中国神华能源股份有限公司 一种适用于电站管线结构监测的超声导波换能器及其模具
CN205844277U (zh) * 2016-07-15 2016-12-28 武汉大学 一种新型超声导波换能器
CN206696244U (zh) * 2017-05-05 2017-12-01 湖州市特种设备检测研究院 一种检测管道缺陷的电磁超声探头

Also Published As

Publication number Publication date
CN108535365A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN103353479B (zh) 一种电磁超声纵向导波与漏磁检测复合的检测方法
CN201322742Y (zh) 超声导波复合式无损检测装置
US5457994A (en) Nondestructive evaluation of non-ferromagnetic materials using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions
CN108535365B (zh) 方形管道外检测电磁超声探伤换能器结构
CN108088900B (zh) 一种用于管道内检测的多功能复合探头
CN105758938B (zh) 550℃高温金属材料电磁超声体波探伤方法及其装置
CN101666783A (zh) 超声导波复合式无损检测方法及其装置
CN101281171B (zh) 高速线材电磁超声导波检测系统及其检测方法
CN112985647B (zh) 一种管道弯曲应力检测装置
Kwun et al. Long-range guided wave inspection of structures using the magnetostrictive sensor
CN102661995A (zh) 一种电磁超声与漏磁复合的检测方法
CN108225228B (zh) 圆形管道内检测电磁超声测厚换能器结构
CN115389621A (zh) 管内非接触电磁声式扭转模态导波换能系统及测试方法
CN108508089A (zh) 圆形管道外检测电磁超声探伤换能器结构
Tang et al. Physical coupling fusion sensing of MFL-EMAT for synchronous surface and internal defects inspection
CN108680650B (zh) 方形管道内检测电磁超声探伤换能器结构
CN108760896B (zh) 圆形管道内检测电磁超声探伤换能器结构
Sukhorukov Magnetic flux leakage testing method: Strong or weak magnetization?
CN108692683A (zh) 圆形管道外检测电磁超声测厚换能器结构
Liying et al. Comparison of Magnetic Flux Leakage (MFL) and Acoustic Emission (AE) techniques in corrosion inspection for pressure pipelines
CN108534721B (zh) 方形管道外检测电磁超声测厚换能器结构
CN207908434U (zh) 一种用于管道内检测的多功能复合探头
CN109470774A (zh) 基于铝板缺陷检测的超声导波聚焦换能器
CN110375687B (zh) 方形管道内检测电磁超声测厚换能器结构
CN1268922C (zh) 海洋平台结构缺陷的电磁导波检测装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant