CN108527744A - 基于微流芯片的可控纳米材料合成反应器 - Google Patents

基于微流芯片的可控纳米材料合成反应器 Download PDF

Info

Publication number
CN108527744A
CN108527744A CN201710134012.7A CN201710134012A CN108527744A CN 108527744 A CN108527744 A CN 108527744A CN 201710134012 A CN201710134012 A CN 201710134012A CN 108527744 A CN108527744 A CN 108527744A
Authority
CN
China
Prior art keywords
pdms
nano
raceway groove
mold
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710134012.7A
Other languages
English (en)
Other versions
CN108527744B (zh
Inventor
刘国华
殷然
张姗
李逸君
方欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201710134012.7A priority Critical patent/CN108527744B/zh
Publication of CN108527744A publication Critical patent/CN108527744A/zh
Application granted granted Critical
Publication of CN108527744B publication Critical patent/CN108527744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/38Moulds, cores or other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

本发明主要研究了微流控技术在纳米合成领域的应用,本项目介绍的是为得到大小可控的纳米颗粒,利用微流沟道的独特物理特性,通过改变微流沟道的形态设计使反应液的有效混合,从而能够以更高的效率合成纳米粒子,实现纳米材料的可控合成的反应器。以纳米银颗粒的合成为例,对不同的反应溶液浓度及比例合成的纳米材料进行吸收光谱分析和TEM分析表明,该银纳米颗粒的平均直径可由反应试剂浓度控制。

Description

基于微流芯片的可控纳米材料合成反应器
技术领域
本发明实现了微流控技术在纳米合成领域的应用,介绍的是为得到大小可控的纳米颗粒,利用微流沟道的独特物理特性,通过改变微流沟道的物理特性使反应液的有效混合,从而能够以更高的效率合成纳米粒子,实现纳米材料的可控合成的反应器。以纳米银颗粒的合成为例,对不同的反应溶液浓度及比例合成的纳米材料进行吸收光谱分析和TEM分析表明,该银纳米颗粒的平均直径可由反应试剂浓度控制。属于贵金属纳米合成领域。
背景技术
金属纳米材料在很多领域都有应用,其中银纳米材料既具有金属材料的一些共性,又具有其本身的一些特性(如很强的抗菌性能)。而铁原子极易被还原,用化学还原法可将银盐中的银离子还原为银原子,从而制备出银纳米粒子。采用不同的还原剂和修饰剂可以合成粒径大小不同的银纳米。
微流控(Microfluidics)指的是使用尺寸为数十到数百微米的微管道,处理或操纵微小流体(体积为纳升到阿升)的系统所涉及的科学和技术,是一门涉及化学、流体物理、微电子、新材料、生物学和生物医学工程的新兴交叉学科。因为具有微型化、集成化等特征,微流控装置通常被称为微流控芯片,也被称为芯片实验室和微全分析系统(micro-TotalAnalytical System)。微流控的早期概念可以追溯到19世纪70年代采用光刻技术在硅片上制作的气相色谱仪,而后又发展为微流控毛细管电泳仪和微反应器等。
发明内容
本产品使用LPKF ProtoMat H100刻板机对有机玻璃的表面进行图样的加工,下模具的四边比中间高0.2毫米,使得下模具表面可以覆盖一层0.2毫米厚的PDMS。下模具一侧有3个输入孔,另一侧为1个输出孔。直径为0.6毫米的小孔用于插入注射器针管,与外导管相连接;上模具的四边比中间高2毫米,中间的凸起对应于微流沟道的内尺寸,沟道末端四个凸起与下模具的4个小孔对应。采用了浇铸成型的加工工艺,该工艺具有制作方法简单、制作成本低、制作周期短等特点,同时能够满足实验所要求的实验精度。
附图说明
图1是微流沟道实物图
图2是微流沟道PMMA下模具
图3是微流沟道PMMA上模具
具体实施方式
具体制作流程如下:
(1)取PDMS与固化剂以12∶1的比例混合,在干净的烧杯中充分搅拌。
(2)将得到的混合液放在真空泵中抽空气,等待混合液中的气泡消失,直至混合物变为无色透明,这是为了防止在做PDMS沟道时因为气泡导致制作沟道的质量不好。
(3)在PMMA下基底和微流沟道模具上涂上一层混合物,并用玻璃片抹平;然后将涂抹混合液的模板放在真空泵中抽空气,排除气泡。
(4)将基底和模具放置在干燥器中干燥,约30分钟后拿出基底,此时基底上的PDMS还有一定的粘度,约60分钟后拿出模具,此时模具上的PDMS已经固化成型。
(5)用微型钻头将基底的4个小孔中的多余PDMS去除,以防止多余的PDMS堵塞微流沟道。将PDMS从微流沟道的模具中脱模,注意脱模过程中要防止PDMS破裂,然后将其放置在基底的PDMS上,并对准位置,使微流沟道与下基底粘合在一起。用液态PDMS对其做密封处理后放回烘干箱,加热20分钟,PDMS微流沟道得以制作完成。

Claims (4)

1.基于微流芯片的可控纳米材料合成反应器,即为得到大小可控的纳米颗粒,利用微流沟道的独特物理特性,从而能够以更高的效率合成纳米粒子,实现纳米材料的可控合成的反应器,其特征在于:
a.纳米粒子合成的位置在微流沟道
b.可以通过控制反应物浓度调整合成产品的形态。
2.以纳米银颗粒的合成为例,对不同的反应溶液浓度及比例合成的纳米材料进行吸收光谱分析和AFM分析表明,该银纳米颗粒的平均直径可由反应试剂浓度控制。
3.根据权利要求1a所述微流沟道,特征在于:使用LPKF ProtoMat H100刻板机对有机玻璃的表面进行图样的加工,下模具的四边比中间高0.2毫米,使得下模具表面可以覆盖一层0.2毫米厚的PDMS。下模具一侧有3个输入孔,另一侧为1个输出孔,直径为0.6毫米的小孔用于插入注射器针管,与外导管相连接;上模具的四边比中间高2毫米,中间的凸起对应于微流沟道的内尺寸,沟道末端四个凸起与下模具的4个小孔对应。
4.根据权利要求1所述的基于微流芯片的可控纳米材料合成反应器,其特征在于采用了浇铸成型的加工工艺,具体制作流程如下:
a.取PDMS与固化剂以12∶1的比例混合,在干净的烧杯中充分搅拌
b.将得到的混合液放在真空泵中抽空气,等待混合液中的气泡消失,直至混合物变为无色透明,这是为了防止在做PDMS沟道时因为气泡导致制作沟道的质量不好
c.在PMMA下基底和微流沟道模具上涂上一层混合物,并用玻璃片抹平;然后将涂抹混合液的模板放在真空泵中抽空气,排除气泡
d.将基底和模具放置在干燥器中干燥,约30分钟后拿出基底,此时基底上的PDMS还有一定的粘度,约60分钟后拿出模具,此时模具上的PDMS已经固化成型
e.用微型钻头将基底的4个小孔中的多余PDMS去除,以防止多余的PDMS堵塞微流沟道。将PDMS从微流沟道的模具中脱模,注意脱模过程中要防止PDMS破裂,然后将其放置在基底的PDMS上,并对准位置,使微流沟道与下基底粘合在一起,用液态PDMS对其做密封处理后放回烘干箱,加热20分钟,PDMS微流沟道得以制作完成。
CN201710134012.7A 2017-03-03 2017-03-03 基于微流芯片的可控纳米材料合成反应器 Active CN108527744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710134012.7A CN108527744B (zh) 2017-03-03 2017-03-03 基于微流芯片的可控纳米材料合成反应器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710134012.7A CN108527744B (zh) 2017-03-03 2017-03-03 基于微流芯片的可控纳米材料合成反应器

Publications (2)

Publication Number Publication Date
CN108527744A true CN108527744A (zh) 2018-09-14
CN108527744B CN108527744B (zh) 2021-03-30

Family

ID=63489726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710134012.7A Active CN108527744B (zh) 2017-03-03 2017-03-03 基于微流芯片的可控纳米材料合成反应器

Country Status (1)

Country Link
CN (1) CN108527744B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409900B1 (en) * 1996-04-16 2002-06-25 Caliper Technologies Corp. Controlled fluid transport in microfabricated polymeric substrates
WO2006062312A1 (en) * 2004-12-09 2006-06-15 Biodigit Laboratories Corp. Lab-on-a-chip for an on-the-spot analysis and signal detection methods for the same
CN102218595A (zh) * 2011-01-14 2011-10-19 哈尔滨工业大学(威海) 一种微流芯片的制备方法
CN103447101A (zh) * 2013-07-23 2013-12-18 武汉友芝友医疗科技有限公司 一种微流芯片的制备方法
CN104324768A (zh) * 2014-10-24 2015-02-04 武汉纺织大学 一种微小三维结构沟道微流芯片的制备方法
CN104475177A (zh) * 2014-12-02 2015-04-01 武汉纺织大学 一种简易高键合强度聚合物微流芯片的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409900B1 (en) * 1996-04-16 2002-06-25 Caliper Technologies Corp. Controlled fluid transport in microfabricated polymeric substrates
WO2006062312A1 (en) * 2004-12-09 2006-06-15 Biodigit Laboratories Corp. Lab-on-a-chip for an on-the-spot analysis and signal detection methods for the same
CN102218595A (zh) * 2011-01-14 2011-10-19 哈尔滨工业大学(威海) 一种微流芯片的制备方法
CN103447101A (zh) * 2013-07-23 2013-12-18 武汉友芝友医疗科技有限公司 一种微流芯片的制备方法
CN104324768A (zh) * 2014-10-24 2015-02-04 武汉纺织大学 一种微小三维结构沟道微流芯片的制备方法
CN104475177A (zh) * 2014-12-02 2015-04-01 武汉纺织大学 一种简易高键合强度聚合物微流芯片的制备方法

Also Published As

Publication number Publication date
CN108527744B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
Khan et al. Microfluidic synthesis of colloidal silica
Hou et al. Interplay between materials and microfluidics
Song et al. Microfluidic synthesis of nanomaterials
Li et al. Splitting a droplet for femtoliter liquid patterns and single cell isolation
Hung et al. Microfluidic devices for the synthesis of nanoparticles and biomaterials
Cygan et al. Microfluidic platform for the generation of organic-phase microreactors
Aota et al. Parallel multiphase microflows: fundamental physics, stabilization methods and applications
Wang et al. Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface
Wang et al. Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures
Zhang et al. Droplet generation in cross-flow for cost-effective 3D-printed “plug-and-play” microfluidic devices
Li et al. In-channel responsive surface wettability for reversible and multiform emulsion droplet preparation and applications
CN104998702A (zh) 一种基于液体模塑法的pdms微流控芯片制备方法
Sahore et al. Droplet microfluidics in thermoplastics: device fabrication, droplet generation, and content manipulation using integrated electric and magnetic fields
CN1811421A (zh) 一种微流控芯片中被动微混合器和微反应器的制作方法
KR102043161B1 (ko) 미세 액적 병합을 위한 미세 유체 제어 장치 및 이를 이용한 미세 액적의 병합 방법
Liu et al. A high-efficiency three-dimensional helical micromixer in fused silica
EP1607748B1 (en) Nucleic acid extracting kit, and nucleic acid extracting method
CN108579828A (zh) 一种流速可控的微流控芯片表面修饰方法
Wang et al. Fast fabrication of microfluidic devices using a low-cost prototyping method
Van Nguyen et al. A 3D printed screw-and-nut based droplet generator with facile and precise droplet size controllability
Lee et al. Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification
CN110560188B (zh) 一种合成Ag/Ag2S/CdS异质结的多级进样微流控芯片的制备方法
Nady et al. Functionalization of microfluidic devices by microstructures created with proton beam lithography
CN104923324A (zh) 一种基于光敏树脂固化成型的pdms微流控芯片制备方法
CN108527744A (zh) 基于微流芯片的可控纳米材料合成反应器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant