CN108526681B - 一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法 - Google Patents

一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法 Download PDF

Info

Publication number
CN108526681B
CN108526681B CN201810689617.7A CN201810689617A CN108526681B CN 108526681 B CN108526681 B CN 108526681B CN 201810689617 A CN201810689617 A CN 201810689617A CN 108526681 B CN108526681 B CN 108526681B
Authority
CN
China
Prior art keywords
stirring head
welding
carbon steel
main shaft
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810689617.7A
Other languages
English (en)
Other versions
CN108526681A (zh
Inventor
刘守法
林东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Longzhi Electromechanical Technology Co ltd
Original Assignee
Xijing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xijing University filed Critical Xijing University
Priority to CN201810689617.7A priority Critical patent/CN108526681B/zh
Publication of CN108526681A publication Critical patent/CN108526681A/zh
Application granted granted Critical
Publication of CN108526681B publication Critical patent/CN108526681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding involving metallurgical change

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本发明公开了一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法,利用搅拌摩擦搭接焊进行焊接,搅拌头转速及进给速度分别为1100rpm和50mm/min。焊接用有针搅拌头为平面圆锥型,搅拌针直径和长度分别为3.6mm和2.8mm。然后利用无针搅拌头进行搅拌摩擦加工,搅拌头进给速度为50mm/min,搅拌头转速范围为1200~2100rpm,搅拌头材料为碳化钨,轴肩直径12mm。本发明方法操作简单,可提高接头拉剪强度达到6倍多,具有实际意义。

Description

一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法
技术领域
本发明属于铸铁焊接技术领域,具体涉及一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法。
背景技术
铸铁在我国年产量已超过千万吨,是用途最广、产量最大的铸造合金。因其具有良好的耐磨性和减振性及低的缺口敏感性,且经特殊合金化后具有良好的耐热性和耐蚀性,年产量逐年递增,广泛用于机械制造业。球墨铸铁与低碳钢焊接常应用于机车车轮、汽车传动轴、法兰和某些设备承重梁组件的焊接。由于球墨铸铁含碳量较高,与低碳钢焊接时会增加熔融材料的含碳量,随后的冷却会使焊缝处生成马氏体组织,从而降低焊缝力学性能。
搅拌摩擦焊是一种新型固态焊接技术,可利用搅拌头的旋转和进给运动在金属板的搅拌区引起剧烈的塑性变形,焊接温度始终保持低于材料熔点,不会降低焊接件的质量,可用来焊接老化及硬化的铝合金等难焊材料。但是目前焊接技术存在有以下不足:.由于球墨铸铁含碳量较高,与低碳钢焊接时会增加熔融材料的含碳量,随后的冷却会使焊缝处生成马氏体组织,从而降低接头力学性能;球墨铸铁熔焊接过程中会出现裂纹、孔洞和力学性能恶化。
发明内容
针对上述存在的技术缺陷,本发明的目的在于提供一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法,可以大幅提高接头处的拉剪强度。
为了达到上述技术效果,本发明具体通过以下技术方案实现:
一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法,具体包括以下步骤:
1)分别对球墨铸铁和低碳钢进行前期处理是的规格形状相匹配,去除焊接面的氧化层,并用丙酮清洗吹干;
2)利用搅拌摩擦机进行搅拌摩擦搭接焊,将工件固定在工作台夹具上,调整主轴,启动主轴带动搅拌头旋转,随后控制搅拌头边旋转边插入被焊工件,轴肩最低端压入工件上表面0.15~0.25mm后停止插入;
3)预热5秒,开启主轴振动开关,振幅20μm,振动频率22~26KHz,启动主轴横向进给,保持搅拌头向下的顶锻压力为16~18KN;
4)将被焊板料翻转,使原焊缝底部朝上,固定在夹具上,利用无针搅拌头沿着原焊缝进行搅拌摩擦加工,细化焊缝底部的材料晶粒。
所述的搅拌摩擦搭接焊的条件为:环境温度保持在25~30℃,湿度35%~45%。
所述的主轴调整具体为调整主轴倾斜角度为1~3°。
所述的步骤(2)中搅拌头转速范围为600~1100rpm,插入被焊工件的速度为0.04mm/s。
所述的主轴横向进给速度为40~60mm/min。
所述的搅拌摩擦搭接焊采用的搅拌头为平面圆锥型,材料为碳化钨合金(Co含量为13wt%),轴肩直径为11~13mm。
所述的步骤(4)中无针搅拌头进给速度为40~60mm/min,搅拌头转速范围为1200~2100rpm,轴肩直径为11~13mm。
本发明的有益效果为:
本发明技术方法可以避免球墨铸铁与低碳钢焊接时由于冷却造成焊缝处生成马氏体组织,从而提高接头力学性能,经试验证明,随无针搅拌头转速提高,试样拉剪断裂载荷呈现增大趋势,当无针搅拌头转速和进给速度分别为2100rpm和50mm/min时,试样拉剪断裂载荷最大,达到6400N,为原接头的6倍多。
具体实施方式
下面将结合本发明具体的实施例,对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中采用奥氏体基球墨铸铁和08F低碳钢作为母材,其化学成分如表1所示,利用搅拌摩擦搭接焊进行焊接,搅拌头转速及进给速度分别为1100rpm和50mm/min。焊接用有针搅拌头为平面圆锥型,搅拌针直径和长度分别为3.6mm和2.8mm。然后利用无针搅拌头进行搅拌摩擦加工,搅拌头进给速度为50mm/min,搅拌头转速范围为1200~2100rpm,搅拌头材料为碳化钨,轴肩直径12mm。
表1母材化学成分表
Figure BDA0001712179890000041
实施例1
利用搅拌摩擦搭接焊,对奥氏体基球墨铸铁和08F低碳钢进行焊接,先将厚1.2mm的08F钢加工成95mm×40mm,将厚3mm的球墨铸铁加工成95mm×40mm,然后去除焊接面的氧化层、用丙酮清洗并吹干,利用搅拌摩擦机进行搅拌摩擦搭接焊,环境温度保持在25~30℃,湿度35%~45%。焊接所用搅拌头为平面圆锥型,材料为碳化钨合金(Co含量为13wt%),轴肩直径为12mm,搅拌针直径和长度分别为3.6mm和2.8mm。首先将工件固定在工作台夹具上,调整主轴倾斜角度为1~3°,启动主轴带动搅拌头旋转,搅拌头转速范围为1100rpm,随后控制搅拌头边旋转边插入被焊工件,插入速度为0.04mm/s,轴肩最低端压入工件上表面0.2mm后停止插入;主轴插入被焊工件后预热5秒,随后开启主轴振动开关,振幅20μm,振动频率22~26KHz,启动主轴横向进给,进给速度为40~60mm/min,保持搅拌头向下的顶锻压力为16~18KN。对搭接焊接头进行拉剪实验,得到拉剪最大载荷为980N。
实施例2
利用搅拌摩擦搭接焊,对奥氏体基球墨铸铁和08F低碳钢进行焊接,先将厚1.2mm的08F钢加工成95mm×40mm,将厚3mm的球墨铸铁加工成95mm×40mm,然后去除焊接面的氧化层、用丙酮清洗并吹干,利用搅拌摩擦机进行搅拌摩擦搭接焊,环境温度保持在25~30℃,湿度35%~45%。焊接所用搅拌头为平面圆锥型,材料为碳化钨合金(Co含量为13wt%),轴肩直径为12mm,搅拌针直径和长度分别为3.6mm和2.8mm。首先将工件固定在工作台夹具上,调整主轴倾斜角度为1~3°,启动主轴带动搅拌头旋转,搅拌头转速范围为1100rpm,随后控制搅拌头边旋转边插入被焊工件,插入速度为0.04mm/s,轴肩最低端压入工件上表面0.2mm后停止插入;主轴插入被焊工件后预热5秒,随后开启主轴振动开关,振幅20μm,振动频率22~26KHz,启动主轴横向进给,进给速度为40~60mm/min,保持搅拌头向下的顶锻压力为16~18KN。将被焊板料翻过来,使原焊缝底部朝上,固定在夹具上,利用无针搅拌头沿着原焊缝进行搅拌摩擦加工,从而细化焊缝底部的材料晶粒,搅拌头进给速度为40~60mm/min,搅拌头转速范围为1200rpm,搅拌头材料为碳化钨合金(Co含量为13wt%),轴肩直径10~12mm。对搭接焊接头进行拉剪实验,得到拉剪最大载荷为5600N。
实施例3
利用搅拌摩擦搭接焊,对奥氏体基球墨铸铁和08F低碳钢进行焊接,先将厚1.2mm的08F钢加工成95mm×40mm,将厚3mm的球墨铸铁加工成95mm×40mm,然后去除焊接面的氧化层、用丙酮清洗并吹干,利用搅拌摩擦机进行搅拌摩擦搭接焊,环境温度保持在25~30℃,湿度35%~45%。焊接所用搅拌头为平面圆锥型,材料为碳化钨合金(Co含量为13wt%),轴肩直径为12mm,搅拌针直径和长度分别为3.6mm和2.8mm。首先将工件固定在工作台夹具上,调整主轴倾斜角度为1~3°,启动主轴带动搅拌头旋转,搅拌头转速范围为1100rpm,随后控制搅拌头边旋转边插入被焊工件,插入速度为0.04mm/s,轴肩最低端压入工件上表面0.2mm后停止插入;主轴插入被焊工件后预热5秒,随后开启主轴振动开关,振幅20μm,振动频率22~26KHz,启动主轴横向进给,进给速度为40~60mm/min,保持搅拌头向下的顶锻压力为16~18KN。将被焊板料翻过来,使原焊缝底部朝上,固定在夹具上,利用无针搅拌头沿着原焊缝进行搅拌摩擦加工,从而细化焊缝底部的材料晶粒,搅拌头进给速度为40~60mm/min,搅拌头转速范围为1500rpm,搅拌头材料为碳化钨合金(Co含量为13wt%),轴肩直径10~12mm。对搭接焊接头进行拉剪实验,得到拉剪最大载荷为6000N。
实施例4
利用搅拌摩擦搭接焊,对奥氏体基球墨铸铁和08F低碳钢进行焊接,先将厚1.2mm的08F钢加工成95mm×40mm,将厚3mm的球墨铸铁加工成95mm×40mm,然后去除焊接面的氧化层、用丙酮清洗并吹干,利用搅拌摩擦机进行搅拌摩擦搭接焊,环境温度保持在25~30℃,湿度35%~45%。焊接所用搅拌头为平面圆锥型,材料为碳化钨合金(Co含量为13wt%),轴肩直径为12mm,搅拌针直径和长度分别为3.6mm和2.8mm。首先将工件固定在工作台夹具上,调整主轴倾斜角度为1~3°,启动主轴带动搅拌头旋转,搅拌头转速范围为1100rpm,随后控制搅拌头边旋转边插入被焊工件,插入速度为0.04mm/s,轴肩最低端压入工件上表面0.2mm后停止插入;主轴插入被焊工件后预热5秒,随后开启主轴振动开关,振幅20μm,振动频率22~26KHz,启动主轴横向进给,进给速度为40~60mm/min,保持搅拌头向下的顶锻压力为16~18KN。将被焊板料翻过来,使原焊缝底部朝上,固定在夹具上,利用无针搅拌头沿着原焊缝进行搅拌摩擦加工,从而细化焊缝底部的材料晶粒,搅拌头进给速度为40~60mm/min,搅拌头转速范围为1800rpm,搅拌头材料为碳化钨合金(Co含量为13wt%),轴肩直径10~12mm。对搭接焊接头进行拉剪实验,得到拉剪最大载荷为6100N。
实施例5
利用搅拌摩擦搭接焊,对奥氏体基球墨铸铁和08F低碳钢进行焊接,先将厚1.2mm的08F钢加工成95mm×40mm,将厚3mm的球墨铸铁加工成95mm×40mm,然后去除焊接面的氧化层、用丙酮清洗并吹干,利用搅拌摩擦机进行搅拌摩擦搭接焊,环境温度保持在25~30℃,湿度35%~45%。焊接所用搅拌头为平面圆锥型,材料为碳化钨合金(Co含量为13wt%),轴肩直径为12mm,搅拌针直径和长度分别为3.6mm和2.8mm。首先将工件固定在工作台夹具上,调整主轴倾斜角度为1~3°,启动主轴带动搅拌头旋转,搅拌头转速范围为1100rpm,随后控制搅拌头边旋转边插入被焊工件,插入速度为0.04mm/s,轴肩最低端压入工件上表面0.2mm后停止插入;主轴插入被焊工件后预热5秒,随后开启主轴振动开关,振幅20μm,振动频率22~26KHz,启动主轴横向进给,进给速度为40~60mm/min,保持搅拌头向下的顶锻压力为16~18KN。将被焊板料翻过来,使原焊缝底部朝上,固定在夹具上,利用无针搅拌头沿着原焊缝进行搅拌摩擦加工,从而细化焊缝底部的材料晶粒,搅拌头进给速度为40~60mm/min,搅拌头转速范围为2100rpm,搅拌头材料为碳化钨合金(Co含量为13wt%),轴肩直径10~12mm。对搭接焊接头进行拉剪实验,得到拉剪最大载荷为6400N。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法,其特征在于,包括以下步骤:
1)分别对球墨铸铁和低碳钢进行前期处理使得规格形状相匹配,去除焊接面的氧化层,并用丙酮清洗吹干;
2)利用搅拌摩擦机进行搅拌摩擦搭接焊,将工件固定在工作台夹具上,调整主轴倾斜角度为1~3°,启动主轴带动搅拌头旋转,搅拌头转速为1100rpm,随后控制搅拌头边旋转边插入被焊工件,轴肩最低端压入工件上表面0.15~0.25mm后停止插入;搅拌摩擦搭接焊的条件为:环境温度保持在25~30℃,湿度35%~45%;
3)预热5秒,开启主轴振动开关,振幅20μm,振动频率22~26KHz,启动主轴横向进给,保持搅拌头向下的顶锻压力为16~18KN;
4)将被焊板料翻转,使原焊缝底部朝上,固定在夹具上,利用无针搅拌头沿着原焊缝进行搅拌摩擦加工,细化焊缝底部的材料晶粒;所述的无针搅拌头进给速度为40~60mm/min,搅拌头转速范围为1200~2100rpm。
2.根据权利要求1所述的一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法,其特征在于,所述的步骤2)中插入被焊工件的速度为0.04mm/s。
3.根据权利要求1所述的一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法,其特征在于,所述的主轴横向进给速度为40~60mm/min。
4.根据权利要求1所述的一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法,其特征在于,所述的搅拌摩擦搭接焊采用的搅拌头为平面圆锥型,材料为碳化钨合金,轴肩直径为11~13mm。
CN201810689617.7A 2018-06-28 2018-06-28 一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法 Active CN108526681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810689617.7A CN108526681B (zh) 2018-06-28 2018-06-28 一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810689617.7A CN108526681B (zh) 2018-06-28 2018-06-28 一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法

Publications (2)

Publication Number Publication Date
CN108526681A CN108526681A (zh) 2018-09-14
CN108526681B true CN108526681B (zh) 2020-11-24

Family

ID=63487194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810689617.7A Active CN108526681B (zh) 2018-06-28 2018-06-28 一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法

Country Status (1)

Country Link
CN (1) CN108526681B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO942790D0 (no) * 1994-03-28 1994-07-27 Norsk Hydro As Fremgangsmåte ved friksjonssveising og anordning for samme
JP3861723B2 (ja) * 2002-03-14 2006-12-20 株式会社デンソー 摩擦撹拌接合法
US7225968B2 (en) * 2003-08-04 2007-06-05 Sii Megadiamond, Inc. Crack repair using friction stir welding on materials including metal matrix composites, ferrous alloys, non-ferrous alloys, and superalloys
CN101574756B (zh) * 2009-04-24 2011-06-08 重庆大学 电磁振动搅拌摩擦焊接搅拌头及其焊接方法
KR20120073956A (ko) * 2010-12-27 2012-07-05 재단법인 포항산업과학연구원 마찰교반개질용 용접툴
CN102500915B (zh) * 2011-11-08 2014-06-04 西安交通大学 一种采用t型填充块与无针搅拌头填充搅拌摩擦焊匙孔的方法
CN103212778A (zh) * 2013-04-15 2013-07-24 沈阳航空航天大学 基于搅拌摩擦的裂纹修复方法
CN206936602U (zh) * 2017-07-18 2018-01-30 四川工程职业技术学院 搅拌摩擦焊机的辅助装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
平针搅拌头调修对铝合金焊接接头组织与性能的影响;刘春宁等;《电焊机》;20180331;第48卷(第3期);第61-64页 *
铁素体基体球墨铸铁与08F钢搅拌摩擦搭接焊研究;夏祥春;《铸造技术》;20180531;第39卷(第5期);第1069-1072页 *

Also Published As

Publication number Publication date
CN108526681A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
Al-Moussawi et al. Defects in friction stir welding of steel
Chen et al. High rotation speed friction stir welding for 2014 aluminum alloy thin sheets
Ni et al. Effects of travel speed on mechanical properties of AA7075-T6 ultra-thin sheet joints fabricated by high rotational speed micro pinless friction stir welding
Vaneghi et al. Investigations into the formation of intermetallic compounds during pinless friction stir spot welding of AA2024-Zn-pure copper dissimilar joints
Kumar et al. Effect of ultrasonic vibration on welding load, macrostructure, and mechanical properties of Al/Mg alloy joints fabricated by friction stir lap welding
JPWO2018070317A1 (ja) 摩擦撹拌接合方法および装置
Tian et al. Effect of ultrasonic vibration on thermal and material flow behavior, microstructure and mechanical properties of friction stir welded Al/Cu joints
Uzkut et al. Friction welding and its applications in today’s world
Ibrahim et al. Optimization of the intermediate layer friction stir spot welding process
CN112894123A (zh) 一种铝铜异种金属的搅拌摩擦焊接方法
CN103008872A (zh) 一种磨损轴类零件搅拌摩擦加工再制造方法
Liu et al. Achievement of high-quality joints and regulation of intermetallic compounds in ultrasonic vibration enhanced friction stir lap welding of aluminum/steel
CN108857042A (zh) 一种提高金属焊缝性能的焊后调修方法
CN108526681B (zh) 一种提高球墨铸铁与低碳钢搭接接头拉剪强度的方法
Xu et al. Effect of Zener–Hollomon parameter on microstructure and mechanical properties of copper subjected to friction stir welding
Liu et al. Acoustic effect on the joint quality and process of friction stir lap welding of aluminum to steel
Gong et al. Non-keyhole friction stir welding for 6061-T6 aluminum alloy
Sun et al. Quality improvement of refill friction stir spot welds in 2A12-T42 aluminum alloy with alclad by adjusting sleeve design
Gu et al. Microstructures and properties of ultra-high strength steel by laser welding
Wang et al. High-Speed Friction Stir Welding of SiC p/Al–Mg–Si–Cu Composite
Zhang et al. Microstructure and mechanical properties of probeless friction stir extrusion joined joints of 6061-T6 aluminum alloy to Q235 steel
Borgert et al. Influence of thermo-mechanical joining process on the microstructure of a hypoeutectic aluminium cast alloy
CN108296625B (zh) 一种基于搅拌摩擦焊的异种厚度球墨铸铁连接方法
Wen et al. Active-passive filling friction stir repairing of casting defects in ZL210 aluminum alloys
Chauhan et al. Effect of friction stir welding parameters on impact strength of the AZ31 magnesium alloy joints

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240204

Address after: 230000 B-2704, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui.

Patentee after: HEFEI LONGZHI ELECTROMECHANICAL TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: No.1 Xijing Road, Chang'an District, Xi'an City, Shaanxi Province 710100

Patentee before: XIJING University

Country or region before: China

TR01 Transfer of patent right