CN108517559B - A method for assisted control of ion implantation time based on Monte Carlo simulation - Google Patents
A method for assisted control of ion implantation time based on Monte Carlo simulation Download PDFInfo
- Publication number
- CN108517559B CN108517559B CN201810184340.2A CN201810184340A CN108517559B CN 108517559 B CN108517559 B CN 108517559B CN 201810184340 A CN201810184340 A CN 201810184340A CN 108517559 B CN108517559 B CN 108517559B
- Authority
- CN
- China
- Prior art keywords
- time
- thickness
- ion implantation
- layer
- strontium titanate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000005468 ion implantation Methods 0.000 title claims abstract description 20
- 238000000342 Monte Carlo simulation Methods 0.000 title claims abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000001301 oxygen Substances 0.000 claims abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 28
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 21
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052786 argon Inorganic materials 0.000 claims abstract description 14
- 239000013078 crystal Substances 0.000 claims abstract description 12
- 238000002474 experimental method Methods 0.000 claims abstract description 11
- 238000004088 simulation Methods 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 238000002347 injection Methods 0.000 claims abstract description 5
- 239000007924 injection Substances 0.000 claims abstract description 5
- 238000002513 implantation Methods 0.000 claims description 9
- -1 argon ions Chemical class 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 4
- 239000013077 target material Substances 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/32—Titanates; Germanates; Molybdates; Tungstates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/20—Doping by irradiation with electromagnetic waves or by particle radiation
- C30B31/22—Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明属于离子注入的应用领域,具体为一种基于蒙特卡洛模拟辅助控制离子注入时间的方法。本发明以SRIM为基础,模拟氩离子注入钛酸锶晶体,将每个单位时间作为一个分段,结合反复迭代计算来控制离子注入的时间或剂量等因素精确控制氧空位浓度,得出具有实验意义的控制时间。解决了SRIM模拟不能设置时间参数的问题,通过将时间切分为每一个单位时间,以单位时间连续推进求解,最终得到了一条时间与非晶化层厚度的关系,能辅助实际实验过程中对离子注入剂量的控制。避免了实验中仅仅依靠实验者的经验而决定注入的时间,是一套具有实际实验意义的模拟计算方法。
The invention belongs to the application field of ion implantation, in particular to a method for assisted control of ion implantation time based on Monte Carlo simulation. Based on SRIM, the invention simulates argon ion implantation into strontium titanate crystal, takes each unit time as a segment, and combines repeated iterative calculations to control the time or dose of ion implantation and other factors to precisely control the oxygen vacancy concentration. Meaning control time. Solved the problem that time parameters cannot be set in SRIM simulation. By dividing the time into each unit time, and continuously advancing the solution in unit time, a relationship between time and the thickness of the amorphous layer is finally obtained, which can assist in the actual experiment process. Ion implantation dose control. It is a set of simulation calculation method with practical experimental significance, which avoids determining the injection time only by relying on the experimenter's experience in the experiment.
Description
技术领域technical field
本发明属于离子注入的应用领域,具体为一种基于蒙特卡洛模拟辅助控制离子注入时间的方法。The invention belongs to the application field of ion implantation, in particular to a method for assisted control of ion implantation time based on Monte Carlo simulation.
背景技术Background technique
蒙特卡洛(Monte Carlo)方法,又称为随机抽样或统计实验方法。它的基本思想就是通过试验的方法得到某件事情出现的频率或者这个随机变量的平均值,从而来求得这个问题的解。由于传统的经验方法无法逼近真实的物理过程,很难从中获取满意的结果。而蒙特卡洛方法能够真实地模拟实际物理过程,所以其得到的结果与实际非常符合。常用的蒙特卡洛程序有MORSE、EGS、SRIM等。SRIM作为一套开源的离子注入模拟软件,是目前模拟离子注入运用最广泛的。SRIM(The Stopping and Range of Ions in Matter)是一组计算离子在物质中停止和范围的程序,是一个跟随离子进入目标,详细计算每一次碰撞转移到目标原子的能量的蒙特卡洛计算。Monte Carlo method, also known as random sampling or statistical experimental method. Its basic idea is to obtain the frequency of occurrence of something or the average value of this random variable by means of experiments, so as to obtain the solution of this problem. Since traditional empirical methods cannot approximate the real physical process, it is difficult to obtain satisfactory results from them. The Monte Carlo method can realistically simulate the actual physical process, so the results obtained are very consistent with the actual situation. Commonly used Monte Carlo programs are MORSE, EGS, SRIM, etc. As a set of open source ion implantation simulation software, SRIM is currently the most widely used simulation ion implantation software. SRIM (The Stopping and Range of Ions in Matter) is a set of programs that calculate the stop and range of ions in matter.
在实际的研究中,我们通常会通过离子注入的方式对某种物质进行改性,如通过掺杂某些离子可以使氧化物表面产生氧空位从而获得导电层。而在实验过程中,往往我们需要通过调节离子注入的剂量来调控所需要的氧空位浓度、非晶层厚度等。比如,钛酸锶是典型的钙钛矿晶体,由于其原子致密度低、易相变等特点使其具有更加丰富的物理性质。运用掺杂、薄膜化等方法,可以实现改变其化学组分从而调控其物理性能。通过氩离子轰击处理钛酸锶,由于氧的扩散速度比锶、钛快很多,因此在轰击过程中有更多的氧原子被刻蚀掉,在钛酸锶表面形成氧空位,从而使钛酸锶表面具有高迁移率、高电导的导电层。在氩离子轰击过程中,我们就需要通过调节氩离子的注入剂量来调控氧空位浓度。然而,在实验过程中,都是依靠实验经验来确定氩离子的注入剂量,虽然实验上的氧空位浓度和注入剂量是成比例关系的,但考虑到实验过程中的溅射效应,最终样品的氧空位浓度是无法精确控制的,所以仅仅依靠实验经验无法准确获取准确所需要氧空位浓度和非晶层厚度。In practical research, we usually modify a certain substance by ion implantation. For example, by doping some ions, oxygen vacancies can be generated on the oxide surface to obtain a conductive layer. In the experimental process, we often need to adjust the required oxygen vacancy concentration and the thickness of the amorphous layer by adjusting the dose of ion implantation. For example, strontium titanate is a typical perovskite crystal, which has richer physical properties due to its low atomic density and easy phase transition. Using doping, thin film and other methods, it is possible to change its chemical composition to control its physical properties. Strontium titanate is treated by argon ion bombardment. Since the diffusion rate of oxygen is much faster than that of strontium and titanium, more oxygen atoms are etched away during the bombardment process, and oxygen vacancies are formed on the surface of strontium titanate, so that titanate The strontium surface has a high-mobility, high-conductivity conductive layer. In the process of argon ion bombardment, we need to adjust the oxygen vacancy concentration by adjusting the implantation dose of argon ions. However, in the experimental process, the implantation dose of argon ions is determined by experimental experience. Although the oxygen vacancy concentration and the implantation dose are proportional in the experiment, considering the sputtering effect in the experimental process, the final sample The oxygen vacancy concentration cannot be precisely controlled, so the required oxygen vacancy concentration and the thickness of the amorphous layer cannot be accurately obtained only by experimental experience.
众所周知,SRIM可以模拟离子注入过程并能得到氧空位浓度,但是SRIM的模拟参数是无法设置时间和剂量的,也就是说,SRIM的模拟仅仅是某一个时间点,不能真实描述离子注入过程中的刻蚀效果。所以,如果只是依靠SRIM对晶体初始状态的模拟,只能得到各原子大致分布趋势,不能逼近实际的实验过程。As we all know, SRIM can simulate the ion implantation process and obtain the oxygen vacancy concentration, but the simulation parameters of SRIM cannot set the time and dose. etching effect. Therefore, if we only rely on SRIM to simulate the initial state of the crystal, we can only obtain the approximate distribution trend of each atom, and cannot approximate the actual experimental process.
发明内容SUMMARY OF THE INVENTION
针对上述存在问题或不足,为了解决实验中通过离子注入获取氧空位的控制性不高以及SRIM模拟不能得到时间与浓度的关系的技术问题,本发明提供了一种基于蒙特卡洛模拟辅助控制离子注入时间的方法。In view of the above problems or deficiencies, in order to solve the technical problems that the controllability of obtaining oxygen vacancies through ion implantation in experiments is not high and the relationship between time and concentration cannot be obtained by SRIM simulation, the present invention provides a Monte Carlo simulation based auxiliary control ion A method of injecting time.
本发明采用的技术方案为:The technical scheme adopted in the present invention is:
步骤1、利用SRIM模拟氩离子注入钛酸锶晶体中,计算出氧空位浓度V1和非晶化层厚度D1。同时根据溅射比例计算出刻蚀的密度ρ1、厚度d1。此时为第一个单位时间的等效注入量。Step 1. Use SRIM to simulate the implantation of argon ions into the strontium titanate crystal, and calculate the oxygen vacancy concentration V 1 and the thickness D 1 of the amorphous layer. At the same time, the etched density ρ 1 and thickness d 1 are calculated according to the sputtering ratio. At this time, it is the equivalent injection amount of the first unit time.
步骤2、根据步骤1所模拟的结果,设置两层靶材料,第一层为密度ρ1、厚度d1的被刻蚀之后的钛酸锶层,第二层为钛酸锶晶体,然后利用SRIM模拟氩离子注入双层靶材料中,计算出氧空位浓度V2和非晶化层厚度D2。同时根据溅射比例计算出刻蚀的密度ρ2、厚度d2。此时为第二个单位时间的等效注入量。
步骤3、按照步骤1、步骤2的方法,不断累加计算出氧空位浓度V3、V4、…、Vn和非晶化层厚度D3、D4、…、Dn。Step 3. According to the methods of Step 1 and Step 2 , continuously accumulate and calculate the oxygen vacancy concentrations V 3 , V 4 , .
步骤4、判断计算出的Dn是否满足实验要求所需要的值。若不满足,则返回步骤2继续计算。直到Dn满足实验所需数值,则停止计算,即可得出时间与非晶化层厚度的关系以及总的各原子分布情况。Step 4: Determine whether the calculated D n meets the value required by the experimental requirements. If not, return to
本发明以SRIM为基础,模拟氩离子注入钛酸锶晶体,将每个单位时间作为一个分段,结合反复迭代计算来控制离子注入的时间或剂量等因素精确控制氧空位浓度,得出具有实验意义的控制时间。Based on SRIM, the invention simulates argon ion implantation into strontium titanate crystal, takes each unit time as a segment, and combines repeated iterative calculations to control the time or dose of ion implantation and other factors to precisely control the oxygen vacancy concentration. Meaning control time.
与现有技术相比,本发明的益处是:Compared with the prior art, the benefits of the present invention are:
1、该发明解决了SRIM模拟不能设置时间参数的问题,巧妙地运用了将时间切分为每一个单位时间,以单位时间连续推进求解,最终得到了一条时间与非晶化层厚度的关系。1. The invention solves the problem that time parameters cannot be set for SRIM simulation. It cleverly uses dividing time into each unit time, and continuously advances the solution in unit time, and finally obtains a relationship between time and the thickness of the amorphous layer.
2、该方法求得了时间与非晶化层厚度的关系,能辅助实际实验过程中对离子注入剂量的控制。2. The method obtains the relationship between the time and the thickness of the amorphous layer, which can assist the control of the ion implantation dose in the actual experiment process.
附图说明Description of drawings
图1、氧空位浓度分布图(空心曲线为第一个单位时间,实心曲线为第二个单位时间);Figure 1. Oxygen vacancy concentration distribution diagram (the hollow curve is the first unit time, and the solid curve is the second unit time);
图2、总体流程图;Figure 2. Overall flow chart;
图3、时间与非晶化层厚度的关系曲线。Fig. 3. Relationship between time and thickness of amorphized layer.
具体实施方式Detailed ways
下面结合附图和实施例对本发明做进一步的详细说明。设定实验条件:氩离子的注入能量为300eV,每秒的注入剂量为1015ion/cm2,以1秒为一个单位时间,氧空位浓度达到初始钛酸锶原子浓度的10%时视为该晶体被非晶化。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. Set the experimental conditions: the implantation energy of argon ions is 300eV, the implantation dose per second is 10 15 ion/cm 2 , and the unit time is 1 second. When the oxygen vacancy concentration reaches 10% of the initial strontium titanate atomic concentration, it is regarded as The crystal is amorphized.
首先,利用SRIM模拟氩离子注入钛酸锶,得到各原子空位数,然后计算出第一个单位时间的氧空位浓度V1和非晶化层厚度D1=12.266埃。氧空位分布如图1空心曲线所示。First, SRIM is used to simulate argon ion implantation into strontium titanate to obtain the number of atomic vacancies, and then the oxygen vacancy concentration V 1 and the amorphous layer thickness D 1 =12.266 angstroms are calculated for the first unit time. The oxygen vacancy distribution is shown as the hollow curve in Fig. 1.
根据上一步模拟结果的溅射比例,计算出刻蚀之后的钛酸锶的密度ρ1=4.886g/cm3以及厚度d1=14.696埃,然后再用SRIM模拟氩离子注入钛酸锶(在钛酸锶晶体之前设置一层密度为ρ1、厚度为d1的被刻蚀层),同样计算出第二个单位时间的氧空位浓度V2和非晶化层厚度D2=14.625埃。氧空位分布如图1实心曲线所示。According to the sputtering ratio of the simulation results in the previous step, the density ρ 1 =4.886g/cm 3 and the thickness d 1 =14.696 angstroms of strontium titanate after etching were calculated, and then SRIM was used to simulate the argon ion implantation of strontium titanate (at An etched layer with a density of ρ 1 and a thickness of d 1 is set before the strontium titanate crystal), and the oxygen vacancy concentration V 2 and the amorphous layer thickness D 2 =14.625 angstroms are also calculated for the second unit time. The oxygen vacancy distribution is shown as the solid curve in Figure 1.
按照同样的方法重复以上步骤,总的流程图如图2所示。直到算出非晶化层厚度Dn满足实验上所需要的厚度则停止计算。得到时间与非晶化层厚度的关系如图3所示。Repeat the above steps in the same way, and the overall flow chart is shown in Figure 2. The calculation is stopped until the thickness D n of the amorphous layer is calculated to meet the experimentally required thickness. The relationship between the acquisition time and the thickness of the amorphized layer is shown in FIG. 3 .
本发明以SRIM为基础,通过模拟氩离子注入钛酸锶(密度5.113g/cm3、能量阈值氧50eV、锶70eV、钛140eV)获得氧空位浓度(此时的浓度是不包含刻蚀效应的),然后,假定我们需要氧空位占钛酸锶初始原子浓度的某一个值时视为该晶体被非晶化,计算出非晶层厚度,通过此算法得到时间与非晶层厚度的关系,直到非晶层厚度达到所需的值,最终得出实际操作中需要注入的剂量。Based on SRIM, the present invention obtains oxygen vacancy concentration by simulating argon ion implantation into strontium titanate (density 5.113g/cm 3 , energy threshold oxygen 50eV, strontium 70eV, titanium 140eV) (the concentration at this time does not include etching effect) ), then, assuming that we need oxygen vacancies to occupy a certain value of the initial atomic concentration of strontium titanate, the crystal is considered to be amorphized, and the thickness of the amorphous layer is calculated, and the relationship between the time and the thickness of the amorphous layer is obtained through this algorithm, Until the thickness of the amorphous layer reaches the desired value, the dose that needs to be implanted in actual operation is finally obtained.
综上所述,可见本发明可以通过模拟的方法掌控实验中所需要注入离子的时间和剂量,这样能避免实验中仅仅依靠实验者的经验而决定注入的时间,是一套具有实际实验意义的模拟计算方法。To sum up, it can be seen that the present invention can control the time and dose of ions to be implanted in the experiment by means of simulation, so as to avoid the time to be implanted by relying only on the experience of the experimenter in the experiment, which is a set of practical experimental significance. Simulation calculation method.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810184340.2A CN108517559B (en) | 2018-03-07 | 2018-03-07 | A method for assisted control of ion implantation time based on Monte Carlo simulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810184340.2A CN108517559B (en) | 2018-03-07 | 2018-03-07 | A method for assisted control of ion implantation time based on Monte Carlo simulation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108517559A CN108517559A (en) | 2018-09-11 |
CN108517559B true CN108517559B (en) | 2020-12-29 |
Family
ID=63433536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810184340.2A Active CN108517559B (en) | 2018-03-07 | 2018-03-07 | A method for assisted control of ion implantation time based on Monte Carlo simulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108517559B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111312586A (en) * | 2020-02-20 | 2020-06-19 | 全球能源互联网研究院有限公司 | A method for improving the accuracy of p-type doping ion implantation |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2716009B2 (en) * | 1995-07-28 | 1998-02-18 | 日本電気株式会社 | Defect distribution simulation method |
JP3102362B2 (en) * | 1996-10-31 | 2000-10-23 | 日本電気株式会社 | Ion implantation simulation method |
JP3228220B2 (en) * | 1998-05-15 | 2001-11-12 | 日本電気株式会社 | Ion implantation simulation method |
CN1194387C (en) * | 2003-04-09 | 2005-03-23 | 北京大学 | A High Speed Simulation Method of Ion Implantation Including Dose Effect |
CN100428413C (en) * | 2006-05-22 | 2008-10-22 | 中芯国际集成电路制造(上海)有限公司 | Ion Implantation Simulation Method |
-
2018
- 2018-03-07 CN CN201810184340.2A patent/CN108517559B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108517559A (en) | 2018-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pereira et al. | Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks | |
CN108517559B (en) | A method for assisted control of ion implantation time based on Monte Carlo simulation | |
Wang et al. | Controllable multiple depression in a graphene oxide artificial synapse | |
Garcia-Vergara et al. | Formation of porous anodic alumina in alkaline borate electrolyte | |
Tan et al. | Regulating oxygen ion transport at the nanoscale to enable highly cyclable magneto-ionic control of magnetism | |
CN100428413C (en) | Ion Implantation Simulation Method | |
Jain et al. | Track etch parameters and annealing kinetics assessment of protons of low energy in CR-39 detector | |
TW201232597A (en) | Determining relative scan velocity to control ion implantation of work piece | |
Lazea et al. | Modification of polyester track membranes by plasma treatments | |
Pankin et al. | Combined model for the H-mode pedestal and ELMs | |
Fogazza et al. | Formation of anodic films on sputtering-deposited Al–Hf alloys | |
Wang et al. | Analytical modeling electrical conduction in resistive-switching memory through current-limiting-friendly combination frameworks | |
Yao et al. | He plasma treatment of transparent conductive ZnO thin films | |
Pisarev et al. | Influence of true diffusion coefficient on hydrogen diffusion in tungsten in the field of defects | |
Lan et al. | Molecular dynamics simulations of ion range profiles for heavy ions in light targets | |
de Sá et al. | Anodic oxidation and dielectric behaviour of aluminium–niobium alloys | |
Bizyukov et al. | Morphology and changes of elemental surface composition of tungsten bombarded with carbon ions | |
Masliy et al. | Effect of the variable profile of substrate conductivity on the dynamics of metal deposition on resistive tape | |
KR20060001011A (en) | Metal surface treatment method and apparatus for improving hydrophobicity | |
CN108198754B (en) | Manufacturing method of polycrystalline silicon TFT substrate and polycrystalline silicon TFT substrate | |
Omura et al. | Simulation study on physical parameters ruling unipolar resistance switching of sputter-deposited silicon oxide film on Si substrate | |
CN109023270B (en) | Method for preparing biosensing material by combining magnetron sputtering and ion implantation | |
Chang et al. | High-energy proton-irradiation effects on the charge transport and electric dipole moment of KH2PO4 | |
CN117233568B (en) | Method and device for calculating carrier mobility | |
Jimenez-Rodriguez et al. | Atomic mixing of silver into a silicon substrate using a 45 keV beam of Ar+ ions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |