CN108499547A - 一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用 - Google Patents

一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用 Download PDF

Info

Publication number
CN108499547A
CN108499547A CN201810498229.0A CN201810498229A CN108499547A CN 108499547 A CN108499547 A CN 108499547A CN 201810498229 A CN201810498229 A CN 201810498229A CN 108499547 A CN108499547 A CN 108499547A
Authority
CN
China
Prior art keywords
adsorbent
polyaluminium chloride
lime scum
scum
chloride lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810498229.0A
Other languages
English (en)
Other versions
CN108499547B (zh
Inventor
韩晓刚
李雪峰
赵佳
蒋晓春
顾玲玲
顾飞
顾一飞
陆亭伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Clean Environmental Protection Science And Technology Ltd Co
Original Assignee
Changzhou Clean Environmental Protection Science And Technology Ltd Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Clean Environmental Protection Science And Technology Ltd Co filed Critical Changzhou Clean Environmental Protection Science And Technology Ltd Co
Priority to CN201810498229.0A priority Critical patent/CN108499547B/zh
Publication of CN108499547A publication Critical patent/CN108499547A/zh
Application granted granted Critical
Publication of CN108499547B publication Critical patent/CN108499547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明涉及固体废弃物的处理方法,具体是一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用,其特征在于:将残渣置入搅拌罐中,加入一定量的水,然后按比例加入一定量的改性剂,常压时,在一定温度下,搅拌反应一段时间,泵出,冷却后自然成固。粉碎至一定粒度即得成品吸附剂。本方法可以充分发挥利用残渣的有益组分,有效地完善残渣结构性能,制备简单,无二次污染问题,可以解决现在水处理剂生产过程中废渣的综合利用问题。

Description

一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用
技术领域
本发明涉及固体废弃物的处理方法,具体是一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用。
背景技术
近年来,我国众多流域爆发的藻类事件,其根本原因在于磷超标(金昌盛,邓仁健,任伯帜,等.PAC、PAFC与石灰组合投加强化化学除磷效果的研究[J].工业水处理,2018,38(3):46-49)。据不完全统计,水体中30%~50%的磷都来自于城市污水厂排水,因此控制排水中总磷排放量,是避免水体富营养化和藻类事件的重要措施之一(耿雅妮,巨龙,任雪盈.改性铝污泥颗粒吸附剂的除磷性能及其风险评价[J].当代化工,2018,47(1):33-37)。目前国内污水处理厂排水中总磷执行GB18918-2002一级A标规定≤0.5mg/L,这需要污水厂提标改造,而吸附法是除磷的一种有效可靠的方法,材料来源广,易于操作。吴慧芳等(吴慧芳,胡文华.聚合氯化铝污泥吸附除磷的改性研究[J].中国环境科学,2011,31(81):1289-1294)使用给水厂平流池聚合氯化铝混凝沉淀的污泥经盐酸改性后对水体中磷的吸附性能,实验表明改性后污泥的除磷性能提高了近22.2%。赵亚乾(赵亚乾,杨永哲,AkintundeBabatunde.以给水厂铝污泥为基质的人工湿地研发概述[J].中国给水排水,2015,31(11):124-130)等使用给水厂含铝污泥作为人工湿地填料,不仅取得了良好的除磷净水效果,而且大幅度降低了运营成本。
2010年我国聚氯化铝的生产总量就已经达到100万吨。目前国内聚氯化铝主要生产工艺是使用氢氧化铝和水处理剂用铝酸钙为原材料,其中铝酸钙粉在生产过程中会产生至少15%(以绝干重计)的压滤残渣(聚氯化铝压滤残渣)。虽然这部分残渣在管理上被视为一般固废,但是随着产业规划各项工作不断深入以及中国混凝剂行业的不断扩产,它已经成为生产企业的一种“负担”。如何利用含铝污泥带来的“以废治废”的理念解决国内聚氯化铝生产厂家面临的“困境”。
发明人以聚氯化铝压滤残渣为原料,利用其中剩余的有效组分,改变其结构特性,完成了一种吸附剂制备,并考察其对于废水中磷的去除效果,从而为其在污水除磷过程中应用提供实验和理论基础;为聚氯化铝压滤残渣提供一种新的资源化利用方式,达到固体废物资源化利用的目标。
我国水处理混凝剂自二十世纪七十年代以来,特别是近二十年来取得了突飞猛进的发展,以无机高分子混凝剂为代表的新型混凝剂层出不穷,产销量大幅上升。2010年,我国聚氯化铝(PAC)和硫酸铝(AS)产能(以固体计)均达到了100万吨/年以上,走进了界最大产销国的行列,技术研发也走在世界前列。
随着对技术的改进,废气、废水的治理已取得了较大的成功。但是生产过程中产生的废渣却一直困扰着生产厂家,大多数厂家采用填埋的方式来解决。但是我国对环保的检查监管力度的不断加大,不能有效的解决这个问题,将严重影响絮凝剂生产厂家的的生存和进一步发展。
发明内容
本发明的目的在于:提供一种利用聚氯化铝压滤残渣制备吸附剂的生产方法,其环保性好,成本低。
本发明的实现方式:将残渣置入搅拌罐中,加入一定量的水,然后按比例加入一定量的改性剂,常压时,在一定温度下,搅拌反应一段时间,泵出,冷却后自然成固。粉碎至一定粒度即得成品吸附剂。
所使用的残渣主要来自于使用盐酸、氢氧化铝、水处理剂用铝酸钙生产工艺,经板框压滤下来的固体废物。其主要成分,以干基重量计:42.0%≥SiO2≥5.0%、55.0%≥Al2O3+TiO2+Fe2O3≥45.0%、40.0%≥CaO≥5.0%、5.0%≥不溶杂质≥1.0%。
本申请技术方案的优势:可以充分发挥利用残渣的有益组分。有效地完善残渣结构性能。制备简单,无二次污染问题。
附图说明
图1中(a)为聚氯化铝压滤残渣的SEM照片,(b)为聚氯化铝压滤残渣吸附剂的SEM照片;
图2为聚氯化铝压滤残渣和聚氯化铝压滤残渣吸附剂的氮气吸附表征;
图3为pH值对两种吸附剂除磷效果的影响;
图4为投加量对两种吸附剂除磷效果的影响;
图5为聚氯化铝压滤残渣与聚氯化铝压滤残渣吸附剂对磷在不同时间的吸附效果;
图6为聚氯化铝压滤残渣与聚氯化铝压滤残渣吸附剂吸附磷的二级动力学曲线;
图7为聚氯化铝压滤残渣与聚氯化铝压滤残渣吸附剂吸附磷的吸附等温线;
图8为聚氯化铝压滤残渣与聚氯化铝压滤残渣吸附剂吸附除磷的Langmuir吸附等温线;
图9为实施例2制备的聚氯化铝压滤残渣吸附剂的SEM照片。
图中PACR为聚氯化铝压滤残渣;M-PACR聚氯化铝压滤残渣吸附剂。
具体实施方式
(1)使用常州清流环保科技有限公司产生的聚氯化铝压滤残渣为原料。实验用化学试剂主要有磷酸二氢钠,天津市天河化学试剂厂;抗坏血酸,天津福晨化学试剂厂;钼酸铵,天津化学试剂三厂;过硫酸钾,西安化学试剂厂;酒石酸锑钾,西安三浦精细化工厂;改性剂(无机酸),均为分析纯。
(2)实验及分析仪器主要有金坛市精达仪器制造公司生产的SHA-B型恒温水浴振荡器;北京瑞利分析仪器公司生产的VIS-7220型分光光度计;上海雷磁仪器厂生产的PHS-3C型精密pH计;荷兰FEI公司生产的Quanta 200型扫描电镜;北京精微高博科学技术有限公司生产JW-BK122F比表面积分析仪。
实施例水溶液中总磷浓度采用钼酸铵分光光度法测定。
实施例1:聚氯化铝压滤残渣吸附剂的制备
聚氯化铝压滤残渣中主要成分为SiO2和Al2O3,其占比超过70%;另外TiO2的含量也较高。其成分如表1所示
表1聚氯化铝压滤残渣化学组成(%)
聚氯化铝压滤残渣吸附剂残渣制备。室温下,将100g的聚氯化铝压滤残渣和15g水,以及20g的50wt.%硫酸混匀,85℃搅拌反应2h,冷却自然成固后,置入烘箱中与110±5℃烘干,后在研钵中研磨至粒度为1~2mm过筛,所得固体粉末即为聚氯化铝压滤残渣吸附剂。
对聚氯化铝压滤残渣和聚氯化铝压滤残渣吸附剂样品进行电镜扫描分析,如图1所示。聚氯化铝压滤残渣为颗粒状固体,平均粒径约为0.08~0.12mm,颜色为灰褐色,质地较硬。图1(a)为聚氯化铝压滤残渣放大5000倍的扫描电镜照片,图1(b)为聚氯化铝压滤残渣吸附剂放大5000倍的扫描电镜照片。对比照片可以看出,聚氯化铝压滤残渣经改性后表面不再改性前那么光滑,局部出现了不同程度的褶皱和凹痕,这就在一定程度上增大了比表面积;另外聚氯化铝压滤残渣吸附剂颗粒表面相比于聚氯化铝压滤残渣附着了更多的颗粒物,这可能是与改性剂反应过程中产生的Ca-Al等化合物盐,在过程中起到一定的化学除磷作用。
聚氯化铝压滤残渣和聚氯化铝压滤残渣吸附剂氮气吸附-解吸比表面积测定如图2所示,聚氯化铝压滤残渣和聚氯化铝压滤残渣吸附剂都是介孔材料,改性后的聚氯化铝压滤残渣吸附剂具有更大的吸附容量。两种材料的孔结构参数如表2所示,由此可知,聚氯化铝压滤残渣吸附剂的比表面积为7.9126m2/g,是聚氯化铝压滤残渣(2.0618m2/g)近4倍;聚氯化铝压滤残渣吸附剂(0.01561cm3/g)孔容也是聚氯化铝压滤残渣(0.00778cm3/g)的近两倍。该结果表明,改性以后的聚氯化铝压滤残渣吸附剂孔结构性质得到了进一步改善,这主要是由于改性剂给聚氯化铝压滤残渣提供了更多的活性位点。这与SEM的表征相互印证。
表2聚氯化铝压滤残渣和聚氯化铝压滤残渣吸附剂的孔结构特征
实施例2
取1L的残渣(比重1.86g/cm3),加入0.2L的水,搅拌均匀后,加入硫酸钠230g。恒温磁力搅拌器上搅拌2.5h后,放入托盘中,冷却至室温,置入烘箱中与110±5℃烘干,将其粉碎至粒度为1~2mm,得到吸附剂聚氯化铝压滤残渣吸附剂成品。
实施例3
pH对吸附的影响:取300mg/L的含磷溶液100mL,分别加入一定量吸附材料,0.8g/L的吸附剂投加量,测定其在不同pH条件下,在水浴中25℃条件下震荡2h后剩余总磷浓度,计算吸附量。
使用0.1mol/L盐酸或氢氧化钠调节体系内pH值。不同pH值条件下,两种吸附剂对磷的吸附结果如图3所示。可以看出,两种吸附剂对磷的吸附量随pH的变化先增大后减小,聚氯化铝压滤残渣吸附剂在pH=7吸附量最大,为22.52mg/g。而聚氯化铝压滤残渣在pH=7时吸附量最大为13.58mg/g。
实施例4
投加量对吸附的影响:取400mg/L的含磷溶液100mL,分别加入一定量吸附材料,调节pH值,测定其在pH=7的条件下,在水浴中25℃条件下震荡2h后剩余总磷浓度,计算吸附量。
不同投加量条件下,两种吸附剂对磷吸附结果如图4所示,可以看出,聚氯化铝压滤残渣吸附剂对磷的去除率随着吸附剂投加量的增加而增大,投加量从0.2g增加到0.8g,聚氯化铝压滤残渣的吸附量增加3.32mg/g,聚氯化铝压滤残渣吸附剂的吸附量增加6.72mg/g。随着投加量的增加,两种吸附剂的增加速度均变慢,进而趋于平缓。造成这种现象的原因是,随着吸附剂投加量的增加,其提供的反应基团在不断增加,与磷结合的机会也不断增加,但溶液中磷的含量有限,其反应速率未发生变化。可以看出,两种吸附剂吸附磷的最佳投加量为0.8g/L。
实施例5
吸附动力学:取两份500mg/L含磷溶液100mL分别加入1.0g聚氯化铝压滤残渣和聚氯化铝压滤残渣吸附剂,调节pH值,测定其在pH=7的条件下,在25℃下,水浴中分别震荡5、15、30、60、120和180min后,取上清液,分析溶液中剩余总磷浓度,计算吸附量。
聚氯化铝压滤残渣吸附剂的动力学数据见图5。由图5可知,聚氯化铝压滤残渣吸附剂对磷的吸附效果明显好于聚氯化铝压滤残渣。聚氯化铝压滤残渣吸附剂在吸附60min时,吸附量为30.72mg/g。在0-5min内,吸附速率最快。5~60min时,吸附量变化适中。60min后,吸附速率变慢,基本趋于稳定,继续延长吸附时间至180min,吸附量增加不明显,即达到吸附平衡状态。
吸附动力学常用吸附速率方程见式(1)及式(2):
Lagergren一级吸附动力学方程:
二级吸附动力学方程:
式中,qe和qt分别表示平衡时和时间为t时的吸附量,mg·g-1;k1和k2分别表示Lagergren一级和二级吸附速率常数,单位分别为L·min-1和g·(mg·min)-1
将图5数据代入Lagergren一级反应动力学和二级反应动力学中进行线性回归,回归参数见表3,由表3可知,两种吸附剂对磷的吸附行为符合二级动力学模型,线性相关系数R2分别为0.9953和0.9999,二级动力学回归曲线如图6所示。
表3两种吸附剂吸附磷的动力学模型参数
由表中可以看出:改性之后制备出来的聚氯化铝压滤残渣吸附剂的平衡吸附量是原残渣的两倍,表明改性的方法可以有效地增大残渣的比表面积,增加残渣表面的活性位点。
实施例6
吸附热力学:取配制浓度为5、10、15、20、25、50、100、200、300、500、1000mg·L-1的含磷溶液100mL的含磷溶液,分别加入1.0g聚氯化铝压滤残渣和聚氯化铝压滤残渣吸附剂,在水浴中25℃下震荡2h后固液分离,分析溶液中剩余总磷浓度,计算吸附量。
聚氯化铝压滤残渣和聚氯化铝压滤残渣吸附剂的热力学数据见图7。由图7可知,两种吸附剂对磷的吸附趋势基本一致,但聚氯化铝压滤残渣吸附剂对磷的吸附效果明显高于聚氯化铝压滤残渣,其吸附饱和量达到22.28mg·g-1
吸附热力学方面常用的吸附速率方程见式(3)及式(4):
Langmuir吸附等温式:
Freundlich吸附等温式:
式中,qe为单位质量吸附剂吸附磷的量,mg·g-1;Ce为平衡时溶液中剩余磷的量,mg·L-1;Q0为构成单分子层吸附时单位质量吸附剂的饱和吸附量,mg·g-1;b、KF为常数;n为与温度等因素有关的常数。
分别采用Langmuir和Freundlich两种吸附模型对实验数据进行拟合,其结果见图8及表4。由表4可以看出,两种吸附剂对磷的吸附行为更符合Langmuir吸附等温方程,对应的R2分别为0.9901和0.9906,均大于Freundlich吸附等温方程。
表4两种吸附剂吸附磷的等温线参数
本申请使用聚氯化铝压滤残渣(PACR)为原料制备改性吸附剂(M-PACR),通过对模拟废水中磷的吸附实验研究表明:
(1)BET和SEM分析表明,相比于聚氯化铝压滤残渣,聚氯化铝压滤残渣吸附剂具有更大的比表面积,加入改性剂以后,其层状结构更加明显。
(2)聚氯化铝压滤残渣吸附剂在吸附除磷60min时,吸附量为30.72mg/g;在pH=7时,投加量为0.8g/L时吸附效果最好,吸附量分别为22.52mg/g和13.58mg/g。符合二级吸附动力学模型与Langmuir吸附等温模型。

Claims (9)

1.一种利用聚氯化铝压滤残渣制备吸附剂的方法,其特征在于:将聚氯化铝压滤残渣置入搅拌罐中,加入水,无机改性剂,再加热,搅拌,冷却后自然成固,粉碎即得成品吸附剂。
2.如权利要求1所述的方法,其特征在于,所使用的残渣其成分,以干基重量计:42.0%≥SiO2≥5.0%、55.0%≥Al2O3+TiO2+Fe2O3≥45.0%、40.0%≥CaO≥5.0%、5.0%≥不溶杂质≥1.0%。
3.如权利要求1所述的方法,其特征在于,水与聚氯化铝压滤残渣的体积比为0.2~0.4:1。
4.如权利要求1所述方法,其特征在于,所述无机改性剂为硫酸或含有等量硫酸根的盐一种或两种,用量为聚氯化铝压滤残渣与硫酸根的质量比为10:1~2。
5.如权利要求1所述方法,其特征在于,200℃≥反应温度≥85℃。
6.如权利要求1所述的方法,其特征在于,反应时间为2~3h。
7.如权利要求1所述方法,其特征在于,吸附剂的粒度为1~2mm。
8.一种根据权利要求1~7中任一项所述的方法制备的吸附剂。
9.一种权利要求8所述的吸附剂在污水除磷中的应用。
CN201810498229.0A 2018-05-23 2018-05-23 一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用 Active CN108499547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810498229.0A CN108499547B (zh) 2018-05-23 2018-05-23 一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810498229.0A CN108499547B (zh) 2018-05-23 2018-05-23 一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用

Publications (2)

Publication Number Publication Date
CN108499547A true CN108499547A (zh) 2018-09-07
CN108499547B CN108499547B (zh) 2021-07-13

Family

ID=63401307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810498229.0A Active CN108499547B (zh) 2018-05-23 2018-05-23 一种利用聚氯化铝压滤残渣制备的吸附剂及其方法和应用

Country Status (1)

Country Link
CN (1) CN108499547B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062799A (zh) * 2007-04-25 2007-10-31 中国科学院南京土壤研究所 一种尾矿吸附废水中磷污染物的方法
CN101905898A (zh) * 2010-08-03 2010-12-08 常州友邦净水材料有限公司 聚合氯化铝反应残渣的利用方法
CN102336400A (zh) * 2010-07-21 2012-02-01 中国地质大学(北京) 水化硅酸钙晶种法回收污水中磷的工艺
CN102730784A (zh) * 2012-07-17 2012-10-17 华北电力大学 一种改性烧结法赤泥去除污水中氮磷的方法
CN103482747A (zh) * 2013-10-16 2014-01-01 武汉理工大学 一种亲水/疏水污水除磷混凝剂及其制备方法
CN104291420A (zh) * 2014-09-11 2015-01-21 陕西省石油化工研究设计院 一种含无机矿物的除磷剂及其使用方法
CN105597656A (zh) * 2016-02-14 2016-05-25 常州市清流水处理剂有限公司 一种利用聚氯化铝生产残渣制备除氟剂的方法
CN105859044A (zh) * 2016-05-25 2016-08-17 北京荣蒂盛环境科技有限公司 一种临时处理污水净化系统及污水净化方法
CN106395935A (zh) * 2016-11-18 2017-02-15 泉州师范学院 一种依靠高铝水泥‑短纤维系统基础上沉藻和底泥钝化的微囊藻水华治理工艺
CN107555539A (zh) * 2016-07-01 2018-01-09 彭昌兰 一种环保污水净化剂及其使用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062799A (zh) * 2007-04-25 2007-10-31 中国科学院南京土壤研究所 一种尾矿吸附废水中磷污染物的方法
CN102336400A (zh) * 2010-07-21 2012-02-01 中国地质大学(北京) 水化硅酸钙晶种法回收污水中磷的工艺
CN101905898A (zh) * 2010-08-03 2010-12-08 常州友邦净水材料有限公司 聚合氯化铝反应残渣的利用方法
CN102730784A (zh) * 2012-07-17 2012-10-17 华北电力大学 一种改性烧结法赤泥去除污水中氮磷的方法
CN103482747A (zh) * 2013-10-16 2014-01-01 武汉理工大学 一种亲水/疏水污水除磷混凝剂及其制备方法
CN104291420A (zh) * 2014-09-11 2015-01-21 陕西省石油化工研究设计院 一种含无机矿物的除磷剂及其使用方法
CN105597656A (zh) * 2016-02-14 2016-05-25 常州市清流水处理剂有限公司 一种利用聚氯化铝生产残渣制备除氟剂的方法
CN105859044A (zh) * 2016-05-25 2016-08-17 北京荣蒂盛环境科技有限公司 一种临时处理污水净化系统及污水净化方法
CN107555539A (zh) * 2016-07-01 2018-01-09 彭昌兰 一种环保污水净化剂及其使用方法
CN106395935A (zh) * 2016-11-18 2017-02-15 泉州师范学院 一种依靠高铝水泥‑短纤维系统基础上沉藻和底泥钝化的微囊藻水华治理工艺

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
YUN-HWEI SHEN ET AL.: "Synthesis and speciation of polyaluminum chloride for water treatment", 《ENVIRONMENT INTERBATIONAL》 *
刘廷志等: "制浆造纸低浓度水的吸附絮凝法深度处理", 《中国造纸》 *
吴慧芳等: "聚合氯化铝污泥吸附除磷的改性研究", 《中国环境科学》 *
吴文思: "赤泥吸附除磷的性能及机制研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
周振等: "聚合氯化铝去除污泥水中磷的工艺优化", 《环境科学》 *
张玉洁: "改性赤泥吸附除磷性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN108499547B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
Muisa et al. Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: A review
Gao et al. Preparation of a new low-cost substrate prepared from drinking water treatment sludge (DWTS)/bentonite/zeolite/fly ash for rapid phosphorus removal in constructed wetlands
Wang et al. Purification mechanism of sewage from constructed wetlands with zeolite substrates: a review
Babatunde et al. Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands
Yang et al. Dewatered alum sludge: a potential adsorbent for phosphorus removal
Namasivayam et al. Application of coconut coir pith for the removal of sulfate and other anions from water
Hussain et al. Orthophosphate removal from domestic wastewater using limestone and granular activated carbon
Zheng et al. Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly (acrylic acid)/attapulgite composite
Pan et al. Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment
Gong et al. Preparation of a new sorbent with hydrated lime and blast furnace slag for phosphorus removal from aqueous solution
Zhao et al. Adsorption of Cu (II) by phosphogypsum modified with sodium dodecyl benzene sulfonate
WO2008113840A1 (en) Surface treated calcium carbonate and its use in waste water treatment
Wang et al. Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation
Ayoob et al. Performance evaluation of alumina cement granules in removing fluoride from natural and synthetic waters
CN108298679A (zh) 一种低密度脱氮除磷填料及其制备方法
CN106540650A (zh) 一种给水厂污泥基除磷颗粒吸附剂的制备方法
Oladoja et al. Synthesis of nano-sized hydrocalumite from a Gastropod shell for aqua system phosphate removal
Li et al. Performance investigation of struvite high-efficiency precipitation from wastewater using silicon-doped magnesium oxide
Lian et al. A comprehensive study of phosphorus removal and recovery with a Fe-loaded sulfoaluminate cement (FSC) adsorbent
US10947131B2 (en) Synergistic iron and clay-based green environmental media for nutrient removal
CN113582285A (zh) 一种黑臭水体复合锁磷剂及其制备方法和应用
Bhatnagar et al. Utilization of industrial waste for cadmium removal from water and immobilization in cement
He et al. Highly efficient removal of phosphorus from agricultural runoff by a new akadama clay barrier-vegetated drainage ditch system (VDD) and its mechanism
CN113860907A (zh) 一种水体除磷用的镧铝双金属改性膨润土陶粒的制备方法
Cheng et al. Optimized Ca-Al-La modified biochar with rapid and efficient phosphate removal performance and excellent pH stability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant