CN108496121B - 无人机仿真飞行系统、方法、设备及机器可读存储介质 - Google Patents
无人机仿真飞行系统、方法、设备及机器可读存储介质 Download PDFInfo
- Publication number
- CN108496121B CN108496121B CN201780005602.8A CN201780005602A CN108496121B CN 108496121 B CN108496121 B CN 108496121B CN 201780005602 A CN201780005602 A CN 201780005602A CN 108496121 B CN108496121 B CN 108496121B
- Authority
- CN
- China
- Prior art keywords
- aircraft
- virtual
- flight
- environment
- calculating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000007613 environmental effect Effects 0.000 claims abstract description 72
- 238000004088 simulation Methods 0.000 claims abstract description 54
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 62
- 238000013178 mathematical model Methods 0.000 claims description 47
- 238000005070 sampling Methods 0.000 claims description 44
- 230000001133 acceleration Effects 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims 4
- 230000003993 interaction Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 15
- 230000002452 interceptive effect Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Toys (AREA)
Abstract
一种无人机仿真飞行系统(100)、方法、设备以及机器可读存储介质,该无人机仿真飞行系统(100)包括:环境模型模块(101)、飞行器模型模块(102);其中,该环境模型模块(101),用于模拟虚拟环境,并计算得出该虚拟环境的环境数据;该飞行器模型模块(102),用于基于用户操作与该环境数据控制虚拟飞行器。该无人机仿真飞行系统(100)及其方法,可以实现虚拟飞行器与虚拟环境的交互,使得无人机的模拟训练达到高度仿真,更加有效地提高操纵人员对无人机的操纵技能。
Description
技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机仿真飞行系统、方法、设备及机器可读存储介质。
背景技术
随着飞行技术的发展,UAV(Unmanned Aerial Vehicle,无人飞行器),也称为无人机,已经得到越来越广泛的应用。无人机的操纵是一个较为复杂的过程,因此对操纵人员有较高的操纵要求,为了避免由于操纵人员不熟悉无人机的操纵过程,直接操纵真实的无人机而造成不必要的损失,相关技术中提供了无人机训练模拟器,以供操纵人员进行模拟训练,以避免造成不必要的损失,同时不存在安全隐患。然而,相关技术中所提供的无人机训练模拟器仅包括了简单的飞行控制算法,并无法实现高度仿真。
发明内容
有鉴于此,本申请公开了无人机仿真飞行系统、方法、设备及机器可读存储介质。
附图说明
图1为本发明实施例提供的无人机仿真飞行系统100的一个实施例框图;
图2为用户输入模块接口图的一种示例;
图3为本发明无人机仿真飞行系统的另一个实施例框图;
图4为多旋翼飞行器的三维外观模型示意图;
图5为本发明飞行器软件仿真交互系统的一个模块框图;
图6为本发明无人机仿真飞行系统的另一个实施例框图;
图7为本发明飞行器软件仿真交互系统的另一个模块框图;
图8为本发明实施例无人机仿真飞行方法的一个实施例流程图;
图9为本发明实施例提供的无人机仿真飞行设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明实施例提供一种无人机仿真飞行系统,该无人机仿真飞行系统属于系统仿真,其基本原理是通过虚拟控制器控制虚拟的被控对象。该无人机仿真飞行系统可以提高操纵人员对无人机的操纵技能,避免由于操纵人员不熟悉无人机的操纵过程,直接操纵真实的无人机而造成不必要的损失,需要说明的是,在真实情况下,操纵人员会面临在各种环境下操纵无人机,例如在大风环境下,因此,在本发明实施例提供的无人机仿真飞行系统中,包括环境模拟,通过模拟出特定的虚拟环境,并实现虚拟飞行器与虚拟环境的交互,使得无人机的模拟训练达到高度仿真,更加有效地提高操纵人员对无人机的操纵技能。
请参见图1,为本发明实施例提供的无人机仿真飞行系统100的一个实施例框图,该无人机仿真飞行系统100包括:环境模型模块101、飞行器模型模块102。
环境模型模块101,用于模拟虚拟环境,并计算得出虚拟环境的环境数据。
在一实施例中,虚拟环境的环境数据可以包括以下至少一种:虚拟飞行器所处虚拟位置的地球磁场强度、虚拟飞行器所处虚拟位置的气压、虚拟飞行器受到的风力等等。其中,地球磁场强度可以依据虚拟飞行器所处虚拟位置,结合WMM(World Magnetic Model,世界地磁模型)计算得出;气压可以依据虚拟飞行器所处虚拟位置,结合美国标准大气模型计算得出;风力则可以结合相关技术中的CIRA-86模型计算得出。
具体计算得出虚拟环境的环境数据的过程本申请不再一一详述。
飞行器模型模块102,用于基于用户操作与环境数据控制虚拟飞行器。
在一实施例中,无人机仿真飞行系统100中还可以包括用户输入模块(图1中并未示出),如图2所示,为用户输入模块接口图的一种示例。该用户输入模块可以监听输入设备(图1中并未示出),例如键盘、远程遥控器输入的控制参数,将所监听到的控制参数转换为用于控制飞行器的控制信号,并输出该控制信号。其中,输入设备所输入的控制参数是基于用户操作而输入的。
在一实施例中,上述控制参数可以包括以下至少一种:副翼舵、升降舵、方向舵、油门、飞控模式等等。其中,飞控模式可以包括以下其中一种:手动控制模式、姿态控制模式、定点控制模式、航线飞行控制模式、指点飞行控制模式等等。
上述手动控制模式是指,在这个模式下,由飞行器控制自身的角速度,此时飞行器无法保持自稳状态,需要用户及时调整飞行器的飞行姿态才可以使得飞行器维持稳定,可用以做一些空翻等极限操作。由此可见,在这个模式下,需要用户及时地手动调整飞行器的飞行姿态以维持飞行器的稳定,基于此,可以将这个模式称为手动控制模式。
姿态控制模式是指,在这个模式下,由飞行器控制自身的三维姿态角度,此时飞行器可以保持自稳状态,并且,由于飞行器惯性较大,并且空气阻尼较小,从而在用户无操作时,飞行器也不会停止,而是继续漂移。由此可见,在这个模式下,即使用户无操作,飞行器也处于运动状态,用户操作主要是为了控制飞行器的飞行姿态,基于此,可以将这个模式称为姿态控制模式。
定点控制模式是指,在这个模式下,由飞行器控制自身的三维姿态角度,此时飞行器可以保持自稳状态,但与姿态控制模式不同的是,在用户无操作时,飞行器将执行刹车动作,最终速度降为0,当飞行器速度降为0时,飞行器停止位移。由此可见,在这个模式下,当用户无操作时,飞行器最终会静止停留在一个地方,也即停留在一个位置点,基于此,可以将这个模式称为定点控制模式。
航线飞行控制模式是指,在这个模式下,由用户预先输入一系列航点,从而控制飞行器在飞行时沿着这些航点连成的航线进行运动。由此可见,在这个模式下,飞行器将按照某一航线进行运动,基于此,可以将这个模式称为航线飞行控制模式。
指点飞行控制模式是指,在这个模式下,由用户预先输入一个三维空间中指定点的坐标值,从而飞行器可以得知该指定点的具体位置,继而控制自身朝着该指定点进行飞行,直至抵达该指定点;或者由用户预先在飞行器所处平面上指定一个点,那么飞行器可以得知所指定的点相对于自身的方向,从而飞行器控制自身沿着该方向进行飞行。由此可见,在这个模式下,通过预先指点以控制飞行器的飞行,基于此,可以将这个模式称为指点飞行控制模式。
在一实施例中,可以基于用户操作,与环境模型模块101计算得出的环境数据,共同计算出当前采样时刻的飞行器状态数据,以控制虚拟飞行器。飞行器状态数据可以包括虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速等等可以用于表征虚拟飞行器的飞行状态的一系列参数中的至少一个。
在一实施例中,控制虚拟飞行器可以包括根据当前采样时刻的飞行状态数据输出虚拟飞行器的三维图像。
由上述实施例可见,在本发明实施例提供的无人机仿真飞行系统中,包括环境模拟,通过模拟出特定的虚拟环境,并实现虚拟飞行器与虚拟环境的交互,使得无人机的模拟训练达到高度仿真,更加有效地提高操纵人员对无人机的操纵技能。
至此完成图1所示实施例的描述。
请参见图3,为本发明无人机仿真飞行系统的另一个实施例框图,图3所示系统在上述图1所示系统的基础上,着重描述了飞行器模型模块102,如图3所示,飞行器模型模块102可以包括:飞行控制模型子模块1021、飞行器运动数学模型子模块1022、传感器模型子模块1023、飞行器外观模型子模块1024。
如下,对图3所示例的无人机仿真飞行系统进行详细描述:
飞行控制模型子模块1021,可以用于描述飞行控制算法,其与飞行器运动数学模型子模块1022,以及传感器模型子模块1023分别相连接,具体可用于,基于传感器模型子模块1023输出的传感器数据与基于用户操作而输入的控制参数,计算得出电机控制信号,并将该电机控制信号发送至飞行器运动数学模型子模块1022。
在一实施例中,基于用户操作而输入的控制参数可以如上述图1所示实施例中的描述,在此不再详述。
在一实施例中,传感器模型子模块1023输出的传感器数据可以包括以下至少一个:加速度计测量值、陀螺仪测量值、三维磁场强度测量值、气压计测量值、超声波传感器测量值、虚拟飞行器所处虚拟位置的经纬度、虚拟飞行器的运动速度等等。
在一实施例中,电机控制信号可以包括PWM(Pulse Width Modulation,脉冲宽度调制)信号,用于控制虚拟飞行器电机的转速。
飞行器运动数学模型子模块1022,可以用于描述飞行器运动,其与飞行控制模型子模块1021,以及飞行器外观模型子模块1024分别相连接,具体可用于,基于飞行控制模型子模块1021输出的电机控制信号计算得出当前采样时刻的飞行器状态数据,并将当前采样时刻的飞行器状态数据发送至传感器模型子模块1023。
在一实施例中,飞行器运动数学模型子模块1022每隔预设时长,例如2.5毫秒,输出一次飞行器状态数据,那么,当前输出飞行器状态数据的时刻即为当前采样时刻,该当前采样时刻的前2.5毫秒的时刻即为前一采样时刻,即上一次输出飞行器状态数据的时刻。
在一实施例中,上述飞行器状态数据包括一下至少一个:虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速。
传感器模型子模块1023,可以用于根据虚拟飞行器所处的虚拟环境以及虚拟飞行器当前的飞行状态,计算得出传感器数据,其与飞行器运动数学模型子模块1022、飞行控制模型子模块1021,以及环境模型模块101分别相连接,具体可用于,基于环境模型模块101输出的环境数据与飞行器运动数学模型子模块1022计算得出的前一采样时刻的飞行器状态数据得到传感器数据,并将传感器数据发送至飞行控制模型子模块1021。
在一实施例中,传感器数据不仅反应了上述所描述的计算得出的测量值,同时还可以反应传感器自身的噪声数据,从而可以实现真实地模拟传感器受到干扰,例如罗盘干扰、GPS丢星干扰时,飞行器的反应。
飞行器外观模型子模块1024,可以用于根据真实的多旋翼飞行器,通过三维建模软件建立三维外观模型,即虚拟飞行器,其与飞行器运动数学模型子模块1022相连接,具体可用于,根据真实的多旋翼飞行器,通过三维建模软件,例如Maya、3D Coat等,建立多旋翼飞行器的三维外观模型,例如,如图4所示,为多旋翼飞行器的三维外观模型示意图,并可以基于飞行器运动数学模型子模块1022输出的当前时刻的飞行状态数据对图4所示例的多旋翼飞行器的三维外观模型的位置和朝向进行调整,将图4所示例的多旋翼飞行器的三维外观模型以三维图像的方式输出,以反馈给用户。
下面结合图3对无人机仿真飞行系统的一个实施例进行描述。在图3所示的无人机仿真飞行系统中,飞行控制模型子模块1021,基于传感器模型子模块1023输出的传感器数据与用户输入,计算得出电机控制信号,并将该电机控制信号发送至飞行器运动数学模型子模块1022;飞行器运动数学模型子模块1022则基于该电机控制信号计算得出当前采样时刻的飞行器状态数据,并将该当前采样时刻的飞行器状态数据发送至传感器模型子模块1023以及飞行器外观模型子模块1024;传感器模型子模块1023则可以基于该当前采样时刻的飞行状态数据以及环境模型模块101输出的环境数据计算得出传感器数据,并将该传感器数据输出至飞行控制模块子模块1021;飞行器外观模型子模块1024则基于该当前时刻的飞行状态数据对图4所示例的多旋翼飞行器的三维外观模型的位置和朝向进行调整,将图4所示例的多旋翼飞行器的三维外观模型以三维图像的方式输出,以反馈给用户;至此,完成一次仿真流程。后续,在下一仿真流程中,飞行控制模型子模块1021则基于最新的传感器数据与当前用户输入,重新计算得出电机控制信号,并输出至飞行器运动数学模型子模块1022,以继续下一仿真流程。
为了使得本领域技术人员可以更加清晰地了解图3所示例的无人机仿真飞行系统的在环仿真流程,示出如下图5,如图5所示,为本发明飞行器软件仿真交互系统的一个模块框图,图5所示例的飞行器软件仿真交互系统500包括:用户输入模块501、飞行器软件在环仿真模块502,以及飞行器外观模型模块503。
首先说明,在图5中,单向箭头表示控制流的走向,双向箭头则表示数据流的走向。
在图5中,用户输入模块501所实现的功能则为获取用户输入的控制参数,具体的,可参见上述图1所示示例中的相关描述,在此不再详述;结合图3所示例的无人机仿真飞行系统,飞行器软件在环仿真模块502所实现的功能则为基于用户输入模块501输出的控制流计算得出当前仿真流程的仿真结果,并将当前的仿真结果保存在当前的飞行器状态数据中,以便在执行下一个仿真流程时,基于飞行器状态数据继续迭代出新的仿真结果,实现仿真循环;同时,飞行器软件在环仿真模块502还基于上述当前仿真流程的仿真结果,控制飞行器外观模型模块503,使得飞行器外观模型模块503基于当前的飞行器状态数据,以及飞行器外观模型模块503的控制信号,调整图4所示例的多旋翼飞行器的三维外观模型的位置和朝向,并将图4所示例的多旋翼飞行器的三维外观模型以三维图像的方式进行显示,以反馈给用户;同时,飞行器外观模型模块503还将多旋翼飞行器当前的飞行状态保存在飞行器状态数据中,以将多旋翼飞行器当前的飞行状态反馈至飞行器软件在环仿真模块502,实现仿真循环。
由上述实施例可见,在本发明实施例提供的无人机仿真飞行系统中,通过模拟出特定的虚拟环境,实现虚拟飞行器与虚拟环境的交互,使得无人机的模拟训练达到高度仿真,并通过实现在环仿真,为用户提供多旋翼飞行器的仿真操作体验,从而更加有效地提高操纵人员对无人机的操纵技能。
至此完成图3所示实施例的描述。
在实际应用中,操作无人机过程中还有可能会与其他物体,例如建筑物发生碰撞,从而为了实现高度仿真,使得用户使用本发明提出的无人机仿真飞行系统可以体验到“身临其境”的操作感,本发明实施例提出的无人机仿真飞行系统还可以进一步包括物理碰撞数学模型,用于检测虚拟无人机与虚拟环境中的虚拟物是否发生空间重叠,并在发生空间重叠时,给出发生碰撞这一结果,以实现模拟真实碰撞情境。
请参见图6,为本发明无人机仿真飞行系统的另一个实施例框图,该图6所示系统在上述图3所示系统的基础上,进一步包括物理碰撞数学模型子模块1025。
物理碰撞数学模型子模块1025,可以在仿真过程中持续监测虚拟飞行器位置是否与虚拟环境中其他物体发生空间重叠,一旦检测到空间重叠,则会给出发生碰撞这一结果。
在一实施例中,当物理碰撞数学模型子模块1025检测到虚拟飞行器发生碰撞后,其他模块将虚拟飞行器的飞行状态调整到碰撞前某一时刻的飞行状态,以便用户可以继续进行仿真飞行。具体的,在无人机仿真飞行系统的显示界面上,当虚拟飞行器与虚拟环境中其他物体发生碰撞时,画面中的虚拟飞行器复位到碰撞前一定时长时的状态。
进一步的,物理碰撞数学模型子模块1025还可以进行仿真碰撞计算。
具体的,物理碰撞数学模型子模块1025,与飞行器运动数学模型子模块1022,以及环境模型模块101分别相连接,具体可用于,在检测到虚拟飞行器与所述虚拟环境中的虚拟物发生碰撞时,计算得出作用于虚拟飞行器的环境干扰,并将所述环境干扰发送至飞行器运动数学模型子模块1022。
在一实施例中,物理碰撞数学模型子模块1025在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,可以基于虚拟飞行器在碰撞时刻的速度、加速度、角速度、角加速度、虚拟飞行器的质量、虚拟飞行器与虚拟物之间的碰撞点的空间位置、碰撞点的法向量、碰撞点的弹性系数中的至少一项,计算得出虚拟飞行器与虚拟物发生碰撞时的碰撞力与碰撞力的力矩,将该碰撞力与该碰撞力的力矩作为作用于虚拟飞行器的环境干扰。
此外,在此基础上,飞行器运动数学模型子模块1022一旦检测到物理碰撞数学模型子模块1025输出的环境干扰,则要基于该环境干扰与飞行控制模型子模块1021输出的电机控制信号共同计算得出当前采样时刻的飞行状态数据,并将该当前采样时刻的飞行状态数据发送至飞行器外观模型子模块1024。由此可见,通过建立物理碰撞数学模型,可以真实的反应出飞行器与其他物体发生碰撞时,飞行器的反应。
下面结合图6对无人机仿真飞行系统的一个实施例进行描述。在图6所示无人机仿真飞行系统中,飞行控制模型子模块1021,基于传感器模型子模块1023输出的传感器数据与用户输入,计算得出电机控制信号,并将该电机控制信号发送至飞行器运动数学模型子模块1022;飞行器运动数学模型子模块1022则基于该电机控制信号以及物理碰撞数学模型子模块1025输出的环境干扰,计算得出当前采样时刻的飞行器状态数据,并将该当前采样时刻的飞行器状态数据发送至传感器模型子模块1023以及飞行器外观模型子模块1024,其中,物理碰撞数学模型子模块1025是在检测到虚拟飞行器与所述虚拟环境中的虚拟物发生碰撞时,计算得出作用于虚拟飞行器的环境干扰,并将该环境干扰发送至飞行器运动数学模型子模块1022的;传感器模型子模块1023则基于该当前采样时刻的飞行状态数据以及环境模型模块101输出的环境数据计算得出传感器数据,并将该传感器数据输出至飞行控制模块子模块1021;飞行器外观模型子模块1024则可以基于该当前时刻的飞行状态数据对图4所示例的多旋翼飞行器的三维外观模型的位置和朝向进行调整,将图4所示例的多旋翼飞行器的三维外观模型以三维图像的方式输出,以反馈给用户;至此,完成一次仿真流程。后续,在下一仿真流程中,飞行控制模型子模块1021则基于最新的传感器数据与当前用户输入,重新计算得出电机控制信号,并输出至飞行器运动数学模型子模块1022,以继续下一仿真流程。
为了使得本领域技术人员可以更加清晰地了解图6所示例的无人机仿真飞行系统的在环仿真流程,示出如下图7,图7为本发明飞行器软件仿真交互系统的另一个模块框图,图7在上述图5所示例的飞行器软件仿真交互系统的基础上,增加了物理碰撞数学模型模块504。
首先说明,在图7中,单向箭头表示控制流的走向,双向箭头则表示数据流的走向。
在图7中,用户输入模块501所实现的功能则为获取用户输入的控制参数,具体的,可参见上述图1所示示例中的相关描述,在此不再详述;结合图6所示例的无人机仿真飞行系统,飞行器软件在环仿真模块502所实现的功能则为基于用户输入模块501输出的控制流计算得出当前仿真流程的仿真结果,并将当前的仿真结果保存在当前的飞行器状态数据中,以便在执行下一个仿真流程时,基于飞行器状态数据,也即前一仿真流程的仿真结果继续迭代出新的仿真结果,实现仿真循环;同时,飞行器软件在环仿真模块502还基于上述当前仿真流程的仿真结果,向物理碰撞数学模型模块504输出控制流,使得物理碰撞数学模型模块504在仿真流程中持续监测虚拟飞行器位置是否与虚拟环境中其他物体发生空间重叠,一旦检测到空间重叠,则会给出发生碰撞这一结果,并计算得出作用于虚拟飞行器的环境干扰,将该环境干扰保存在飞行器状态数据中,以将环境干扰反馈至飞行器软件在环仿真模块502,使得飞行器软件在环仿真模块502基于环境干扰调整飞行器状态数据,实现仿真循环;同时,物理碰撞数学模型模块504向飞行器外观模型503输出控制流,飞行器外观模型503则根据飞行器状态数据调整图4所示例的多旋翼飞行器的三维外观模型的位置和朝向,并将图4所示例的多旋翼飞行器的三维外观模型以三维图像的方式进行显示,以反馈给用户;同时,飞行器外观模型模块503还将多旋翼飞行器的飞行状态保存在当前的飞行器状态数据中,以将多旋翼飞行器当前的飞行状态反馈至飞行器软件在环仿真模块502,实现仿真循环。
至此完成图6所示实施例的描述。
此外,在本发明中,需要说明的是,图3和图6所示例的飞行器模型模块102中各个子模块的运算结果是根据飞行器状态数据进行实时更新的。
基于与上述无人机仿真飞行系统同样的发明构思,本发明实施例中还提供一种无人机仿真飞行方法,如图8所示,为本发明实施例无人机仿真飞行方法的一个实施例流程图,该方法包括以下步骤:
步骤801:模拟虚拟环境,并计算得出虚拟环境的环境数据。
在一实施例中,环境数据可以包括虚拟飞行器所处虚拟位置的地球磁场强度、虚拟飞行器所处虚拟位置的气压、虚拟飞行器受到的风力、等等数据中的至少一项。
在一实施例中,可以基于飞行器状态数据,计算得出虚拟环境的环境数据。
步骤802:基于用户操作与环境数据控制虚拟飞行器。
在一实施例中,可以基于传感器数据与基于用户操作而输入的控制参数,计算得出用于控制虚拟飞行器的电机控制信号,该控制参数可以包括:副翼舵、升降舵、方向舵、油门、飞控模式,其中,飞控模式可以包括:手动控制模式、姿态控制模式、定点控制模式、航线飞行控制模式、指点飞行控制模式;该传感器数据可以包括以下至少一项:加速度计测量值、陀螺仪测量值、三维磁场强度测量值、气压计测量值、超声波传感器测量值、虚拟飞行器所处虚拟位置的经纬度、虚拟飞行器的运动速度;电机控制信号可以包括PWM信号,以控制虚拟飞行器电机的转速。
在一实施例中,可以基于电机控制信号,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据,该飞行状态数据可以包括以下至少一项:虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速。
在一实施例中,可以基于环境数据与前一采样时刻的飞行器状态数据得到用于控制虚拟飞行器的传感器数据。
在一实施例中,基于当前时刻的飞行状态数据输出虚拟飞行器的三维图像。
此外,在本发明实施例中,在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,计算得出作用与虚拟飞行器的环境干扰,进一步的,可以根据电机控制信号与环境干扰,共同计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
在一实施例中,在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,基于所述虚拟飞行器在所述碰撞时刻的速度、所述虚拟飞行器的质量、所述虚拟飞行器与所述虚拟物之间的碰撞点的空间位置、所述碰撞点的法向量、所述碰撞点的弹性系数中的至少一项,计算得出所述虚拟飞行器与所述虚拟物发生碰撞时的碰撞力与碰撞力的力矩,将所述碰撞力与所述碰撞力的力矩作为作用于虚拟飞行器的环境干扰。
对于方法实施例而言,由于其基本对应于上述所描述的系统实施例,所以相关之处参见系统实施例的部分说明即可。以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
至此完成对本发明实施例提供的无人机仿真飞行方法的描述。
基于与上述系统同样的发明构思,本发明实施例中还提供一种无人机仿真飞行设备,如图9所示,该无人机仿真飞行设备900包括:处理器910、控制器920;该处理器910用于:模拟虚拟环境,并计算得出所述虚拟环境的环境数据;该控制器920,用于基于用户操作与所述环境数据控制虚拟飞行器。
在一实施例中,处理器910具体用于下述至少一项:基于虚拟飞行器所处虚拟位置,计算得出所述虚拟位置的地球磁场强度;基于所述虚拟飞行器所处虚拟位置的高度,计算得出所述虚拟位置的气压;基于所述虚拟环境中风力的大小,计算得出所述虚拟飞行器受到的风力。
在一实施例中,控制器920用于:基于传感器数据与基于用户操作而输入的控制参数,计算得出用于控制虚拟飞行器的电机控制信号。
在一实施例中,控制器920用于:基于电机控制信号,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
在一实施例中,控制器920用于:基于环境数据与前一采样时刻的飞行器状态数据得到用于控制虚拟飞行器的传感器数据。
在一实施例中,处理器910用于:模拟虚拟环境,基于飞行器状态数据,计算得出所述虚拟环境的环境数据。
在一实施例中,处理器910还用于:在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,计算得出作用于所述虚拟飞行器的环境干扰。
在一实施例中,控制器920用于:根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
在一实施例中,控制器920用于:基于当前时刻的飞行器状态数据输出虚拟飞行器的三维图像。
在一实施例中,所述传感器数据包括下述至少一个:加速度计测量值、陀螺仪测量值、三维磁场强度测量值、气压计测量值、超声波传感器测量值、虚拟飞行器所处虚拟位置的经纬度、虚拟飞行器的运动速度。
在一实施例中,所述控制参数包括下述至少一个:副翼舵、升降舵、方向舵、油门、飞控模式。
在一实施例中,所述飞控模式包括下述至少一个:手动控制模式、姿态控制模式、定点控制模式、航线飞行控制模式、指点飞行控制模式。
在一实施例中,所述飞行器状态数据包括下述至少一个:所述虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速。
在一实施例中,控制器920用于:在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,基于所述虚拟飞行器在所述碰撞时刻的速度、所述虚拟飞行器的质量、所述虚拟飞行器与所述虚拟物之间的碰撞点的空间位置、所述碰撞点的法向量、所述碰撞点的弹性系数中的至少一项,计算得出所述虚拟飞行器与所述虚拟物发生碰撞时的碰撞力与碰撞力的力矩,将所述碰撞力与所述碰撞力的力矩作为作用于虚拟飞行器的环境干扰;
根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
至此完成对本发明实施例提供的无人机仿真飞行设备的描述。
基于与上述系统同样的发明构思,本发明实施例中还提供一种机器可读存储介质,该机器可读存储介质上存储有若干计算机指令,所述计算机指令被执行时进行如下处理:模拟虚拟环境,并计算得出所述虚拟环境的环境数据;基于用户操作与所述环境数据控制虚拟飞行器。
在一实施例中,所述计算得出所述虚拟环境的环境数据的过程中,所述计算机指令被执行时至少进行下述至少一项处理:基于虚拟飞行器所处虚拟位置,计算得出所述虚拟位置的地球磁场强度;基于所述虚拟飞行器所处虚拟位置的高度,计算得出所述虚拟位置的气压;基于所述虚拟环境中风力的大小,计算得出所述虚拟飞行器受到的风力。
在一实施例中,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:基于传感器数据与基于用户操作而输入的控制参数,计算得出用于控制虚拟飞行器的电机控制信号。
在一实施例中,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:基于电机控制信号,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
在一实施例中,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:基于环境数据与前一采样时刻的飞行器状态数据得到用于控制虚拟飞行器的传感器数据。
在一实施例中,所述模拟虚拟环境,并计算得出所述虚拟环境的环境数据的过程中,所述计算机指令被执行时进行下述处理:模拟虚拟环境,基于飞行器状态数据,计算得出所述虚拟环境的环境数据。
在一实施例中,所述计算机指令被执行时还进行如下处理:在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,计算得出作用于所述虚拟飞行器的环境干扰。
在一实施例中,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
在一实施例中,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:基于当前时刻的飞行器状态数据输出虚拟飞行器的三维图像。
在一实施例中,所述传感器数据包括下述至少一个:加速度计测量值、陀螺仪测量值、三维磁场强度测量值、气压计测量值、超声波传感器测量值、虚拟飞行器所处虚拟位置的经纬度、虚拟飞行器的运动速度。
在一实施例中,所述控制参数包括下述至少一个:副翼舵、升降舵、方向舵、油门、飞控模式。
在一实施例中,所述飞控模式包括下述至少一个:手动控制模式、姿态控制模式、定点控制模式、航线飞行控制模式、指点飞行控制模式。
在一实施例中,所述飞行器状态数据包括下述至少一个:所述虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速。
在一实施例中,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,基于所述虚拟飞行器在所述碰撞时刻的速度、所述虚拟飞行器的质量、所述虚拟飞行器与所述虚拟物之间的碰撞点的空间位置、所述碰撞点的法向量、所述碰撞点的弹性系数中的至少一项,计算得出所述虚拟飞行器与所述虚拟物发生碰撞时的碰撞力与碰撞力的力矩,将所述碰撞力与所述碰撞力的力矩作为作用于虚拟飞行器的环境干扰;
根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
至此完成对本发明实施例提供的机器可读存储介质的描述。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的系统、方法、设备,以及机器可读存储介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (53)
1.一种无人机仿真飞行系统,其特征在于,所述系统包括:环境模型模块、飞行器模型模块、用户输入模块;其中,
所述环境模型模块,用于模拟虚拟环境,并计算得出所述虚拟环境的环境数据;
所述飞行器模型模块,用于基于用户操作与所述环境数据控制虚拟飞行器;
所述用户输入模块用于监听输入的控制参数,将所监听到的控制参数转换为用于控制飞行器的控制信号并输出;所述控制参数包括飞行控制模式,所述飞行控制模式包括以下其中一种:手动控制模式、姿态控制模式、定点控制模式、航线飞行控制模式、指点飞行控制模式;
在所述手动控制模式下,由用户手动调整飞行器的飞行姿态以维持飞行器的稳定;
在所述姿态控制模式下,基于用户操作控制飞行器的飞行姿态,即使用户无操作,飞行器也处于运动状态;
在所述定点控制模式下,当用户无操作时,飞行器最终停留在一个位置点;
在所述航线飞行控制模式下,飞行器按照某一航线进行运动,所述航线由用户预先输入的航点连成;
在所述指点飞行控制模式下,通过预先指点以控制飞行器的飞行。
2.根据权利要求1所述的系统,其特征在于,所述环境模型模块包括下述至少一个:
地磁强度计算子模块、气压计算子模块、风力计算子模块;其中,
所述地磁强度计算子模块,用于基于虚拟飞行器所处虚拟位置,计算得出所述虚拟位置的地球磁场强度;
所述气压计算子模块,用于基于所述虚拟飞行器所处虚拟位置的高度,计算得出所述虚拟位置的气压;
所述风力计算子模块,用于基于所述虚拟环境中风力的大小,计算得出所述虚拟飞行器受到的风力。
3.根据权利要求1所述的系统,其特征在于,所述飞行器模型模块包括:飞行控制模型子模块、飞行器运动数学模型子模块、传感器模型子模块;
所述飞行控制模型子模块,用于基于所述传感器模型子模块输出的传感器数据与基于用户操作而输入的控制参数,计算得出电机控制信号,并将所述电机控制信号发送至所述飞行器运动数学模型子模块。
4.根据权利要求1所述的系统,其特征在于,所述飞行器模型模块包括:飞行控制模型子模块、飞行器运动数学模型子模块、传感器模型子模块;
所述飞行器运动数学模型子模块,用于基于所述飞行控制模型子模块输出的电机控制信号,计算得出当前采样时刻的飞行器状态数据,并将所述当前采样时刻的飞行器状态数据发送至所述传感器模型子模块。
5.根据权利要求1所述的系统,其特征在于,所述飞行器模型模块包括:传感器模型子模块、飞行控制模型子模块;
所述传感器模型子模块,用于基于所述环境模型模块输出的所述环境数据与前一采样时刻的飞行器状态数据得到传感器数据,并将所述传感器数据发送至所述飞行控制模型子模块。
6.根据权利要求1所述的系统,其特征在于,所述飞行器模型模块包括:飞行器运动数学模型子模块、传感器模型子模块;
所述环境模型,用于模拟虚拟环境,并基于所述飞行器运动数学模型子模块输出的飞行器状态数据,计算得出所述虚拟环境的环境数据,并将所述环境数据发送至所述传感器模型子模块。
7.根据权利要求4或6所述的系统,其特征在于,所述飞行器模型模块还包括:物理碰撞数学模型子模块;
所述物理碰撞数学模型子模块,用于在检测到虚拟飞行器与所述虚拟环境中的虚拟物发生碰撞时,计算得出作用于所述虚拟飞行器的环境干扰,并将所述环境干扰发送至所述飞行器运动数学模型子模块。
8.根据权利要求7所述的系统,其特征在于,所述飞行器运动数学模型子模块,具体用于:基于所述飞行控制模型子模块输出的电机控制信号与所述环境干扰,计算得出当前采样时刻的飞行器状态数据,并将所述当前采样时刻的飞行器状态数据发送至所述传感器模型子模块。
9.根据权利要求1~6任一所述的系统,其特征在于,所述飞行器模型模块还包括:飞行器外观模型子模块;
所述飞行器外观模型子模块,用于基于所述飞行器运动数学模型子模块输出的当前时刻的飞行器状态数据输出虚拟飞行器的三维图像。
10.根据权利要求1~6任一所述的系统,其特征在于,所述飞行器模型模块中保存有飞行器状态数据;
所述飞行器模型模块中各个子模块的运算结果根据所述飞行器内部状态数据进行实时更新。
11.根据权利要求3所述的系统,其特征在于,所述传感器数据包括下述至少一个:
加速度计测量值、陀螺仪测量值、三维磁场强度测量值、气压计测量值、超声波传感器测量值、虚拟飞行器所处虚拟位置的经纬度、虚拟飞行器的运动速度。
12.根据权利要求3所述的系统,其特征在于,所述控制参数还包括下述至少一个:
副翼舵、升降舵、方向舵、油门。
13.根据权利要求4所述的系统,其特征在于,所述飞行器状态数据包括下述至少一个:
所述虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速。
14.根据权利要求7所述的系统,其特征在于,所述物理碰撞数学模型子模块具体用于:在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,基于所述虚拟飞行器在所述碰撞时刻的速度、所述虚拟飞行器的质量、所述虚拟飞行器与所述虚拟物之间的碰撞点的空间位置、所述碰撞点的法向量、所述碰撞点的弹性系数中的至少一项,计算得出所述虚拟飞行器与所述虚拟物发生碰撞时的碰撞力与碰撞力的力矩,将所述碰撞力与所述碰撞力的力矩作为作用于虚拟飞行器的环境干扰;并将所述环境干扰发送至所述飞行器运动数学模型子模块。
15.一种无人机仿真飞行方法,其特征在于,所述方法包括:
模拟虚拟环境,并计算得出所述虚拟环境的环境数据;
基于用户操作与所述环境数据控制虚拟飞行器;
监听输入的控制参数,将所监听到的控制参数转换为用于控制飞行器的控制信号并输出;所述控制参数包括飞行控制模式,所述飞行控制模式包括以下其中一种:手动控制模式、姿态控制模式、定点控制模式、航线飞行控制模式、指点飞行控制模式;
在所述手动控制模式下,由用户手动调整飞行器的飞行姿态以维持飞行器的稳定;
在所述姿态控制模式下,基于用户操作控制飞行器的飞行姿态,即使用户无操作,飞行器也处于运动状态;
在所述定点控制模式下,当用户无操作时,飞行器最终停留在一个位置点;
在所述航线飞行控制模式下,飞行器按照某一航线进行运动,所述航线由用户预先输入的航点连成;
在所述指点飞行控制模式下,通过预先指点以控制飞行器的飞行。
16.根据权利要求15所述的方法,其特征在于,所述计算得出所述虚拟环境的环境数据,包括下述至少一项:
基于虚拟飞行器所处虚拟位置,计算得出所述虚拟位置的地球磁场强度;
基于所述虚拟飞行器所处虚拟位置的高度,计算得出所述虚拟位置的气压;
基于所述虚拟环境中风力的大小,计算得出所述虚拟飞行器受到的风力。
17.根据权利要求15所述的方法,其特征在于,所述基于用户操作与所述环境数据控制虚拟飞行器,包括:
基于传感器数据与基于用户操作而输入的控制参数,计算得出用于控制虚拟飞行器的电机控制信号。
18.根据权利要求15所述的方法,其特征在于,所述基于用户操作与所述环境数据控制虚拟飞行器,包括:
基于电机控制信号,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
19.根据权利要求15所述的方法,其特征在于,所述基于用户操作与所述环境数据控制虚拟飞行器,包括:
基于环境数据与前一采样时刻的飞行器状态数据得到用于控制虚拟飞行器的传感器数据。
20.根据权利要求15所述的方法,其特征在于,所述模拟虚拟环境,并计算得出所述虚拟环境的环境数据,包括:
模拟虚拟环境,基于飞行器状态数据,计算得出所述虚拟环境的环境数据。
21.根据权利要求18或20所述的方法,其特征在于,所述方法还包括:
在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,计算得出作用于所述虚拟飞行器的环境干扰。
22.根据权利要求21所述的方法,其特征在于,所述基于用户操作与所述环境数据控制虚拟飞行器,包括:
根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
23.根据权利要求15~20任一所述的方法,其特征在于,所述基于用户操作与所述环境数据控制虚拟飞行器,包括:
基于当前时刻的飞行器状态数据输出虚拟飞行器的三维图像。
24.根据权利要求17或19所述的方法,其特征在于,所述传感器数据包括下述至少一个:
加速度计测量值、陀螺仪测量值、三维磁场强度测量值、气压计测量值、超声波传感器测量值、虚拟飞行器所处虚拟位置的经纬度、虚拟飞行器的运动速度。
25.根据权利要求16所述的方法,其特征在于,所述控制参数还包括下述至少一个:
副翼舵、升降舵、方向舵、油门。
26.根据权利要求17所述的方法,其特征在于,所述飞行器状态数据包括下述至少一个:
所述虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速。
27.根据权利要求20所述的方法,其特征在于,所述基于用户操作与所述环境数据控制虚拟飞行器,包括:
在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,基于所述虚拟飞行器在所述碰撞时刻的速度、所述虚拟飞行器的质量、所述虚拟飞行器与所述虚拟物之间的碰撞点的空间位置、所述碰撞点的法向量、所述碰撞点的弹性系数中的至少一项,计算得出所述虚拟飞行器与所述虚拟物发生碰撞时的碰撞力与碰撞力的力矩,将所述碰撞力与所述碰撞力的力矩作为作用于虚拟飞行器的环境干扰;
根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
28.一种无人机仿真飞行设备,其特征在于,所述设备包括:
处理器,用于模拟虚拟环境,并计算得出所述虚拟环境的环境数据;
控制器,用于基于用户操作与所述环境数据控制虚拟飞行器,监听输入的控制参数,将所监听到的控制参数转换为用于控制飞行器的控制信号并输出;所述控制参数包括飞行控制模式,所述飞行控制模式包括以下其中一种:手动控制模式、姿态控制模式、定点控制模式、航线飞行控制模式、指点飞行控制模式;
在所述手动控制模式下,由用户手动调整飞行器的飞行姿态以维持飞行器的稳定;
在所述姿态控制模式下,基于用户操作控制飞行器的飞行姿态,即使用户无操作,飞行器也处于运动状态;
在所述定点控制模式下,当用户无操作时,飞行器最终停留在一个位置点;
在所述航线飞行控制模式下,飞行器按照某一航线进行运动,所述航线由用户预先输入的航点连成;
在所述指点飞行控制模式下,通过预先指点以控制飞行器的飞行。
29.根据权利要求28所述的设备,其特征在于,所述处理器用于下述至少一项:
基于虚拟飞行器所处虚拟位置,计算得出所述虚拟位置的地球磁场强度;
基于所述虚拟飞行器所处虚拟位置的高度,计算得出所述虚拟位置的气压;
基于所述虚拟环境中风力的大小,计算得出所述虚拟飞行器受到的风力。
30.根据权利要求28所述的设备,其特征在于,所述控制器用于:
基于传感器数据与基于用户操作而输入的控制参数,计算得出用于控制虚拟飞行器的电机控制信号。
31.根据权利要求28所述的设备,其特征在于,所述控制器用于:
基于电机控制信号,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
32.根据权利要求28所述的设备,其特征在于,所述控制器用于:
基于环境数据与前一采样时刻的飞行器状态数据得到用于控制虚拟飞行器的传感器数据。
33.根据权利要求28所述的设备,其特征在于,所述处理器用于:
模拟虚拟环境,基于飞行器状态数据,计算得出所述虚拟环境的环境数据。
34.根据权利要求31或33所述的设备,其特征在于,所述处理器还用于:
在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,计算得出作用于所述虚拟飞行器的环境干扰。
35.根据权利要求34所述的设备,其特征在于,所述控制器用于:
根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
36.根据权利要求28~33任一所述的设备,其特征在于,所述控制器用于:
基于当前时刻的飞行器状态数据输出虚拟飞行器的三维图像。
37.根据权利要求30或32所述的设备,其特征在于,所述传感器数据包括下述至少一个:
加速度计测量值、陀螺仪测量值、三维磁场强度测量值、气压计测量值、超声波传感器测量值、虚拟飞行器所处虚拟位置的经纬度、虚拟飞行器的运动速度。
38.根据权利要求29所述的设备,其特征在于,所述控制参数还包括下述至少一个:
副翼舵、升降舵、方向舵、油门。
39.根据权利要求30所述的设备,其特征在于,所述飞行器状态数据包括下述至少一个:
所述虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速。
40.根据权利要求33所述的设备,其特征在于,所述控制器用于:
在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,基于所述虚拟飞行器在所述碰撞时刻的速度、所述虚拟飞行器的质量、所述虚拟飞行器与所述虚拟物之间的碰撞点的空间位置、所述碰撞点的法向量、所述碰撞点的弹性系数中的至少一项,计算得出所述虚拟飞行器与所述虚拟物发生碰撞时的碰撞力与碰撞力的力矩,将所述碰撞力与所述碰撞力的力矩作为作用于虚拟飞行器的环境干扰;
根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
41.一种机器可读存储介质,其特征在于,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被执行时进行如下处理:
模拟虚拟环境,并计算得出所述虚拟环境的环境数据;
基于用户操作与所述环境数据控制虚拟飞行器;
监听输入的控制参数,将所监听到的控制参数转换为用于控制飞行器的控制信号并输出;所述控制参数包括飞行控制模式,所述飞行控制模式包括以下其中一种:手动控制模式、姿态控制模式、定点控制模式、航线飞行控制模式、指点飞行控制模式;
在所述手动控制模式下,由用户手动调整飞行器的飞行姿态以维持飞行器的稳定;
在所述姿态控制模式下,基于用户操作控制飞行器的飞行姿态,即使用户无操作,飞行器也处于运动状态;
在所述定点控制模式下,当用户无操作时,飞行器最终停留在一个位置点;
在所述航线飞行控制模式下,飞行器按照某一航线进行运动,所述航线由用户预先输入的航点连成;
在所述指点飞行控制模式下,通过预先指点以控制飞行器的飞行。
42.根据权利要求41所述的机器可读存储介质,其特征在于,所述计算得出所述虚拟环境的环境数据的过程中,所述计算机指令被执行时至少进行下述至少一项处理:
基于虚拟飞行器所处虚拟位置,计算得出所述虚拟位置的地球磁场强度;
基于所述虚拟飞行器所处虚拟位置的高度,计算得出所述虚拟位置的气压;
基于所述虚拟环境中风力的大小,计算得出所述虚拟飞行器受到的风力。
43.根据权利要求41所述的机器可读存储介质,其特征在于,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:
基于传感器数据与基于用户操作而输入的控制参数,计算得出用于控制虚拟飞行器的电机控制信号。
44.根据权利要求41所述的机器可读存储介质,其特征在于,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:
基于电机控制信号,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
45.根据权利要求41所述的机器可读存储介质,其特征在于,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:
基于环境数据与前一采样时刻的飞行器状态数据得到用于控制虚拟飞行器的传感器数据。
46.根据权利要求41所述的机器可读存储介质,其特征在于,所述模拟虚拟环境,并计算得出所述虚拟环境的环境数据的过程中,所述计算机指令被执行时进行下述处理:
模拟虚拟环境,基于飞行器状态数据,计算得出所述虚拟环境的环境数据。
47.根据权利要求44或46所述的机器可读存储介质,其特征在于,所述计算机指令被执行时还进行如下处理:
在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,计算得出作用于所述虚拟飞行器的环境干扰。
48.根据权利要求47所述的机器可读存储介质,其特征在于,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:
根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
49.根据权利要求41~46任一所述的机器可读存储介质,其特征在于,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:
基于当前时刻的飞行器状态数据输出虚拟飞行器的三维图像。
50.根据权利要求43或45所述的机器可读存储介质,其特征在于,所述传感器数据包括下述至少一个:
加速度计测量值、陀螺仪测量值、三维磁场强度测量值、气压计测量值、超声波传感器测量值、虚拟飞行器所处虚拟位置的经纬度、虚拟飞行器的运动速度。
51.根据权利要求42所述的机器可读存储介质,其特征在于,所述控制参数还包括下述至少一个:
副翼舵、升降舵、方向舵、油门。
52.根据权利要求43所述的机器可读存储介质,其特征在于,所述飞行器状态数据包括下述至少一个:
所述虚拟飞行器的空间位置、速度、加速度、姿态角、姿态角速度、姿态角加速度、电机转速、螺旋桨转速。
53.根据权利要求46所述的机器可读存储介质,其特征在于,所述基于用户操作与所述虚拟环境控制虚拟飞行器的过程中,所述计算机指令被执行时进行下述处理:
在检测到虚拟飞行器与虚拟环境中的虚拟物发生碰撞时,基于所述虚拟飞行器在所述碰撞时刻的速度、所述虚拟飞行器的质量、所述虚拟飞行器与所述虚拟物之间的碰撞点的空间位置、所述碰撞点的法向量、所述碰撞点的弹性系数中的至少一项,计算得出所述虚拟飞行器与所述虚拟物发生碰撞时的碰撞力与碰撞力的力矩,将所述碰撞力与所述碰撞力的力矩作为作用于虚拟飞行器的环境干扰;
根据电机控制信号与所述环境干扰,计算得出用于控制虚拟飞行器的当前采样时刻的飞行器状态数据。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/099117 WO2019037103A1 (zh) | 2017-08-25 | 2017-08-25 | 无人机仿真飞行系统、方法、设备及机器可读存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108496121A CN108496121A (zh) | 2018-09-04 |
CN108496121B true CN108496121B (zh) | 2022-01-25 |
Family
ID=63344766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780005602.8A Expired - Fee Related CN108496121B (zh) | 2017-08-25 | 2017-08-25 | 无人机仿真飞行系统、方法、设备及机器可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108496121B (zh) |
WO (1) | WO2019037103A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020172866A1 (zh) * | 2019-02-28 | 2020-09-03 | 深圳市大疆创新科技有限公司 | 一种飞行模拟系统、方法及飞行模拟设备 |
CN110033110A (zh) * | 2019-04-19 | 2019-07-19 | 成都蔚来空间科技有限公司 | 无人机操作学习的模拟学习系统及方法 |
CN110187700B (zh) * | 2019-06-10 | 2021-01-08 | 北京科技大学 | 基于虚拟现实的仿生扑翼飞行机器人远程控制系统和方法 |
CN113228140B (zh) * | 2019-08-30 | 2024-04-19 | 乐天集团股份有限公司 | 无人飞行器的操纵模拟系统及方法 |
CN110585711A (zh) * | 2019-09-12 | 2019-12-20 | 腾讯科技(深圳)有限公司 | 虚拟飞行器的控制方法、装置、终端及存储介质 |
CN111191346B (zh) * | 2019-12-11 | 2023-09-29 | 上海航天控制技术研究所 | 一种空间飞行器软件在轨运行实例数据还原方法及介质 |
CN111538255B (zh) * | 2020-06-19 | 2023-04-25 | 中国人民解放军国防科技大学 | 一种反蜂群无人机的飞行器控制方法及系统 |
CN113826149A (zh) * | 2020-09-21 | 2021-12-21 | 深圳市大疆创新科技有限公司 | 用于穿越机的飞行模拟方法及模拟终端 |
CN113851025A (zh) * | 2021-09-23 | 2021-12-28 | 清远市巨劲科技有限公司 | 一种用于科普教育无人机的模拟操控系统 |
CN113829348B (zh) * | 2021-09-30 | 2023-08-15 | 上海傅利叶智能科技有限公司 | 基于物理引擎的机器人控制方法、装置和康复机器人 |
CN114252067A (zh) * | 2021-12-25 | 2022-03-29 | 江苏九天航空航天科技有限公司 | 一种制导炮弹空中姿态预测方法 |
CN114394244B (zh) * | 2021-12-31 | 2023-08-08 | 连云港杰瑞电子有限公司 | 一种机械惯性式无人机油门杆 |
CN114218812A (zh) * | 2022-01-26 | 2022-03-22 | 北京星际荣耀科技有限责任公司 | 一种飞行器全数字仿真方法、装置、电子设备及存储介质 |
CN115113639B (zh) * | 2022-07-25 | 2023-05-05 | 中国人民解放军32370部队 | 一种无人机飞行控制与模拟训练方法及装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060040239A1 (en) * | 2004-08-02 | 2006-02-23 | J. J. Keller & Associates, Inc. | Driving simulator having articial intelligence profiles, replay, hazards, and other features |
CN101093617B (zh) * | 2006-06-23 | 2010-04-07 | 莱斯莉·杰·莱内尔 | 远程引航系统 |
CN101118622A (zh) * | 2007-05-25 | 2008-02-06 | 清华大学 | 在城市环境下微型飞行器三维轨迹仿真方法 |
CN101398866A (zh) * | 2008-10-29 | 2009-04-01 | 哈尔滨工程大学 | 飞行器视景仿真系统 |
CN101430837B (zh) * | 2008-11-21 | 2010-10-20 | 哈尔滨工程大学 | 基于cave的沉浸式摩托艇驾驶仿真系统 |
CN101645101B (zh) * | 2009-09-04 | 2011-06-01 | 北京航空航天大学 | 一种通用无人飞行器仿真建模方法 |
DE102010025954A1 (de) * | 2010-07-02 | 2012-01-05 | Abb Technology Ag | Verfahren und Anordnung zur vollständigen oder teilweisen Nachbildung und/oder Simulation eines Automatisierungssystems |
CN102508439B (zh) * | 2011-11-18 | 2013-07-24 | 天津大学 | 基于hla的多无人机分布式仿真方法 |
CN102566441A (zh) * | 2011-12-29 | 2012-07-11 | 成都飞机工业(集团)有限责任公司 | 用于无人机的可视仿真试验系统 |
CN102592007A (zh) * | 2011-12-30 | 2012-07-18 | 成都飞机工业(集团)有限责任公司 | 用于飞行控制律设计调参的无人机对象模型建模方法 |
US9405296B2 (en) * | 2012-12-19 | 2016-08-02 | Elwah LLC | Collision targeting for hazard handling |
US10403165B2 (en) * | 2013-08-30 | 2019-09-03 | Insitu, Inc. | Unmanned vehicle simulation |
CN103578322B (zh) * | 2013-11-07 | 2015-08-05 | 成都西麦克虚拟现实电子技术有限公司 | 机场运行指挥模拟训练系统及其模拟训练方法 |
CN104029825B (zh) * | 2014-06-13 | 2016-01-20 | 中国人民解放军装甲兵工程学院 | 现场虚实耦合无人机系统 |
CN104111861B (zh) * | 2014-07-07 | 2017-04-12 | 中国人民解放军军械工程学院 | 一种无人机模拟训练系统及其控制方法 |
JP6278539B2 (ja) * | 2014-09-05 | 2018-02-14 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 状況に基づく飛行モード選択 |
WO2016050099A1 (en) * | 2014-09-30 | 2016-04-07 | SZ DJI Technology Co., Ltd. | System and method for supporting simulated movement |
CN112947510A (zh) * | 2014-09-30 | 2021-06-11 | 深圳市大疆创新科技有限公司 | 用于飞行模拟的系统和方法 |
JP6174258B2 (ja) * | 2014-09-30 | 2017-08-02 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 飛行指示方法、飛行指示装置及び航空機 |
CN104881518B (zh) * | 2015-04-30 | 2017-10-31 | 电子科技大学 | 一种飞行器的三维视景仿真系统 |
CN105250130B (zh) * | 2015-09-01 | 2018-02-02 | 杭州喵隐科技有限公司 | 一种基于电动按摩器械的虚拟现实实现方法 |
CN106707790A (zh) * | 2015-11-13 | 2017-05-24 | 成都飞机工业(集团)有限责任公司 | 一种无人机非线性数学模型建立方法 |
CN205281183U (zh) * | 2015-12-30 | 2016-06-01 | 南京信息工程大学 | 一种低空环境监测无人机系统 |
CN105632271B (zh) * | 2016-03-04 | 2017-11-07 | 中国空气动力研究与发展中心低速空气动力研究所 | 一种低速风洞模型飞行实验地面模拟训练系统 |
-
2017
- 2017-08-25 WO PCT/CN2017/099117 patent/WO2019037103A1/zh active Application Filing
- 2017-08-25 CN CN201780005602.8A patent/CN108496121B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN108496121A (zh) | 2018-09-04 |
WO2019037103A1 (zh) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108496121B (zh) | 无人机仿真飞行系统、方法、设备及机器可读存储介质 | |
US11276325B2 (en) | Systems and methods for flight simulation | |
WO2021258327A1 (zh) | 一种无人机可视化半实物仿真系统及其仿真方法 | |
Nagaty et al. | Control and navigation framework for quadrotor helicopters | |
Léonard et al. | Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts | |
Meyer et al. | Comprehensive simulation of quadrotor uavs using ros and gazebo | |
Woods et al. | A novel potential field controller for use on aerial robots | |
US11556681B2 (en) | Method and system for simulating movable object states | |
Stramigioli et al. | A novel approach to haptic tele-operation of aerial robot vehicles | |
WO2021259252A1 (zh) | 飞行模拟方法、装置、电子设备及无人机 | |
KR102244988B1 (ko) | 군집 비행을 위한 복수 개의 무인항공기의 군집 비행 제어 시스템 및 방법 | |
WO2020172866A1 (zh) | 一种飞行模拟系统、方法及飞行模拟设备 | |
Bulka et al. | Autonomous fixed-wing aerobatics: From theory to flight | |
CN110231828A (zh) | 基于nftsm的四旋翼无人机视觉伺服控制方法 | |
Guclu et al. | Attitude and altitude stabilization of fixed wing VTOL unmanned air vehicle | |
CN109308074A (zh) | 一种无人机重心偏移的补偿方法及系统 | |
Sciortino et al. | ROS/Gazebo-based simulation of quadcopter aircrafts | |
Lugo-Cardenas et al. | The mav3dsim hardware in the loop simulation platform for research and validation of uav controllers | |
CN108181924B (zh) | 一种在图像界面上控制无人机飞行的方法与系统 | |
Castro et al. | A software-in-the-loop simulation scheme for position formation flight of multicopters | |
Wandarosanza et al. | Hardware-in-the-loop simulation of UAV hexacopter for chemical hazard monitoring mission | |
Hing et al. | Improving unmanned aerial vehicle pilot training and operation for flying in cluttered environments | |
Erasmus | Stabilization of a rotary wing unmanned aerial vehicle with an unknown suspended payload | |
AbdElHamid et al. | Development of UAV teleoperation virtual environment based-on GSM networks and real weather effects | |
Vervoorst | A modular simulation environment for the improved dynamic simulation of multirotor unmanned aerial vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220125 |
|
CF01 | Termination of patent right due to non-payment of annual fee |