CN108494471B - 一种天基深空中继卫星的发射方法 - Google Patents
一种天基深空中继卫星的发射方法 Download PDFInfo
- Publication number
- CN108494471B CN108494471B CN201810144892.0A CN201810144892A CN108494471B CN 108494471 B CN108494471 B CN 108494471B CN 201810144892 A CN201810144892 A CN 201810144892A CN 108494471 B CN108494471 B CN 108494471B
- Authority
- CN
- China
- Prior art keywords
- orbit
- satellite
- relay
- deep space
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18519—Operations control, administration or maintenance
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Relay Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种天基深空中继卫星的星座布局,用于为在地球和火星之间的日心轨道上部署星际通信中继星座;包括:设置中继卫星到火星的距离lM等于中继卫星到地球的距离lE,同时小于通信距离极限l:lM=lE≤l。本发明的方法通过在地球轨道和火星轨道之间的日心轨道上部署通信星座,能够覆盖金星、火星、小行星带和木星等热点深空探测区域,具有覆盖范围广的优点。此外,本发明还公开了一种天基深空中继卫星的发射方法,所述方法采用一箭双星的发射模式,采用长征三乙火箭对卫星S1和卫星S2同时进行发射,本发明通过一箭多星转移轨道设计,使得各星的燃料需求完全一致,从而可以批量化设计和制造,具有成本低的优点。
Description
技术领域
本发明涉及激光通信中继卫星星座组网领域,具体涉及一种天基深空中继卫星的发射方法。
背景技术
自1957年10月4日第一颗人造卫星上天后,人类从未停止过对于整个太阳系探索的好奇心。至今为止,已经有超过150个探测器被发送至深空中用于探索我们所在的太阳系。尽管如此,我们探索了太阳系的很小的一部分。同时,有能力进行深空项目仅仅是传统的大型国家和组织(如中国、美国、俄罗斯、欧空局、日本、印度等)。
近年来,针对深空探索有2个新型的发展方向:
第1个发展方向是:越来越多的中小型国家计划进行深空探索项目,如韩国、卢森堡等。卢森堡政府甚至出台了一些的政策用于促进利用星际资源。这些新兴势力将扩展并改变传统深空俱乐部的组成结构。
第2个发展方向是:越来越多的风险投资和工业公司将其注意力集中于深空探测,其主要目的为对小行星带的资源展开挖掘和利用。这些有野心的先锋们(如深空工业公司、星际资源公司)对于小行星的商业价值非常感兴趣,同时期望能够在深空探测的投资上获利。在未来,深空经济将会缓慢的成长,同时存在着改变全球经济格局的潜力和可能性。
阻碍深空探测发展的一个主要问题是通信与跟踪问题。通信与跟踪功能严重依赖于具有大型天线的传统深空跟踪网络,而这些设施仅存在于大型的国家或组织中。由于这些国家所需要跟踪并控制的深空项目的数量逐步增加,相关深空设施变得越来越繁忙,空闲时间越来越少。显然,在深空方面的新入者在使用深空TT&C网络方面的优先权极低。随着深空任务的距离逐步增加和深空探测器的小型化,现有为近地任务所建造的普通跟踪站越来越难以完成深空探测器的跟踪任务。对于这些新加入深空探索的国家或组织而言,构建并维持新的深空跟踪网络的成本过高,性价比很低。
目前还没有任何一个深空通信星座进入工程立项状态,都还停留在概念研究阶段。目前提出的大部分深空通信星座都是服务于特定探测任务,比如月球、火星等特定探测任务,覆盖范围有限,缺乏能够覆盖从金星到小行星带的大部分深空探测区域的通用的深空通信星座。
发明内容
本发明的目的在于提供一种深空通信星座的设计方法以及卫星的发射部署方法。
为了实现上述目的,本发明提出了一种天基深空中继卫星的星座布局,用于为在地球和火星之间的日心轨道上部署星际通信中继星座;包括:
设置中继卫星到火星的距离lM等于中继卫星到地球的距离lE,同时小于通信距离极限l:
lM=lE≤l (1)。
作为上述方法的一种改进,所述星座布局具体包括:
中继卫星所在的日心轨道的半长轴ac满足:
其中,aE为地球轨道半长轴;aM为火星轨道半长轴;N为中继卫星数量。
作为上述方法的一种改进,所述通信距离极限l的取值为:l=0.84AU。
作为上述方法的一种改进,所述N颗中继卫星在日心轨道上均匀分布。
作为上述方法的一种改进,所述星座布局还包括:
如果深空探测器与太阳之间的距离为ai,覆盖率的计算方法如下:
一种基于上述星座布局实现的天基深空中继卫星的发射方法,所述方法采用一箭双星的发射模式,采用长征三乙火箭对卫星S1和卫星S2同时进行发射,所述方法包括:
步骤1)发射与深空转移设计:
深空转移是一个典型的霍尔曼转移:初始轨道为地球轨道,标称轨道为日心轨道;地球逃逸delta-V由典型的霍尔曼转移理论计算得出;
初始轨道和标称轨道的速率为:
其中,vc1为初始轨道的速率,μ为太阳引力常数,vc2为标称轨道的速率,r1为初始轨道半长轴,r2为标称轨道半长轴,r2=ac;
转移轨道的速率为:
其中,vTp为转移轨道近地点速度,vTa为转移轨道远地点速度;
因此,卫星S1和卫星S2的逃逸速度delta-V为:
其中,Δv1为逃逸速度,Δv2为捕获速度;
转移时间ttransfer为:
步骤2)进入标称轨道的卫星S1捕获;
当卫星对到达远日点后,卫星S1直接进入标称轨道,另一颗卫星S2进入一个中间的转移轨道,其远日点半径为ac,近日点半径为ap;卫星S1进入标称轨道的捕获delta-V为Δv2=2.405km/s;与此同时,卫星S2进入中间转移轨道的捕获
步骤3)进入标称轨道的卫星S2捕获;
卫星S1和卫星S2的轨道相位差角保持在60°。
本发明的优势在于:
1、本发明的方法通过在地球轨道和火星轨道之间的日心轨道上部署通信星座,能够覆盖金星、火星、小行星带和木星等热点深空探测区域,具有覆盖范围广的优点;
2、本发明通过一箭多星转移轨道设计,使得各星的燃料需求完全一致,从而可以批量化设计和制造,具有成本低的优点;
3、本发明的方法设计的星座能够提供不依赖于地面深空测控网的通用的深空通信服务,能够为中小国家和商业航天公司开展深空探测提供通信支持。
附图说明
图1为本发明的UNICON卫星系统示意图;
图2为本发明的UNICON卫星系统的星座示意图;
图3为本发明的UNICON卫星数量与关键参数的关系示意图;
图4为本发明的UNICON卫星系统的覆盖示意图;
图5为本发明的UNICON卫星系统的覆盖范围示意图;
图6为本发明低数据速率下的UNICON卫星系统的覆盖范围示意图;
图7为本发明的UNICON卫星系统发射与转移示意图;
图8为典型霍尔曼转移示意图。
具体实施方式
本发明通过充分研究论证UNICON结构、激光通信有效载荷、星座配置方法、星座范围和通信航天器的概念设计。首次提出在地球轨道和火星轨道之间的日心轨道上建立以6颗激光通信中继卫星星座组网的设计方法,以解决由于缺乏通用的地面测控通信和跟踪网,深空探测的发展受到严重限制的国家、商业公司和大学等的通信基础性问题,为其深空探测器提供通用的星际通信中继服务。主要包括以下方面:
UNICON基本概念
2.1 UNICON架构
UNICON的基本概念为:在地球轨道和火星轨道之间的日心轨道上均匀地部署6颗通信卫星,从而能够为绝大部分太阳系(金星轨道至主小行星带范围内)提供服务。如图1所示。
UNICON由2部分组成:航天器部分(SS)和地面站部分(GCS)。
(1)航天器部分
航天器部分由2部分组成:UNICON日心星座和GEO(地球同步轨道)星座。第1部分UNICON日心星座由6颗位于(地球和火星之间的)日心轨道上的通信卫星组成。其能够提供深空通信和定位服务。
第2部分是GEO星座。3颗位于地球同步轨道(GEO)上的卫星能够为巨大部分地区提供连续的地面覆盖。GEO星座可以利用现有的通信网络。例如卢森堡通信工业公司的GEO通信网络。在此情况下,2颗带有专用UNICON载荷、位置相反(位置上具有180度差异)的GEO卫星就已经足够了。
用户深空探测数据将首先传送至UNICON星座中,之后通过GEO星座发送至地面站。
(2)地面站部分
在服务模式下,地面控制中心将为用户探测器(卫星)提供全部的服务并对UNICON卫星进行操作。同时,地面站部分能够用将任务数据(如:位置、时间信息等)上传至用户探测器中。
2.2 UNICON服务
UNICO主要提供2个服务:通信服务、定位及时钟服务
(1)中继通信
UNICON的核心服务是为小型深空任务提供星际通信中继。UNICON从用户探测器处收集数据并将数据中继转发至地面站。地面站负责将数据分发至用户。
在UNICON的帮助下,小型深空探测器不需要携带大型天线和高功率发射机,实际上其只需要携带小功率、低成本的通信载荷即可。信号、图像、遥控指令可通过UNICON星座进行中继(通信)。每个国家和组织在此方面将会被平等地对待。
当通信距离为0.84AU时,UNICON的标称数据速率为30Kbps。与此同时,时间延迟由探测器与地球的距离加上UNICON转发距离的距离和所决定。
(2)定位及时钟
UNICON的一个辅助功能是为小型深空探测器提供定位服务和时钟校准服务。
如果3颗及以上的UNICON卫星对于某个深空任务是可见的(例如,当大部分深空任务处于巡航阶段时),那么UNICON能够提供精准的定位服务和时间校准服务。上述服务实际上是GPS导航原理进行的。
如果只有1颗或2颗UNICON卫星对于某个深空任务是可见的(例如,在环绕火星的轨道阶段,orbiting phase around Mars),位置信息可由天体和可见UNICON卫星组合导航计算得出。天体(如太阳、火星、地球、小行星)可被用于导航之中。与此同时,时钟信息通过UNICON卫星进行传输。
2.3 UNICON载荷
随着深空任务对于数据传输速率要求的不断提高,受到功耗、体积、带宽限制的传统基于射频的通信方式已经接近其性能极限。考虑到激光拥有着波长短、带宽大、散射角小等特点,激光通信能够在低功耗、小体积条件下理想地解决深空高速通信问题。(特别是当没有云的时候,especially when there is no cloud)。因此,基于光强调制和直接检测方法的激光通信系统被选为UNICON的载荷,其设计连接距离为0.84AU。
光学模块由光通信子系统、光学子系统、APT(Acquisition、Pointing、Tracking)(捕获、对准、跟踪)子系统组成。光学通信子系统的主要功能为用于高速数据通信的激光发射与接收。在使用1550nm光纤激光和EDFA(Erbium-doped Optical Fiber Amplifier,掺铒光纤放大器)情况下,平均激光功率为7W。在使用线性模式InGaAs(铟砷化镓)APD(Avalanche Photo Diode,雪崩光电二极管)情况下,接收灵敏度提升至-74.9dBm。为提升功率利用率,使用了512阶PPM调制。为了减少整个系统的体积,在光学子系统上设计并使用了150mm孔径、发射接收复用的望远镜(telescope)。根据激光波长(1550nm),光学天线增益提升至109.7dBi,激光散射角为40μrad。光学传输效率能够提升至50%。
APT子系统主要功能为完成激光束的捕获、对准、跟踪。跟踪误差和未对齐损失为8μrad,即-1.4dB。最终,在使用1/2LDPC信道编码情况下,星际激光通信系统能够实现30Kbps的数据传输速率,同时误比特率小于10^-7。在总功耗小于70W、总重量小于40Kg的约束下,信道裕量(channel margin)可达到高于3.5dB的水平。
2.4 UNICON操作模式
(1)能力逐步增强模式(Increasing capability)
作为一个大型的空间基础设置,UNICON的部署将分为2个阶段。在第1阶段,将发射2颗UNICON卫星用于提供基本的中继通信能力。在此阶段,整个系统的基本功能为测试和验证。在第2阶段,将会完成星座中剩余的4颗卫星的发射工作。UNICON将会在全能力模式下运行,其功能主要包括中继通信、星际定位、空地(space-ground)时钟同步。当6颗卫星中任意1颗卫星失效时,能够在1年内完成替换工作。
(2)服务模式
UNICON对全球用户开放、其主要商业模式有2种。第1种是为用户探测器提供专用的通信模块。此专用通信模块使得用户探测器能够接入UNICON,从而实现由UNICON支持的星际中继通信和定位。第2种是用户基于UNICON标准研发其自己的UNICON通信载荷模块,并从UNICON中请求中继通信服务和定位服务。
3.UNICON星座概念设计
3.1配置设计
配置的基本思路为在地球和火星之间的日心轨道上部署星际通信中继星座。
在星座设计中有3个关键的设计指标:卫星数量N,轨道半长轴ac,通信距离极限l。其中,卫星数量N将影响轨道半长轴ac的值,而ac的值决定了发射成本。卫星数量和轨道半长轴这2个参数是星座成本的决定性参数。通信距离极限将影响整个通信网络的覆盖范围。
为保证通信覆盖质量,优化准则为:UNICON卫星到火星的距离lM将等于卫星到地球的距离lE,同时小于与设计目标的距离。
lM=lE≤l (1)
由图2则有:
因此,有
公式(3)说明了日心轨道半长轴ac的值与卫星数量N之间的关系。
由图3可知,随着卫星数量N的增加,轨道半长轴与通信极限距也随之减小。但是减小的速度随着卫星数量N的增加而逐渐饱和。考虑到卫星和发射器的成本远大于载荷的成本,(which will effect only the communication distance),选取卫星数量N=6作为设计目标。在此情况下有:轨道半长轴ac=1.455AU,通信距离极限l=0.774AU
上述分析是在假设地球轨道和火星轨道均为圆形下进行的。实际上,火星轨道的离心率为0.0934,这意味着其远日点距离为1.666AU,近日点距离为1.381AU。如果通信距离极限为0.774AU,那么当火星处于远日点时,火星将不在覆盖范围内。因此,为解决上述问题,我们使用火星轨道的远日点距离来优化通信距离极限,在此情况下新的通信距离极限为l=0.833AU。为留有余量,选取l=0.84AU作为通信距离设计目标。
3.2覆盖范围分析
在给定轨道半长轴ac,通信距离极限l,深空探测器与太阳之间的距离ai的情况下,如图4所示,我们能够为任意的星际任务计算出其覆盖率。
覆盖率的计算方法如下:
基于公式(4),我们能够计算出2种情况下的覆盖率:l=0.77AU和l=0.84AU,其结果如图5所示。其中纵轴1代表100%
如图5所示,当l=0.77AU时,在火星远日点存在着盲区。但是,当l=0.84AU时,能够覆盖火星远日点。此外,对于金星轨道,UNICON的覆盖率大于75%。
UNICON在0.84AU距离上的通信速率标称值为30Kbps。当数据速率低于标称数据速率时,UNICON能够覆盖更多的区域。图6展示了不同数据速率下UNICON的覆盖范围。
由图6可知,当采用更低的数据速率时,UNICON的覆盖范围可涵盖水星轨道至木星轨道。具体来说,当数据速率为1.2Kbps时,可涵盖木星轨道。当数据速率为3-10Kbps时,可涵盖主小行星带。在上述数据速率情况下,针对非图像数据能够构建有用的通信连接。
3.3中继时间分析
用户探测器数据将首先被传输至UNICON卫星,之后数据将在UNICON星座之间进行中继传输,最后通过GEO星座发送至地球。
用户探测器传输至地球的总时间ΔT由三部分组成。第1部分ΔT1为用户探测器中继传输至最近的UNICON卫星的时间。考虑到星际任务的不同,数据速率为1.2-30Kbps。第2部分ΔT2为UNICON卫星之间的中继传输时间,此时数据速率为10Kbps。第3部分为最接近地球的UNICON卫星传输至地面站的时间,此时数据速率大于30Kbps。
假设用户数据为512*512的RGB图像,表1展示了从火星轨道到木星轨道不同星际任务条件下数据速率和中继时间。
表1中继时间分析
由表1可知:
(1)针对火星任务,根据地球、火星、UNICON星座之间的相对位置不同,512*512RGB图像的中继传输时间为264s至1964s,即4.4分钟至33分钟。
(2)针对主小行星带任务,512*512RGB图像的中继传输时间为674s至3845s,即11.2分钟至64分钟。
(3)针对木星带任务,512*512RGB图像的中继传输时间为5179s至6555s,即86分钟至109分钟。
UNICON能够为火星任务和内行星(inner planetary)任务(如,临近地球小行星任务)提供有效的通信中继服务。同时,UNICON能够为主小行星带任务和木星任务提供合适的通信中继服务。如果能够为激光通信载荷提供更多的功率,通信中继服务的质量将得到提升。
3.4发射与部署
图7展示了UNICON的发射和转移过程。6颗UNICON卫星由3枚长征三乙(LM-3B)火箭进行发射,一箭双星。考虑到UNICON实际上是一个商业项目,可以考虑基于发射表现和成本选择其他火箭完成UNICON的部署工作。
一对UNICON卫星(一箭双星)的发射与部署可分为3个阶段:
(1)发射与深空转移
UNICON卫星对由长征三乙火箭发送至深空。
如图8所示,深空转移是一个典型的霍尔曼转移(Holman transfer)。初始轨道为地球轨道,标称轨道为日心轨道。地球逃逸delta-V可由典型的霍尔曼转移理论计算得出。
初始轨道和标称轨道的速率为:
其中,vc1为初始轨道的速率,μ为太阳引力常数,vc2为标称轨道的速率,r1为初始轨道半长轴,r2为标称轨道半长轴,r2=ac;
转移轨道的速率为
其中,vTp为转移轨道近地点速度,vTa为转移轨道远地点速度;
因此,delta-V为
由长征三乙提供的地球逃逸delta-V为Δv1=2.643km/s,因此对应有C3=6.985km2/s2。在C3=6.985km2/s2情况下,长征三乙的发射能力为2800kg,每个卫星的重量约为1200kg。
转移时间为:
(2)进入标称轨道的S1捕获(S1captured into nominal orbit)
当卫星对到达远日点后,其中1颗(S1)直接进入标称轨道,其半长轴为ac。另一颗卫星(S2)进入一个中间的转移轨道,其远日点半径为ac,近日点半径为ap。
(3)进入标称轨道的S2捕获(S2captured into nominal orbit)
由于卫星对中2卫星的半长轴大小不同,a1>a2,两个卫星的平均角速度不同。因此,轨道相位差不断增加。当轨道相位差角达到60°时,第3个delta-VΔv3将应用于S2,从而使得轨道相位差角保持在60°。为使得增加的近日点(the augment of perihelion)一致,在S2中间转移轨道的远日点上进行轨道操作。
表2:S1和S2的Delta-V预算
由表2可知,S1和S2的Delta-V预算相同。因此,所有的UNICON卫星是相同的。这就极大的减少了成本。UNICON星座可由3枚火箭在2.5年内完成部署。当第1次发射处于转移和部署阶段时UNICON就已经能够提供服务。当到达指定位置后,UNICON卫星的日心期(heliocentric period)为641天。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (4)
1.一种天基深空中继卫星的发射方法,多个中继卫星组成的中继星座部署在地球和火星之间的日心轨道上,其中
每个中继卫星到火星的距离lM等于中继卫星到地球的距离lE,同时小于通信距离极限l;中继卫星所在的日心轨道的半长轴ac满足:
其中,aE为地球轨道半长轴;aM为火星轨道半长轴;N为中继卫星数量;
所述方法采用一箭双星的发射模式,采用长征三乙火箭对中继卫星S1和中继卫星S2同时进行发射,所述方法包括:
步骤1)发射与深空转移设计:
深空转移是一个典型的霍尔曼转移:初始轨道为地球轨道,标称轨道为日心轨道;地球逃逸delta-V由典型的霍尔曼转移理论计算得出;
初始轨道和标称轨道的速率为:
其中,vc1为初始轨道的速率,μ为太阳引力常数,vc2为标称轨道的速率,r1为初始轨道半长轴,r2为标称轨道半长轴,r2=ac;
转移轨道的速率为:
其中,vTp为转移轨道近地点速度,vTa为转移轨道远地点速度;
因此,中继卫星的速度delta-V为:
其中,Δv1为逃逸速度,Δv2为捕获速度;
转移时间ttransfer为:
步骤2)进入标称轨道的卫星S1捕获;
当卫星对到达远日点后,中继卫星S1直接进入标称轨道,其半长轴为ac;中继卫星S2进入一个中间的转移轨道,其远日点半径为ac,近日点半径为ap;中继卫星S1进入标称轨道的捕获速度为 同时,中继卫星S2进入中间转移轨道的捕获速度为
步骤3)进入标称轨道的卫星S2捕获;
卫星S1和卫星S2的轨道相位差角保持在60°。
2.根据权利要求1所述的天基深空中继卫星的发射方法,其特征在于,所述通信距离极限l的取值为:l=0.84AU。
3.根据权利要求1所述的天基深空中继卫星的发射方法,其特征在于,N颗中继卫星在日心轨道上均匀分布。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810144892.0A CN108494471B (zh) | 2018-02-12 | 2018-02-12 | 一种天基深空中继卫星的发射方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810144892.0A CN108494471B (zh) | 2018-02-12 | 2018-02-12 | 一种天基深空中继卫星的发射方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108494471A CN108494471A (zh) | 2018-09-04 |
CN108494471B true CN108494471B (zh) | 2020-10-30 |
Family
ID=63340420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810144892.0A Active CN108494471B (zh) | 2018-02-12 | 2018-02-12 | 一种天基深空中继卫星的发射方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108494471B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111431589A (zh) * | 2020-05-07 | 2020-07-17 | 亚太卫星宽带通信(深圳)有限公司 | 一种基于火星静止轨道卫星的火星表面通信星座 |
CN114715430B (zh) * | 2021-03-31 | 2022-11-08 | 中国科学院国家空间科学中心 | 一种多星自动线性编队和时变基线生成的系统 |
CN115378490B (zh) * | 2022-08-11 | 2023-06-20 | 中国科学院国家天文台 | 一种基于地面站的多级中继卫星星座行星际导航的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5566909A (en) * | 1993-09-08 | 1996-10-22 | Hughes Aircraft Company | System and method for deploying multiple probes |
CN1199697A (zh) * | 1996-12-31 | 1998-11-25 | 航空发动机的结构和研究公司 | 利用来自月球的引力帮助将卫星发射的系统和方法 |
CN102273096A (zh) * | 2008-10-28 | 2011-12-07 | 国际通信卫星全球服务有限责任公司 | 天基局域网(sblan) |
CN104038318A (zh) * | 2014-06-26 | 2014-09-10 | 重庆邮电大学 | 一种基于中继选择的深空文件传输方法 |
CN105486314A (zh) * | 2015-11-24 | 2016-04-13 | 南京航空航天大学 | 对月球空间无缝覆盖的拉格朗日导航星座及其构建方法 |
CN105738961A (zh) * | 2016-02-06 | 2016-07-06 | 哈尔滨工业大学 | 基于中继式飞秒脉冲的深空引力波探测方法 |
CN107294593A (zh) * | 2017-06-21 | 2017-10-24 | 哈尔滨工业大学深圳研究生院 | 基于geo 骨干中继的深空下行链路多跳传输方法及系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170373754A1 (en) * | 2016-06-27 | 2017-12-28 | Espacesynergy | System and method for communicating with deep space spacecraft using spaced based communications system |
-
2018
- 2018-02-12 CN CN201810144892.0A patent/CN108494471B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5566909A (en) * | 1993-09-08 | 1996-10-22 | Hughes Aircraft Company | System and method for deploying multiple probes |
CN1199697A (zh) * | 1996-12-31 | 1998-11-25 | 航空发动机的结构和研究公司 | 利用来自月球的引力帮助将卫星发射的系统和方法 |
CN102273096A (zh) * | 2008-10-28 | 2011-12-07 | 国际通信卫星全球服务有限责任公司 | 天基局域网(sblan) |
CN104038318A (zh) * | 2014-06-26 | 2014-09-10 | 重庆邮电大学 | 一种基于中继选择的深空文件传输方法 |
CN105486314A (zh) * | 2015-11-24 | 2016-04-13 | 南京航空航天大学 | 对月球空间无缝覆盖的拉格朗日导航星座及其构建方法 |
CN105738961A (zh) * | 2016-02-06 | 2016-07-06 | 哈尔滨工业大学 | 基于中继式飞秒脉冲的深空引力波探测方法 |
CN107294593A (zh) * | 2017-06-21 | 2017-10-24 | 哈尔滨工业大学深圳研究生院 | 基于geo 骨干中继的深空下行链路多跳传输方法及系统 |
Non-Patent Citations (3)
Title |
---|
基于拉格朗日点的地_火中继通信骨干网络仿真与建模;李建平;《中国优秀硕士论文全文数据库》;20140315(第3期);正文第7-9、29页,图2-1 * |
深空探测低能量逃逸与捕获轨道设计研究;王亚敏;《中国博士学位论文全文数据库》;20150715(第7期);全文 * |
面向火星探测的深空通信中继节点选择;哈尔滨工业大学;《百度文库》;20140828;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108494471A (zh) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108494472B (zh) | 一种天基深空中继通信卫星组网系统 | |
Boroson et al. | MLCD: overview of NASA's Mars laser communications demonstration system | |
Wu et al. | Overview of deep space laser communication | |
CN108494471B (zh) | 一种天基深空中继卫星的发射方法 | |
Sodnik et al. | European deep-space optical communication program | |
Velazco | An inter planetary network enabled by smallsats | |
Colagrossi et al. | Hermes: a cubesat based constellation for the new generation of multi-messenger astrophysics | |
De Sanctis et al. | Space system architectures for interplanetary internet | |
Zhang et al. | Laser Inter-Satellite Links Technology | |
Cakaj | Practical horizon plane and communication duration for Low Earth Orbiting (LEO) satellite ground stations | |
Abraham et al. | Enabling affordable communications for the burgeoning deep space CubeSat fleet | |
Edwards et al. | An envisioned future for space optical communications | |
Thompson et al. | Design and analysis of lunar communication and navigation satellite constellation architectures | |
Alhilal et al. | Future Architecture of the Interplanetary Internet | |
Liebrecht et al. | The decade of light: innovations in space communications and navigation technologies | |
Vishwakarma et al. | A Comparative Study of Satellite Orbits as Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) | |
Cheruku | Satellite communication | |
Cakaj et al. | Sun synchronization of Low Earth Orbits (LEO) through inclination angle | |
Antonini et al. | I‐5: Mission Examples | |
Welti | Satellite basics for everyone: An illustrated guide to satellites for non-technical and technical people | |
US11075691B2 (en) | Martian synchronous satellite constellation for earth communications | |
US11414218B1 (en) | System for maintaining satellites in orbital configuration | |
Banerjee | Satellite communication | |
Raghunandan | Satellite Communication | |
Cakaj et al. | Practical Horizon Plane for Low Earth Orbiting(LEO) Satellite Ground Stations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200219 Address after: Room 226, scientific research building 4, National Space Science Center, No.2, Jingmi North Street, Yangyan Road, Huairou District, Beijing Applicant after: Beijing zhongkeshen chain Space Technology Co., Ltd Address before: 100190 Beijing, Zhongguancun, south of No. two, No. 1, No. Applicant before: NATIONAL SPACE SCIENCE CENTER, CAS |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |