CN108486566A - 激光反应熔覆vc陶瓷增强铁基复合材料及其制备方法 - Google Patents

激光反应熔覆vc陶瓷增强铁基复合材料及其制备方法 Download PDF

Info

Publication number
CN108486566A
CN108486566A CN201810086347.0A CN201810086347A CN108486566A CN 108486566 A CN108486566 A CN 108486566A CN 201810086347 A CN201810086347 A CN 201810086347A CN 108486566 A CN108486566 A CN 108486566A
Authority
CN
China
Prior art keywords
cladding
powder
laser
composite material
base composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810086347.0A
Other languages
English (en)
Inventor
高峰
楼海军
李文戈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Wenzhou Polytechnic
Original Assignee
Shanghai Maritime University
Wenzhou Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University, Wenzhou Polytechnic filed Critical Shanghai Maritime University
Priority to CN201810086347.0A priority Critical patent/CN108486566A/zh
Publication of CN108486566A publication Critical patent/CN108486566A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides

Abstract

本发明提供一种激光反应熔覆VC陶瓷增强铁基复合材料及其制备方法,其中,激光反应熔覆VC陶瓷增强铁基复合材料的制备方法包括如下步骤:S1,选择金属材料作为基体,对所述基体表面进行打磨,清洗;S2,在打磨清洗后的所述基体表面熔覆一层打底熔覆层;S3,选择V粉和C粉作为熔覆材料,按照V粉和C粉质量比为(3:1)~(11:2)进行混合形成熔覆粉末,通过粘结剂将所述熔覆粉末涂覆于所述基体的打底熔覆层表面以形成预置涂层;S4,以激光束作为热源,对所述预置涂层进行激光熔覆处理以形成陶瓷熔覆层,得到VC陶瓷增强铁基复合材料。本发明实施例的激光反应熔覆VC陶瓷增强铁基复合材料具有耐热、耐蚀、耐磨、高硬度等优良性能。

Description

激光反应熔覆VC陶瓷增强铁基复合材料及其制备方法
技术领域
本发明涉及材料化学技术领域,具体地,涉及一种激光反应熔覆VC陶瓷增强铁基复合材料及其制备方法。
背景技术
早在上世纪80年代末,美国商业部就将表面工程技术列为影响21世纪人类生活的七大关键技术之一,与生命科学技术、信息技术、计算机科学技术、新材料技术、新能源技术和先进制造技术并列。近年来,我国也非常重视激光表面工程技术,此技术的出现拓宽了表面改性技术的领域,尤其是在制备抗磨损熔覆层方面表现出了极大潜力,成为了表面工程领域研究的热点。目前,激光表面改性技术主要用于机械、冶金、汽车、农机、石油、纺织机械行业中的部件及配件等。在现有的材料中,金属材料硬质合金虽然有高强度、韧性好等优点,但它不耐高温、耐腐蚀性较差;而陶瓷材料硬度高,耐磨性好,但它的韧性不够,容易开裂。
随着科学的不断发展,人们对于材料的要求和性能越来越高,传统单一的匀质材料已难以满足实际生产的需要。由于零部件的破坏往往从表面开始,表面的局部破坏又会导致零件的整体失效。
激光熔覆英文名为Laser cladding,也称激光涂覆,通过在基材表面添加熔覆材料,利用高能量密度激光束将不同成分和性能的合金与基材表层快速熔化,且在基材表面形成与基材具有完全不同成分和性能的熔覆层。作为激光表面改性技术之一的激光熔覆技术,适合于各类金属的表层改性和修复。激光熔覆技术能保持原涂层成分,仅在重熔区与基体的交界处存在很有限的相互扩散区,而此扩散区正是实现熔覆层与基体的冶金结合所必须的。同时,激光熔覆技术能把高性能的熔覆粉末涂覆于普通基体材料表面,从而获得优异特性的表面熔覆层,如耐热、耐蚀、耐磨、抗冲击等优良性能的熔覆层。然而现有的零部件因其表面熔覆材料的单一,使得应用激光熔覆技术的修复零部件的过程中零部件表面经常会出现裂纹、涂层不均匀等问题。因此,开发耐热、耐蚀、耐磨、高硬度、力学性能好的新型复合材料是势在必行的。
发明内容
有鉴于此,本发明提供一种激光反应熔覆VC陶瓷增强铁基复合材料的制备方法。
本发明还提出一种根据上述所述激光反应熔覆VC陶瓷增强铁基复合材料的制备方法制得的激光反应VC陶瓷增强铁基复合材料。
为解决上述技术问题,本发明采用了以下技术方案:
根据本发明第一方面实施例的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,包括如下步骤:
S1,选择金属材料作为基体,对所述基体表面进行打磨,清洗;
S2,在打磨清洗后的所述基体表面熔覆一层打底熔覆层;
S3,选择V粉和C粉作为熔覆材料,按照V粉和C粉质量比为(3:1)~(11:2)进行混合形成熔覆粉末,通过粘结剂将所述熔覆粉末涂覆于所述基体的打底熔覆层表面以形成预置涂层;
S4,以激光束作为热源,对所述预置涂层进行激光熔覆处理,以得到陶瓷熔覆层,通过所述基体、所述打底熔覆层及所述陶瓷熔覆层形成所述VC陶瓷增强铁基复合材料。
进一步地,所述步骤S3中,所述V粉和C粉的质量比为17:4。
优选地,所述步骤S4中,所述激光的扫描速度为1.0mm/s~2.0mm/s。
进一步地,所述激光的扫描速度为1.5mm/s。
优选地,所述激光束的激光功率为2500W,离焦量为20mm,矩形光斑尺寸为6mm×1.5mm。
优选地,所述打底熔覆层材料为Ni60自熔性合金。
优选地,所述粘结剂为虫胶。
优选地,所述基体材料为金属钢。
进一步地,所述步骤S3中,预置涂层的制备具体包括:
S31,将称量好的V粉和C粉混合成的熔覆粉末在球形研磨机中研磨均匀;
S32,向所述熔覆粉末中加入适量虫胶粘结剂,搅拌均匀形成膏状,涂覆在所述基体的打底熔覆层表面上形成预涂粉层,预涂粉层厚度约为0.5mm~2mm;
S33,将预涂有所述预涂粉层的所述基体放入干燥箱中,在温度为100℃中烘120分钟形成预置涂层。
根据本发明第二方面实施例的激光反应熔覆VC陶瓷增强铁基复合材料通过上述实施例所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法制得。
本发明的上述技术方案至少具有如下效果之一:
(1)熔覆层表面外观平滑、均匀连续且具有明亮的金属光泽。
(2)提高了基体材料的表面性能。
(3)熔覆层和基体都能呈现良好的冶金结合,提高了熔覆层与基体的结合强度。
(4)提高了熔覆层和基体的硬度,耐磨性。
附图说明
图1为本发明实施例的激光反应熔覆VC陶瓷增强铁基复合材料制备方法的流程图;
图2为本发明实施例的激光反应熔覆VC陶瓷增强铁基复合材料的熔覆层在不同扫描速度条件下宏观形貌图;
图3为本发明实施例的激光反应熔覆VC陶瓷增强铁基复合材料在不同扫描速度时熔覆层表面的XRD图谱;
图4为本发明实施例的VC与Fe3C自由能与温度的关系曲线图;
图5为本发明实施例的激光反应熔覆VC陶瓷增强铁基复合材料的熔覆层截面的显微硬度测试图;
图6为本发明实施例的基体和熔覆涂层的摩擦系数随磨损时间变化的曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
下面首先结合附图具体描述根据本发明实施例的激光反应熔覆VC陶瓷增强铁基复合材料及其制备方法。
如图1所示,根据本发明实施例的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,包括如下步骤:
S1,选择金属材料作为基体,对所述基体表面进行打磨,清洗。
具体地,金属材料为可以为金属钢,如Q235钢,用砂纸对基体表面进行打磨,去除表面的氧化物和油污,并用丙酮清洗干净,使得金属材料与打底熔覆材料充分接触。
S2,在打磨清洗后的所述基体表面熔覆一层打底熔覆层。
优选地,打底熔覆层材料为Ni60自熔性合金粉末,Ni60自熔性合金粉末具有良好韧性、耐蚀性、耐磨性和抗氧化性,且有助于改善打底熔覆层与基体之间的润湿性。
S3,选择V粉和C粉作为熔覆材料,按照V粉和C粉质量比为(3:1)~(11:2)进行混合形成熔覆粉末,通过粘结剂将所述熔覆粉末涂覆于所述基体的打底熔覆层表面以形成预置涂层。
也就是说,采用V粉和C粉作为熔覆材料,钒粉为银白色金属粉末,具有延展性、质坚硬,有耐盐酸和硝酸,且其熔点较高。碳粉是一种非金属元素,为无臭无味的固体。如无定型的焦炭、木炭等,晶体碳金刚石和石墨等。
粘结剂的选择需要具备,能够将熔覆粉末材料较易涂覆于基体表面且容易涂刷平整,在激光作用时容易气化或分解,并易从熔池中排出,不阻碍陶瓷熔覆层的形成并影响其质量,且粘结剂不含水分。
具体地,将V粉和C粉按照质量比为(3:1)~(11:2)进行混合形成熔覆粉末,向所述熔覆粉末中加入适量虫胶粘结剂,搅拌均匀形成膏状,涂覆在所述基体的打底熔覆层表面上形成预涂粉层,预涂粉层厚度约为0.5mm~2mm。
S4,以激光束作为热源,对所述预置涂层进行激光熔覆处理,以得到陶瓷熔覆层,通过所述基体、所述打底熔覆层及所述陶瓷熔覆层形成所述VC陶瓷增强铁基复合材料。
换句话说,在激光熔覆过程中,以激光束作为热源,对预涂有熔覆粉末的基体的表面进行激光熔覆处理,等熔池凝固后得到陶瓷熔覆层,该陶瓷熔覆层具有耐热、耐蚀、耐磨、高硬度等诸多优良性能。根据需要可采用单道熔覆和多道熔覆工艺。
下面具体描述根据本发明实施例的激光反应熔覆VC陶瓷增强铁基复合材料,通过上述实施例所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法制得。
本发明的实施例的复合材料通过将激光熔覆技术与原位合成技术相结合,使V粉和C粉进行化学反应原位生成VC陶瓷增强相,其在金属材料表面形成熔覆层,其中熔覆层包括打底熔覆层和陶瓷熔覆层,该熔覆层外观均匀连续且较为平整,且具有高硬度,耐磨的特点。
为使本领域的技术研究人员能够更好的理解本发明的技术方案,下面结合实施例对本发明作进一步的详细说明。
实施例:
本实施例选用的基体材料为Q235钢,熔覆粉末为V粉和C粉,根据化学反应方程式(1)
V+C→VC (1)
将V粉和C粉按质量比17:4(V的原子量为51,C为12,即摩尔比为1:1)进行配比混合,并在球形研磨机中研磨均匀,将球磨后的粉末混合均匀后,用虫胶溶液作为粘结剂将其预涂于基体表面,预置涂层厚度约为1mm。
本实施例采用激光设备为SLC—20×30D型数控激光多功能加工机,主要技术参数:加工区域为X轴3000mm、Y轴2000mm、Z轴600mm;数控系统CNC型号为PMC-2000;整机耗电100kVA;主机尺寸6500mm×3500mm×3500mm。激光工艺参数如下:激光功率为2500W,离焦量为20mm,矩形光斑尺寸为6mm×1.5mm,扫描速度为1.0mm/s、1.5mm/s、2mm/s进行激光熔覆以得到三种熔覆层,经过下述实验,对三种不同条件下的熔覆层进行分析。
如图2为不同扫描速度条件下,熔覆层的宏观形貌。从图2的(a)扫描速度1.0mm/s、(b)扫描速度1.5mm/s和(c)扫描速度2.0mm/s可见,在其它工艺参数一定的条件下,不同的扫描速度,所获得的熔覆层形貌不同。其中在激光扫描速度为1.5mm/s时,熔覆层表面最为平整和光滑,且具有明亮的金属光泽,熔覆层表面质量较好。当扫描速度为1.0mm/s和V=2.0mm/s时,熔覆层表面略微粗糙。由此,Q235钢表面激光熔覆VC陶瓷颗粒增强铁基合金,通过扫描速度,能够获得外观平滑,且均匀连续的熔覆层。优选地,激光扫描速度为1.5mm/s时,熔覆层的宏观形貌最佳。
图3为不同扫描速度下Q235钢表面VC陶瓷颗粒增强铁基激光熔覆层的XRD图谱。由图3可见,当扫描速度为1.0mm/s时,熔覆层中的VC和(Fe,Ni)相较少。扫描速度为1.5mm/s时,熔覆层组织主要由VC和(Fe,Ni)相组成,且VC和(Fe,Ni)相的衍射峰都较为强烈,这说明熔覆层原位合成了VC。当扫描速度2.0mm/s时,熔覆层的XRD图谱中存在衍射峰,但与扫描速度为1.5mm/s时相比,要弱一些,由此可知,在扫描速度为1.5mm/s时,利用激光反应熔覆技术通过V粉和C粉的原位自生反应在熔覆层合成了VC陶瓷熔覆层。
如图4为V-C与Fe-C自由能与温度的关系曲线图,如图4所示VC在熔池中是比较稳定和容易合成的相,而Fe3C很难生成或含量很少。
图5为熔覆层截面的显微硬度测试图,如图5所示,通过上述对VC陶瓷颗粒增强铁基激光熔覆层截面的显微硬度分析可知,熔覆层具有较高的硬度。
图6为基体和熔覆涂层的摩擦系数随磨损时间变化的曲线图,如图6所示,VC陶瓷颗粒增强铁基激光熔覆层表面的摩擦系数在整个磨损过程中较为稳定,熔覆层具有很高的耐磨性。
由此可知,本发明的激光反应熔覆VC陶瓷增强铁基复合材料具有外观平滑、均匀连续且具有明亮的金属光泽的熔覆层表面,且熔覆层具有硬度高,耐磨的特性。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,包括如下步骤:
S1,选择金属材料作为基体,对所述基体表面进行打磨,清洗;
S2,在打磨清洗后的所述基体表面熔覆一层打底熔覆层;
S3,选择V粉和C粉作为熔覆材料,按照V粉和C粉质量比为(3:1)~(11:2)进行混合形成熔覆粉末,通过粘结剂将所述熔覆粉末涂覆于所述基体的打底熔覆层表面以形成预置涂层;
S4,以激光束作为热源,对所述预置涂层进行激光熔覆处理得到陶瓷熔覆层,通过所述基体、所述打底熔覆层和所述陶瓷熔覆层形成VC陶瓷增强铁基复合材料。
2.根据权利要求1所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,所述步骤S3中,所述V粉和C粉的质量比为17:4。
3.根据权利要求1所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,所述步骤S4中,所述激光的扫描速度为1.0mm/s~2.0mm/s。
4.根据权利要求3所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,所述激光的扫描速度为1.5mm/s。
5.根据权利要求1或3所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,所述激光束的激光功率为2500W,离焦量为20mm,矩形光斑尺寸为6mm×1.5mm。
6.根据权利要求1所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,所述打底熔覆层材料为Ni60自熔性合金。
7.根据权利要求1所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,所述粘结剂为虫胶。
8.根据权利要求1所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,所述基体材料为金属钢。
9.根据权利要求1所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法,其特征在于,所述步骤S3中,预置涂层的制备具体包括如下步骤:
S31,将称量好的V粉和C粉混合成的熔覆粉末在球形研磨机中研磨均匀;
S32,向所述熔覆粉末中加入适量虫胶粘结剂,搅拌均匀形成膏状,涂覆在所述基体的打底熔覆层表面上形成预涂粉层,预涂粉层厚度约为0.5mm~2mm;
S33,将预涂有所述预涂粉层的所述基体放入干燥箱中,在温度为100℃中烘120分钟形成预置涂层。
10.一种激光反应熔覆VC陶瓷增强铁基复合材料,其特征在于,通过权利要求1至9任一项权利要求所述的激光反应熔覆VC陶瓷增强铁基复合材料的制备方法制得。
CN201810086347.0A 2018-01-30 2018-01-30 激光反应熔覆vc陶瓷增强铁基复合材料及其制备方法 Pending CN108486566A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810086347.0A CN108486566A (zh) 2018-01-30 2018-01-30 激光反应熔覆vc陶瓷增强铁基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810086347.0A CN108486566A (zh) 2018-01-30 2018-01-30 激光反应熔覆vc陶瓷增强铁基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN108486566A true CN108486566A (zh) 2018-09-04

Family

ID=63343791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810086347.0A Pending CN108486566A (zh) 2018-01-30 2018-01-30 激光反应熔覆vc陶瓷增强铁基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108486566A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402629A (zh) * 2018-12-24 2019-03-01 上海万泽精密铸造有限公司 激光反应熔覆VC-TiC陶瓷增强铁基复合材料及其制备方法
CN109402630A (zh) * 2018-12-24 2019-03-01 上海万泽精密铸造有限公司 激光反应熔覆TiC陶瓷增强铁基复合材料及其制备方法
CN111172536A (zh) * 2020-02-21 2020-05-19 攀钢集团攀枝花钢铁研究院有限公司 铁基碳化钒涂层的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821367A (zh) * 2016-04-28 2016-08-03 宁国市开源电力耐磨材料有限公司 一种金属基体耐磨耐蚀耐高温复合材料表面涂层及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821367A (zh) * 2016-04-28 2016-08-03 宁国市开源电力耐磨材料有限公司 一种金属基体耐磨耐蚀耐高温复合材料表面涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
舒玲玲等: ""原位合成VC-Cr7C3复相陶瓷增强铁基激光涂层研究"", 《材料热处理技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402629A (zh) * 2018-12-24 2019-03-01 上海万泽精密铸造有限公司 激光反应熔覆VC-TiC陶瓷增强铁基复合材料及其制备方法
CN109402630A (zh) * 2018-12-24 2019-03-01 上海万泽精密铸造有限公司 激光反应熔覆TiC陶瓷增强铁基复合材料及其制备方法
CN111172536A (zh) * 2020-02-21 2020-05-19 攀钢集团攀枝花钢铁研究院有限公司 铁基碳化钒涂层的制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Microstructure and properties of Ni-WC gradient composite coating prepared by laser cladding
CN105112909B (zh) 一种添加CeO2的铁基Cr3C2激光熔覆涂层及其制备方法
CN101402895B (zh) 一种具有超润滑减摩作用的润滑油添加剂
Liu et al. Microstructure and dry-sliding wear resistance of PTA clad (Cr, Fe) 7C3/γ-Fe ceramal composite coating
CN108707894B (zh) 一种激光熔覆自润滑耐磨钴基合金所用粉料及工艺方法
CN108486566A (zh) 激光反应熔覆vc陶瓷增强铁基复合材料及其制备方法
CN108677129A (zh) 一种FeCoNiCrSiAl高熵合金涂层及其制备方法
CN101693996B (zh) 一种WC-FeNiCr超硬无磁涂层复合材料及其制备方法
CN1609477B (zh) 具有冶金结合式涂层的链轮及其制造方法
CN102703851B (zh) 一种含有坡缕石的三元硼化物陶瓷涂层及其制备方法
CN101403085A (zh) 一种WC-FeNiCr超硬无磁涂层复合材料及其制备方法
CN108130531A (zh) 激光反应熔覆Cr7C3陶瓷增强铁基复合材料及其制备方法
CN106424700B (zh) 激光直接沉积陶瓷增强Fe60合金复合耐磨涂层及方法
CN104646660B (zh) 一种铁单元素基合金表面激光高熵合金化用粉料
CN104862695B (zh) 一种复合涂层、钛合金基复合材料及其制备方法
CN108728785A (zh) 一种镍铬硼硅铌合金耐磨涂层的制备方法
Sahu et al. On the constancy in wear characteristic of large area TiC–Ni coating developed by overlapping of TIG arc scanning
Teixeira et al. Wear resistance of a Metco 1030A hard coating deposited on Hadfield steel by laser cladding for ore comminution application
CN109402629A (zh) 激光反应熔覆VC-TiC陶瓷增强铁基复合材料及其制备方法
CN108048835A (zh) 激光反应熔覆VC-Cr7C3陶瓷增强铁基复合材料及其制备方法
Long et al. Research on interface structure and performance of diamond brazed coating based on non-vacuum environment
CN108642434A (zh) 一种NiCrBSi-Zr耐磨耐蚀涂层的制备方法
CN113106443A (zh) 一种涂覆自润滑耐磨复合涂层的304不锈钢及其制备方法
CN104878381B (zh) 一种耐磨涂层及其制备方法
Bartels et al. Development of a novel wear-resistant WC-reinforced coating based on the case-hardening steel Bainidur AM for the substitution of carburizing heat treatments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180904

RJ01 Rejection of invention patent application after publication