CN108484965A - 一种纤维素多孔材料的制备方法及应用 - Google Patents

一种纤维素多孔材料的制备方法及应用 Download PDF

Info

Publication number
CN108484965A
CN108484965A CN201810696554.8A CN201810696554A CN108484965A CN 108484965 A CN108484965 A CN 108484965A CN 201810696554 A CN201810696554 A CN 201810696554A CN 108484965 A CN108484965 A CN 108484965A
Authority
CN
China
Prior art keywords
cellulose
porous materials
preparation
fibrination
fibrination porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810696554.8A
Other languages
English (en)
Inventor
隋晓锋
蒋阳
王碧佳
毛志平
徐红
钟毅
张琳萍
陈支泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201810696554.8A priority Critical patent/CN108484965A/zh
Publication of CN108484965A publication Critical patent/CN108484965A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0073Preparation of non-Newtonian sols, e.g. thixotropic solutions
    • B01J13/0082Preparation of non-Newtonian sols, e.g. thixotropic solutions containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cosmetics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

本发明公开了一种纤维素多孔材料的制备方法及其制备的纤维素多孔材料在制备油凝胶中的应用。所述制备方法为:将纤维素与其衍生物混合制成悬浮液,然后将悬浮液经冷冻干燥制得纤维素多孔材料。本发明以纤维素悬浮液和纤维素衍生物为原料,采用冷冻干燥制得纤维素多孔材料,再通过物理吸附液体油,形成网络化结构支撑的固体或半固体脂肪产品。本发明制得的油凝胶含油量高,强度高,可食用或用于生物医药、化妆品等领域。本发明制备的固体或半固体脂肪未经化学改性,保留不饱和脂肪酸的特性,安全、健康。

Description

一种纤维素多孔材料的制备方法及应用
技术领域
本发明涉及一种纤维素多孔材料的制备方法及应用,属于纤维素多孔材料技术领域。
背景技术
传统食用油固化方法是引入饱和脂肪酸和反式脂肪酸,然而,研究表明:反式脂肪酸和饱和脂肪酸的摄入会使人体内的低密度的脂蛋白含量增加,从而增加心血管疾病突发的概率。因此,世卫组织呼吁五年内“告别”人造反式脂肪酸和饱和脂肪酸(Patel A R,Dewettinck K.Food&function,2016,7(1):20-29.)。很多食品制造者正在寻找一种新的未经化学改性的固体油取代饱和脂肪和反式脂肪。目前主要面临两方面的挑战:一方面是在液体食用油固化的过程中不破坏其营养价值;另一方面是寻找一种简单可行的通用方法制备油凝胶。
WO2014/004018涉及了一种可食用的油凝胶,其中包含油和乙基纤维素,将乙基纤维素加热并加入到食用油中,经冷却制得油凝胶。该法制备油凝胶过程需要高温加热,不利于保持液体食用油的营养价值。
发明人课题组发展了两步法制备油凝胶的技术,即先制备纤维素Pickering乳液,再将其冷冻干燥制备油凝胶。这种方法受限于Pickering乳液的稳定性,不利于工业化生产(Jiang Y,Liu L,Wang B,et al.Food Hydrocolloids,2017.)。
纤维素类多孔材料因兼具多孔材料高孔隙率、低相对密度、高比表面积,以及纤维素来源丰富、可生物降解等特点受到科研工作者的广泛关注,被广泛用于食品、生物医药,化妆品等领域。本发明主要通过冷冻干燥纤维素悬浮液得到纤维素多孔材料,并将其用于物理吸附液体食用油,基于纤维素多孔材料的网络化结构使液体食用油固化形成油凝胶。所制备的油凝胶含油量高(>97%),具有较高的凝胶模量(>10000Pa),可广泛用于食品,生物医药,化妆品等领域。
发明内容
本发明所要解决的技术问题是:提供一种采用纤维素多孔材料制备油凝胶的方法。
为了解决上述问题,本发明提供了一种纤维素多孔材料的制备方法,其特征在于,将纤维素与其衍生物混合制成悬浮液,然后将悬浮液经冷冻干燥制得纤维素多孔材料。
优选地,所述纤维素为纳米纤维素,采用纤维素纳米晶、纤维素纳米线、再生纳米纤维素和纤维素微米线中的任意一种;所述纤维素衍生物为羧甲基纤维素、甲基纤维素和羟乙基纤维素中的至少一种。
更优选地,所述纤维素纳米晶的直径为3~20nm,长度为50~250nm;纤维素纳米线的直径为1~200nm,长度为50~700nm;再生纳米纤维素的直径为20~40nm,长度为0.1~10μm;纤维素微米线的直径为20~200nm,长度为1~30μm。
优选地,所述纤维素与其衍生物的质量比为10∶1~1∶10。
更优选地,所述纤维素与其衍生物的质量比为2∶1~1∶2。
优选地,所述悬浮液中纤维素、其衍生物的固含量均为0.5~2%。
优选地,所述冷冻干燥的温度为-197~5℃,压力为10~200Pa,时间为5~48h;干燥后的纤维素多孔材料的含水率小于1%。
本发明还提供了一种上述纤维素多孔材料的制备方法制备的纤维素多孔材料在制备油凝胶中的应用,其特征在于,用纤维素多孔材料物理吸附食用油,然后剪切,制得油凝胶。
优选地,所述食用油为向日葵油、花生油或葵花籽油。
优选地,所述剪切为稳态剪切或者为动态剪切,剪切压力均小于10Pa,稳态剪切的速率小于10/s,动态剪切的速率小于10Hz。
本发明以纤维素悬浮液和纤维素衍生物为原料,采用冷冻干燥制得纤维素多孔材料,再通过物理吸附液体油,形成网络化结构支撑的固体或半固体脂肪产品(油凝胶)。该产品同时含有健康的不饱和脂肪和膳食纤维,油凝胶含量高(>97%),可用于食品、化妆品、医药等领域。
本发明制备方法简单,油凝胶含油量高(>97%),强度高(>10000Pa),可食用或用于生物医药、化妆品等领域。本发明制备的固体或半固体脂肪未经化学改性,保留不饱和脂肪酸的特性,安全、健康。
附图说明
图1为实施例1制备的不同含量多孔材料SEM的对比图;
图2为实施例1制备的不同纤维含量的油凝胶的流变数据图;
图3为实施例3制备的不同原料的油凝胶的对比图;其中,(a)为葵花籽油为原料制备的油凝胶,(b)为花生油为原料制备的油凝胶,(c)为向日葵油为原料制备的油凝胶。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种纤维素多孔材料的制备方法及应用:
称取固含量分别为0.5wt%,0.8wt%,1wt%,1.2wt%的木浆纤维素纳米线悬浮液10g,将0.05g羧甲基纤维素加入纤维素纳米线悬浮液中,制得的混合悬浮液置于液氮中进行快速冷冻,得到冰冻的凝胶,再放入冷冻干燥机进行冷冻干燥,干燥时间48h。干燥结束后将制得的纤维素多孔材料置于葵花籽油中静置1h,将吸附液体油的多孔材料置于流变仪中进行稳态剪切2min,剪切频率为1Hz,制得油凝胶。
图1为上述制备的不同含量多孔材料SEM的对比图。
图2为上述制备的不同纤维含量的油凝胶的流变数据图。
取1mm厚的油凝胶放在50mm的平板上,控制形变为1%,剪切速度为0.1~10Hz。经过测试,随着纤维含量的增加,油凝胶的凝胶模量也随之增加。
实施例2
一种纤维素多孔材料的制备方法及应用:
称取1wt%的木浆纤维素微米线、纤维素纳米晶、再生纳米纤维素悬浮液10g,将0.05g羧甲基纤维素加入纤维素悬浮液中,制得的混合悬浮液置于液氮中进行快速冷冻,得到冰冻的凝胶,放入冷冻干燥机进行冷冻干燥,干燥时间48h。干燥结束后将制得的纤维素多孔材料置于葵花籽油中静置1h,将吸附液体油的纤维素多孔材料置于流变仪中进行稳态剪切2min,剪切频率为1Hz,制得油凝胶。对纤维素多孔材料的吸附油的质量进行称重,不同的纤维素材料均吸附了超过自身质量30倍的油。
上述制备的不同纤维素多孔材料的密度和吸附油的质量如表1所示。
表1
实施例3
一种纤维素多孔材料的制备方法及应用:
称取1wt%的木浆纤维素微米线悬浮液10g,将0.05g甲基纤维素加入纤维素悬浮液中,制得的混合悬浮液置于液氮中进行快速冷冻,得到冰冻的凝胶,放入冷冻干燥机进行冷冻干燥,干燥时间48h。干燥结束后将制得的纤维素多孔材料分别置于葵花籽油、花生油、向日葵油中静置1h,将吸附液体油的纤维素多孔材料置于流变仪中进行稳态剪切2min,剪切频率为1Hz,制得油凝胶。
图3为上述制备的不同原料的油凝胶的对比图。

Claims (10)

1.一种纤维素多孔材料的制备方法,其特征在于,将纤维素与其衍生物混合制成悬浮液,然后将悬浮液经冷冻干燥制得纤维素多孔材料。
2.如权利要求1所述的纤维素多孔材料的制备方法,其特征在于,所述纤维素为纳米纤维素,采用纤维素纳米晶、纤维素纳米线、再生纳米纤维素和纤维素微米线中的任意一种;所述纤维素衍生物为羧甲基纤维素、甲基纤维素和羟乙基纤维素中的至少一种。
3.如权利要求2所述的纤维素多孔材料的制备方法,其特征在于,所述纤维素纳米晶的直径为3~20nm,长度为50~250nm;纤维素纳米线的直径为1~200nm,长度为50~700nm;再生纳米纤维素的直径为20~40nm,长度为0.1~10μm;纤维素微米线的直径为20~200nm,长度为1~30μm。
4.如权利要求1所述的纤维素多孔材料的制备方法,其特征在于,所述纤维素与其衍生物的质量比为10∶1~1∶10。
5.如权利要求4所述的纤维素多孔材料的制备方法,其特征在于,所述纤维素与其衍生物的质量比为2∶1~1∶2。
6.如权利要求1所述的纤维素多孔材料的制备方法,其特征在于,所述悬浮液中纤维素、其衍生物的固含量均为0.5~2%。
7.如权利要求1所述的纤维素多孔材料的制备方法,其特征在于,所述冷冻干燥的温度为-197~5℃,压力为10~200Pa,时间为5~48h;干燥后的纤维素多孔材料的含水率小于1%。
8.一种权利要求1-7任意一项所述的纤维素多孔材料的制备方法制备的纤维素多孔材料在制备油凝胶中的应用,其特征在于,用纤维素多孔材料物理吸附食用油,然后剪切,制得油凝胶。
9.如权利要求8所述的纤维素多孔材料的应用,其特征在于,所述食用油为向日葵油、花生油或葵花籽油。
10.如权利要求8所述的纤维素多孔材料,其特征在于,所述剪切为稳态剪切或者为动态剪切,剪切压力均小于10Pa,稳态剪切的速率小于10/s,动态剪切的速率小于10Hz。
CN201810696554.8A 2018-06-28 2018-06-28 一种纤维素多孔材料的制备方法及应用 Pending CN108484965A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810696554.8A CN108484965A (zh) 2018-06-28 2018-06-28 一种纤维素多孔材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810696554.8A CN108484965A (zh) 2018-06-28 2018-06-28 一种纤维素多孔材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN108484965A true CN108484965A (zh) 2018-09-04

Family

ID=63343212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810696554.8A Pending CN108484965A (zh) 2018-06-28 2018-06-28 一种纤维素多孔材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108484965A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845672A (zh) * 2021-11-05 2021-12-28 内蒙古农业大学 一种沙柳纤维素纳米纤维、气凝胶球及制备与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030170A1 (en) * 2009-09-14 2011-03-17 The University Of Nottingham Cellulose nanoparticle aerogels, hydrogels and organogels
CN107540868A (zh) * 2017-08-25 2018-01-05 东华大学 一种通用型可后修饰纤维素多孔材料及其制备方法
CN107593934A (zh) * 2017-10-24 2018-01-19 东华大学 一种基于再生纤维素的可食用油凝胶及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030170A1 (en) * 2009-09-14 2011-03-17 The University Of Nottingham Cellulose nanoparticle aerogels, hydrogels and organogels
CN107540868A (zh) * 2017-08-25 2018-01-05 东华大学 一种通用型可后修饰纤维素多孔材料及其制备方法
CN107593934A (zh) * 2017-10-24 2018-01-19 东华大学 一种基于再生纤维素的可食用油凝胶及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASHOK R. PATEL ET AL.: ""A foam-templated approach for fabricating organogels using a water-soluble polymer"", 《RSC ADVANCES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845672A (zh) * 2021-11-05 2021-12-28 内蒙古农业大学 一种沙柳纤维素纳米纤维、气凝胶球及制备与应用
CN113845672B (zh) * 2021-11-05 2023-09-26 内蒙古农业大学 一种沙柳纤维素纳米纤维、气凝胶球及制备与应用

Similar Documents

Publication Publication Date Title
Chen et al. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins
CN114468062B (zh) 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备
Burey et al. Hydrocolloid gel particles: formation, characterization, and application
CN105815784B (zh) 一种双壁层生姜挥发油微胶囊的制备方法
RU2640024C2 (ru) Простые эфиры целлюлозы, обладающие увеличенной термической прочностью геля
WO2006010273A1 (en) Method for producing hydrocolloid foams
CN107593934A (zh) 一种基于再生纤维素的可食用油凝胶及其制备方法和应用
Ghafar et al. Mesoporous guar galactomannan based biocomposite aerogels through enzymatic crosslinking
JP7340018B2 (ja) 高吸収性材料及びそれを調製する方法
US20160058045A1 (en) Method of Loading Flavor into an Aerogel and Flavor Impregnated Aerogel Based on Food Grade Materials
EP2934191B1 (en) Porous composition comprising salt and edible fat
NO139661B (no) Fremgangsmaate for fremstilling av et fiberprodukt som ligner kjoett
CN108484965A (zh) 一种纤维素多孔材料的制备方法及应用
Gutöhrlein et al. Modulating the hydration properties of pea hull fibre by its composition as affected by mechanical processing and various extraction procedures
Zheng et al. Effects of Span surfactants on the preparation and properties of fish oil-loaded sodium alginate-stabilized emulsions and calcium alginate-stabilized capsules
CN111683539A (zh) 可食用纤维
CN110495613A (zh) 一种低热量膳食纤维米及其制作方法
CN116115534A (zh) 一种温敏性植物纤维基乳液凝胶、油凝胶及其制备方法和应用
DE2936455C2 (zh)
Sundaram et al. Influence of processing methods on mechanical and structural characteristics of vacuum microwave dried biopolymer foams
Jiang et al. Enhancement effect of fat crystal network on oleogels prepared by methyl‐cellulose and xanthan gum using the cryogel‐templated method
Vetter et al. The influence of the sequential extractions on the structure and the properties of single cell materials from apples
Wu et al. Mechanism of interaction between agar and corn starch: Towards improved properties of starch-based cryogel
CN112063002A (zh) 一种米糠蛋白多孔材料及其应用
CN115349556B (zh) 一种基于花生油体的植物肉替代脂肪及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180904

RJ01 Rejection of invention patent application after publication