CN108483964B - 一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法 - Google Patents
一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法 Download PDFInfo
- Publication number
- CN108483964B CN108483964B CN201810257576.4A CN201810257576A CN108483964B CN 108483964 B CN108483964 B CN 108483964B CN 201810257576 A CN201810257576 A CN 201810257576A CN 108483964 B CN108483964 B CN 108483964B
- Authority
- CN
- China
- Prior art keywords
- diisocyanate
- parts
- microcapsule
- repairing
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/12—Nitrogen containing compounds organic derivatives of hydrazine
- C04B24/125—Compounds containing one or more carbon-to-nitrogen double or triple bonds, e.g. imines
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1018—Coating or impregnating with organic materials
- C04B20/1029—Macromolecular compounds
- C04B20/1037—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0016—Granular materials, e.g. microballoons
- C04B20/002—Hollow or porous granular materials
- C04B20/0036—Microsized or nanosized
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1018—Coating or impregnating with organic materials
- C04B20/1022—Non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
- C04B20/1062—Metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
- C04B20/1066—Oxides, Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/005—Methods or materials for repairing pavings
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/10—Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
- E01C7/14—Concrete paving
- E01C7/147—Repairing concrete pavings, e.g. joining cracked road sections by dowels, applying a new concrete covering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/0302—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
- H01F1/0306—Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/44—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
- H01F1/442—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a metal or alloy, e.g. Fe
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0068—Ingredients with a function or property not provided for elsewhere in C04B2103/00
- C04B2103/0077—Packaging material remaining in the mixture after the mixing step, e.g. soluble bags containing active ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/34—Non-shrinking or non-cracking materials
- C04B2111/343—Crack resistant materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2391/00—Characterised by the use of oils, fats or waxes; Derivatives thereof
- C08J2391/06—Waxes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Working Measures On Existing Buildindgs (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
本发明属于混凝土技术领域,具体涉及一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法。所述二异氰酸酯微胶囊的各原料按重量份数计为:石油树脂15~55份、石蜡5~10份、聚乙烯蜡5~10份、磁性铁粉3~10份、二异氰酸酯20~67份。本发明所述二异氰酸酯微胶囊以二异氰酸酯为芯材、石油树脂/石蜡/聚乙烯蜡/磁性铁粉混合物为囊壁,当混凝土产生裂缝时,部分裂缝扩展尖端应力较大,可使微胶囊囊壁破裂,胶囊内部的二异氰酸酯流出扩散进入裂缝中,与混凝土中的水分发生固化反应,使裂缝得到及时修复,未被及时修复的裂缝,可在外加电磁场作用下,使微胶囊囊壁升温熔化,二异氰酸酯扩散进入裂缝中,使其得到修复。采用本发明所述二异氰酸酯微胶囊,能赋予混凝土更强的裂缝自修复能力,延长混凝土的服役寿命。
Description
技术领域
本发明属于混凝土技术领域,具体涉及一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法。
背景技术
水泥混凝土具有原料来源丰富、施工成型简便、抗压强度高、耐久性好等优点,在工业与民用建筑、道路桥梁工程,水利水电工程、核电站和港口等领域得到广泛应用。然而,水泥混凝土为多孔脆性材料,在服役过程中受冻融循环及其它外力作用极易产生内部损伤和裂缝。混凝土出现内部损伤和裂缝后,不仅会缩短建筑结构的服役寿命,而且会危及建筑物的使用安全。
为提高混凝土构筑物的服役寿命和安全性,具有自修复功能的混凝土越来越受重视。自修复混凝土属于一种智能材料,可通过混凝土内部的自响应机制,及时修复混凝土在使用过程中产生的内部损伤和裂缝,从而消除隐患,延长混凝土的使用寿命。
为实现混凝土裂缝的自修复,一些自修复技术已被提出。现有自修复技术主要有:功能外加剂催化诱导混凝土中未水化水泥在裂缝处反应自修复、内含修复剂的空芯纤维或微胶囊破裂后对混凝土裂缝自修复、添加到混凝土中的微生物与营养液反应制造方解石对裂缝自修复。功能外加剂技术对混凝土的内部损伤和微裂缝有较好的修复效果,但只能在潮湿环境下才能进行自修复,且修复速度慢、对较宽裂缝修复效果差;微生物技术虽对混凝土裂缝有一定的修复效果,但微生物在高碱性的混凝土中存活期很短、且同样需在潮湿环境下才能进行自修复,限制了其应用;空芯纤维或微胶囊技术对混凝土裂缝的修复速度较快,但在混凝土形成裂缝时空芯纤维或微胶囊不易破裂、内部修复剂不能释放且固化难。这些问题的存在严重制约了自修复混凝土发展与应用。
发明内容
本发明针对现有技术的不足,目的在于提供一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法。
为实现上述发明目的,本发明采用的技术方案为:
一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,其特征在于,所述微胶囊的各原料按重量份数计为:石油树脂15~55份、石蜡5~10份、聚乙烯蜡5~10份、磁性铁粉3~10份、二异氰酸酯20~67份。
上述方案中,所述石油树脂为C5树脂或C9树脂。
上述方案中,所述石蜡的熔点为50~70℃,所述聚乙烯蜡的熔点为100~110℃。
上述方案中,所述磁性铁粉为高纯铁粉、羰基铁粉或氧化铁粉,铁粉细度为200~2000目。
上述方案中,所述二异氰酸酯为六亚甲基二异氰酸酯、1,5-萘二异氰酸酯或异佛尔酮二异氰酸酯。
上述电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊的制备方法,包括如下步骤:
(1)按各原料所需的重量份数称取石油树脂15~55份、石蜡5~10份、聚乙烯蜡5~10份、磁性铁粉3~10份、二异氰酸酯20~67份;
(2)将石油树脂加热至130~140℃,在搅拌条件下加入石蜡,使石蜡和石油树脂混合均匀,再加入聚乙烯蜡,继续搅拌,使聚乙烯蜡和石蜡/石油树脂混合均匀,然后加入磁性铁粉,继续搅拌使磁性铁粉与石油树脂/石蜡/聚乙烯蜡混合均匀,最后加入二异氰酸酯,控制温度为100~110℃,搅拌2~4h;
(3)停止加热,提高搅拌速度,加入全氟三丁胺溶液,使混合物温度迅速降低,得到石油树脂/石蜡/聚乙烯蜡/磁性铁粉包覆二异氰酸酯微胶囊悬浮液;
(4)对悬浮液进行超声波分散处理,然后过滤分离出微胶囊,经烘干处理后,即得到电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊。
上述方案中,步骤(2)中所述搅拌的转速为300~500rpm,步骤(3)中所述搅拌的转速为1000~1200rpm。
上述方案中,步骤(2)中将石油树脂加热至130~140℃,搅拌20~40min,加入石蜡,继续搅拌10~20min,再加入聚乙烯蜡,继续搅拌10~20min,然后加入磁性铁粉,继续搅拌10~20min。
上述方案中,步骤(4)所述超声波分散处理的工艺为:超声波频率40kHz,超声时间30min。
上述方案中,步骤(4)所述烘干处理的温度为40~50℃,时间为24h。
本发明的有益效果如下:
(1)本发明所述二异氰酸酯微胶囊以二异氰酸酯为芯材、石油树脂/石蜡/聚乙烯蜡/磁性铁粉混合物为囊壁;以二异氰酸酯为芯材制备的微胶囊,当混凝土裂缝产生时,裂缝尖端扩展使微胶囊囊壁破裂,以及在外加电磁场作用下微胶囊囊壁升温熔化,胶囊内部的二异氰酸酯流出扩散进入裂缝中,使混凝土内部的裂缝得到修复;采用本发明所述二异氰酸酯微胶囊,能赋予混凝土更强的裂缝自修复能力,延长混凝土的服役寿命;
(2)本发明采用石油树脂/石蜡/聚乙烯蜡/磁性铁粉混合物为囊壁,在外加电磁场作用下能使囊壁升温熔化,可有效解决因裂缝扩展尖端应力较小而未能使微胶囊壁材破裂,导致混凝土内部裂缝不能全部修复的难题;石油树脂、石蜡和聚乙烯蜡均属于热塑性材料,通过改变石油树脂、石蜡和聚乙烯蜡的混合比例,可以调控微胶囊囊壁的熔点和熔化后的粘度,囊壁中加入磁性铁粉可以使微胶囊在外加电磁场的作用下迅速升温,当温度升高到囊壁熔点之上时,囊壁熔化,其内部的修复剂流出进入混凝土裂缝中,使裂缝(包括较宽的裂缝)得到修复;
(3)本发明以二异氰酸酯为微胶囊芯材,无需使用固化剂就可修复混凝土裂缝,异氰酸酯基(-NCO)反应性很强,遇水(或湿气)立即发生反应,形成交联产物,而混凝土是一种多孔材料,内部含有一定的水分,当混凝土产生裂缝后,裂缝尖端扩展应力或电磁场作用均会使囊壁破裂或熔化,微胶囊内部粘度很小的二异氰酸酯很容易扩散进入裂缝中,与水反应形成膨胀性凝胶产物,使裂缝得到修复。
附图说明
图1为实施例1所述掺加二异氰酸酯微胶囊的水泥混凝土电磁诱导前后裂缝变化图。
图2为实施例2所述掺加二异氰酸酯微胶囊的水泥混凝土电磁诱导前后裂缝变化图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,通过如下方法制备得到:
(1)按各原料所需的重量份数称取C9石油树脂25份、石蜡(熔点为68~70℃)5份、聚乙烯蜡(熔点为100~103℃)5份、2000目的氧化铁粉5份、六亚甲基二异氰酸酯60份;
(2)将25份石油树脂加入带加热套的三口烧瓶中,加热至130~140℃,以300~500rpm转速搅拌30min;
(3)将5份石蜡加入到三口烧瓶中,保持温度为130~140℃,以300~500rpm转速搅拌15min,使之与石油树脂混合均匀;
(4)将5份聚乙烯蜡加入到三口烧瓶中,保持温度为130~140℃,以300~500rpm转速搅拌15min,使之与石油树脂/石蜡混合均匀;
(5)将5份氧化铁粉加入三口烧瓶中,保持温度为130~140℃,以300~500rpm转速搅拌15min,使之与石油树脂/石蜡/聚乙烯蜡混合均匀;
(6)将60份六亚甲基二异氰酸酯加入到三口烧瓶中,保持温度为100~110℃,以300~500rpm转速搅拌搅拌3h;
(7)将加热套去除,提高搅拌速度至1000~1200rpm,向三口烧瓶中加入500份全氟三丁胺溶液,使混合物温度迅速降低,得到石油树脂/石蜡/聚乙烯蜡/氧化铁粉混合物包覆六亚甲基二异氰酸酯微胶囊悬浮液;
(8)对悬浮液进行超声波分散处理,超声波频率为40kHz,处理时间为30min,然后进行过滤,分离出的微胶囊放入50℃烘箱中干燥24h,即制得电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊。
测试本实施例制备的微胶囊的平均粒径和壁厚,并对包覆率和囊芯/囊壁质量比进行测试计算,结果列于表1。表1结果显示,本实施例制备的微胶囊,平均粒径小、壁厚薄、包覆率和囊芯/囊壁质量比高。
表1实施例1制备的微胶囊
平均粒径(μm) | 壁厚(nm) | 包覆率(%) | 囊芯/囊壁质量比 |
100 | 1200 | 79.41 | 1.95 |
掺加实施例1制备的二异氰酸酯微胶囊的水泥混凝土电磁诱导自修复试验:
(1)自修复混凝土的制备成型与养护:将上述制备的微胶囊加入到混凝土中(掺加量为水泥用量的8%),制得自修复混凝土;将所制备的混凝土倒入500mm×100mm×50mm的模具中,振捣抹平,放置24小时后脱模,将试件移至养护室,养护至28天时取出,室温放置7天。
(2)裂缝预制:利用三点弯曲试验方法(即将试件放在有一定距离的两个支撑点上,在两个支撑点中点上方向试件施加向下的载荷),使试件表面产生微细裂缝,立即取下试件,并测量初始裂缝宽度。
(3)电磁诱导自修复:电磁加热设备的功率为7.5kW,电压为650V,频率为123kHz,感应加热线圈尺寸为100mm×200mm,将感应加热线圈放在混凝土试件表面裂缝上方2cm处,开始感应加热后,用红外线测温仪测试混凝土板感应加热区的表面温度,当温度升高至120℃时,停止加热。
裂缝宽度的变化:选择不同宽度的初始裂缝,分别测试电磁诱导后的1h、3h和5h时的裂缝宽度。测试结果如表2所示。表2结果表明采用实施例1制备的电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊可以快速修复不同宽度的混凝土裂缝,0.16mm的裂缝1h即可修复,0.39mm的裂缝5h内可以修复。
表2掺加实施例1制备的微胶囊的混凝土在电磁诱导作用下的裂缝宽度变化
实施例2
电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,各原料的重量份数为:C5石油树脂31份、石蜡(熔点为64~66℃)6.5份、聚乙烯蜡(熔点为106~110℃)6份、1500目的羰基铁粉3.5份、1,5-萘二异氰酸酯53份;制备方法同实施例1。
测试本实施例制备的微胶囊的平均粒径和壁厚,并对包覆率和囊芯/囊壁质量比进行测试计算,结果列于表3。与实施例1类似,本实施例制备的微胶囊,平均粒径小、壁厚薄、包覆率和囊芯/囊壁质量比高。
表3实施例2制备的微胶囊
平均粒径(μm) | 壁厚(nm) | 包覆率(%) | 囊芯/囊壁质量比 |
120 | 1450 | 75.28 | 1.84 |
掺加实施例2制备的二异氰酸酯微胶囊的水泥混凝土电磁诱导自修复:
(1)将上述制备的微胶囊加入到混凝土中(掺加量为水泥用量的10%),制得自修复混凝土;自修复混凝土的制备成型与养护、裂缝预制同实施例1;
(2)电磁诱导自修复:电磁诱导自修复过程同实施例1,控制感应加热区混凝土板表面温度为130℃。
选择不同宽度的初始裂缝,分别测试电磁诱导后的1h、3h和5h时的裂缝宽度,测试结果如表4所示。表4表明采用实施例2制备的电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊可以快速修复不同宽度的混凝土裂缝,0.34mm的裂缝3h内已基本修复。
表4掺加实施例2制备的微胶囊的混凝土在电磁诱导作用下的裂缝宽度变化
实施例3
电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,各原料的重量份数为:C9石油树脂42份、石蜡(熔点为64~66℃)8份、聚乙烯蜡(熔点为103~106℃)8份、200目的高纯铁粉8份、异佛尔酮二异氰酸酯34份;制备方法同实施例1。
测试本实施例制备所得微胶囊的平均粒径和壁厚,并对包覆率和囊芯/囊壁质量比进行测试计算,结果列于表5。与实施例1类似,本实施例制备的微胶囊,平均粒径小、壁厚薄、包覆率和囊芯/囊壁质量比高。
表5实施例3制备的微胶囊
平均粒径(μm) | 壁厚(nm) | 包覆率(%) | 囊芯/囊壁质量比 |
150 | 1820 | 70.41 | 1.72 |
掺加实施例3制备的二异氰酸酯微胶囊的水泥混凝土电磁诱导自修复实验:
(1)将本实施例制备所得微胶囊加入到混凝土中(掺加量为水泥用量的10%),制得自修复混凝土;自修复混凝土的制备成型与养护、裂缝预制同实施例1;
(2)电磁诱导自修复:电磁诱导自修复过程同实施例1,控制感应加热区混凝土板表面温度为140℃。
选择不同宽度的初始裂缝,分别测试电磁诱导后的1h、3h和5h时的裂缝宽度,测试结果如表6所示。表6表明实施例3制备的电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊可以快速修复不同宽度的混凝土裂缝,0.32mm的裂缝在5h内即可修复。
表6掺加实施例3制备的微胶囊的混凝土在电磁诱导作用下的裂缝宽度变化
实施例4
电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,各原料的重量份数为:C9石油树脂50份、石蜡(熔点为78~80℃)10份、聚乙烯蜡(熔点为103~106℃)10份、500目高纯铁粉10份、六亚甲基二异氰酸酯20份;制备方法同实施例1。
将本实施例制备得到的微胶囊加入到混凝土中(掺加量为水泥用量的8%),即制得电磁诱导自修复混凝土。
实施例5
电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,各原料的重量份数为:C5石油树脂21份、石蜡(熔点为50~52℃)6份、聚乙烯蜡(熔点为100~103℃)8份、1500目的羰基铁粉5份、六亚甲基二异氰酸酯60份;制备方法同实施例1。
将本实施例制备得到的微胶囊加入到混凝土中(掺加量为水泥用量的12%),即制得电磁诱导自修复混凝土。
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。
Claims (9)
1.一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,其特征在于,所述二异氰酸酯微胶囊的各原料按重量份数计为:石油树脂15~55份、石蜡5~10份、聚乙烯蜡5~10份、磁性铁粉3~10份、二异氰酸酯 20~67份;所述磁性铁粉为高纯铁粉、羰基铁粉或氧化铁粉,细度为200~2000目。
2.根据权利要求1所述的电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,其特征在于,所述石油树脂为C5树脂或C9树脂。
3.根据权利要求1所述的电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,其特征在于,所述石蜡的熔点为50~70℃;所述聚乙烯蜡的熔点为100~110℃。
4.根据权利要求1所述的电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊,其特征在于,所述二异氰酸酯为六亚甲基二异氰酸酯、1,5-萘二异氰酸酯或异佛尔酮二异氰酸酯。
5.权利要求1~4任一所述电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊的制备方法,其特征在于,包括如下步骤:
(1)按各原料所需的重量份数称取石油树脂15~55份、石蜡5~10份、聚乙烯蜡5~10份、磁性铁粉3~10份、二异氰酸酯 20~67份;
(2)将石油树脂加热至130~140℃,搅拌一段时间,在搅拌条件下加入石蜡,继续搅拌,使石蜡和石油树脂混合均匀,再加入聚乙烯蜡,继续搅拌,使聚乙烯蜡和石蜡/石油树脂混合均匀,然后加入磁性铁粉,继续搅拌使磁性铁粉与石油树脂/石蜡/聚乙烯蜡混合均匀,最后加入二异氰酸酯,控制温度为100~110℃,搅拌2~4h;
(3)停止加热,提高搅拌速度,加入全氟三丁胺溶液,使混合物温度迅速降低,得到石油树脂/石蜡/聚乙烯蜡/磁性铁粉包覆二异氰酸酯微胶囊悬浮液;
(4)对悬浮液进行超声波分散处理,然后过滤分离出微胶囊,经烘干处理后,即得到电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊。
6.根据权利要求5所述的制备方法,其特征在于,步骤(2)中所述搅拌的转速为300~500rpm,步骤(3)中所述搅拌的转速为1000~1200 rpm。
7.根据权利要求5所述的制备方法,其特征在于,步骤(2)中将石油树脂加热至130~140℃,搅拌20~40min,在搅拌条件下加入石蜡,继续搅拌10~20min,再加入聚乙烯蜡,继续搅拌10~20min,然后加入磁性铁粉,继续搅拌10~20min。
8.根据权利要求5所述的制备方法,其特征在于,步骤(4)所述超声波分散处理的工艺为:超声波频率40kHz,超声时间30min。
9.根据权利要求5所述的制备方法,其特征在于,步骤(4)所述烘干处理的温度为40~50℃,时间为24h。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810257576.4A CN108483964B (zh) | 2018-03-27 | 2018-03-27 | 一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法 |
US16/255,993 US11208351B2 (en) | 2018-03-27 | 2019-01-24 | Electromagnetically-induced cement concrete crack self-healing diisocyanate microcapsules and their preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810257576.4A CN108483964B (zh) | 2018-03-27 | 2018-03-27 | 一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108483964A CN108483964A (zh) | 2018-09-04 |
CN108483964B true CN108483964B (zh) | 2020-04-21 |
Family
ID=63337637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810257576.4A Active CN108483964B (zh) | 2018-03-27 | 2018-03-27 | 一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11208351B2 (zh) |
CN (1) | CN108483964B (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109203164A (zh) * | 2018-09-20 | 2019-01-15 | 佛山市蓝瑞欧特信息服务有限公司 | 一种能够实现多次养护的地板及养护方法 |
CN108821626A (zh) * | 2018-09-20 | 2018-11-16 | 佛山市蓝瑞欧特信息服务有限公司 | 通过添加剂进行缓凝的水泥 |
CN109098185A (zh) * | 2018-09-29 | 2018-12-28 | 沈阳建筑大学 | 在锚杆或锚索锚固段中自碎裂型硫磺锚固砂浆的使用方法 |
CN108892439A (zh) * | 2018-10-16 | 2018-11-27 | 佛山市金净创环保技术有限公司 | 智能水泥基自修复防水系统 |
CN109020454B (zh) * | 2018-10-16 | 2021-07-02 | 建始县泰丰水泥有限责任公司 | 水泥基保温材料的生产方法 |
CN110176338B (zh) * | 2019-04-03 | 2020-07-17 | 横店集团东磁股份有限公司 | 一种高阻抗铁硅材料制备方法及含有该铁硅材料的一体式电感 |
CN111393063B (zh) * | 2020-03-20 | 2021-06-08 | 武汉理工大学 | 一种电磁控释微胶囊/钢纤维自修复混凝土及其制备方法 |
US11840641B2 (en) * | 2020-07-26 | 2023-12-12 | International Business Machines Corporation | Repair structure cracks using self-moving filler materials |
CN113881334A (zh) * | 2020-07-30 | 2022-01-04 | 九天起宏(江苏)检测有限公司 | 一种自修复水性聚氨酯涂料组合物和涂层 |
CN115073047B (zh) * | 2022-05-30 | 2023-11-14 | 桐梓县正新水泥制品有限公司 | 一种混凝土掺料及其制备方法 |
CN114988775B (zh) * | 2022-06-21 | 2023-07-14 | 浙江方远新材料股份有限公司 | 一种自修复高性能混凝土 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5962003A (en) * | 1998-03-30 | 1999-10-05 | Council Of Scientific & Industrial Research | Process for the preparation of polyurethane microcapsules containing monocrotophos |
CN101289300B (zh) * | 2008-05-20 | 2012-03-21 | 深圳大学 | 使用聚氨酯高分子微胶囊的自修复混凝土及其制造方法 |
US8993066B2 (en) * | 2012-02-01 | 2015-03-31 | Nanyang Technological University | Microencapsulation of reactive diisocyanates and the application to self-healing anticorrosion coatings |
US9975101B2 (en) * | 2015-05-26 | 2018-05-22 | Council Of Scientific And Industrial Research | Process for preparation of self healing microcapsules |
CN106747106A (zh) * | 2016-12-31 | 2017-05-31 | 山西省交通科学研究院 | 一种基于光固化树脂微胶囊的自修复水泥混凝土及其制法 |
-
2018
- 2018-03-27 CN CN201810257576.4A patent/CN108483964B/zh active Active
-
2019
- 2019-01-24 US US16/255,993 patent/US11208351B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11208351B2 (en) | 2021-12-28 |
CN108483964A (zh) | 2018-09-04 |
US20190300430A1 (en) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108483964B (zh) | 一种电磁诱导水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法 | |
CN108395137B (zh) | 一种电磁诱导水泥混凝土裂缝自修复环氧树脂型微胶囊及其制备方法 | |
CN108191282B (zh) | 一种用于水泥混凝土裂缝自修复聚合物乳液微胶囊及其制备方法 | |
CN108483976B (zh) | 一种热塑性树脂包覆水性环氧树脂型水泥混凝土裂缝自修复微胶囊及其制备方法 | |
WO2009140837A1 (zh) | 使用脲醛树酯类高分子微胶囊的自修复混凝土及其制造方法 | |
WO2009140835A1 (zh) | 使用聚胺酯高分子微胶囊的自修复混凝土及其制造方法 | |
WO2009140836A1 (zh) | 使用聚脲树酯高分子微胶囊的自修复混凝土及其制造方法 | |
CN108529986A (zh) | 一种低温早强免蒸养混凝土预制构件及其生产方法 | |
CN112551971B (zh) | 一种可控性能发展路径的环氧乳液改性自密实混凝土材料 | |
CN106186932A (zh) | 一种水泥基灌浆料及其制备方法 | |
CN113636767A (zh) | 低碳水泥及其制备方法 | |
CN113105198A (zh) | 一种用于装配式水泥混凝土铺面板的板底灌浆材料 | |
CN111393063B (zh) | 一种电磁控释微胶囊/钢纤维自修复混凝土及其制备方法 | |
CN110372279B (zh) | 一种核壳结构陶粒作为混凝土粗骨料的施工方法 | |
KR20200100236A (ko) | 시멘트 비중이 감소된 경량 콘크리트 벽돌 및 그 제조방법 | |
CN108409186B (zh) | 一种水泥混凝土裂缝自修复二异氰酸酯微胶囊及其制备方法 | |
CN112174612B (zh) | 一种超耐久自密实混凝土及其制备方法 | |
CN109384433B (zh) | 低热损伤混凝土构件用胶凝材料 | |
CN112110695B (zh) | 一种混凝土制品及其养护方法 | |
CN112110694A (zh) | 一种混凝土制品及其制备方法 | |
CN113480272A (zh) | 一种自养护微膨胀的超高性能混凝土及其制备方法 | |
CN107459303B (zh) | 一种易于布料的免蒸压phc管桩制备方法 | |
Chaiyotha et al. | Optimization of Printing Parameters for Printing of Ordinary Portland Cement Using a Custom-Made 3D Printer | |
CN108947415B (zh) | 一种高性能路面修复材料的制备方法 | |
CN118724525A (zh) | 一种混纺纤维及嵌套微胶囊自修复混凝土及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |