CN108473999B - 植物调节元件及其使用方法 - Google Patents

植物调节元件及其使用方法 Download PDF

Info

Publication number
CN108473999B
CN108473999B CN201680079050.0A CN201680079050A CN108473999B CN 108473999 B CN108473999 B CN 108473999B CN 201680079050 A CN201680079050 A CN 201680079050A CN 108473999 B CN108473999 B CN 108473999B
Authority
CN
China
Prior art keywords
plant
polynucleotide
sequence
gene
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680079050.0A
Other languages
English (en)
Other versions
CN108473999A (zh
Inventor
A.C.克劳
S.H.迪恩
A.L.卢
C.R.西蒙斯
L.E.斯姆斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Hi Bred International Inc
EIDP Inc
Original Assignee
Pioneer Hi Bred International Inc
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred International Inc, EI Du Pont de Nemours and Co filed Critical Pioneer Hi Bred International Inc
Priority to CN202310010223.5A priority Critical patent/CN115786368A/zh
Publication of CN108473999A publication Critical patent/CN108473999A/zh
Application granted granted Critical
Publication of CN108473999B publication Critical patent/CN108473999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

本公开涉及植物分子生物学领域,更具体地,涉及植物中基因表达的调节。

Description

植物调节元件及其使用方法
技术领域
本公开涉及植物分子生物学领域,更具体地,涉及植物中基因表达的调节。
背景技术
植物宿主中异源DNA序列的表达依赖于可操作地连接的调节元件的存在,这些元件在植物宿主内是具有功能的。启动子序列的选择可以决定生物内异源DNA序列何时与在何处进行表达。需要在特定组织或者器官中表达的情况下,可以使用组织偏好性启动子。在需要响应于刺激而表达基因的情况下,诱导型启动子是首选的调节元件。相比之下,在需要在植物各细胞中连续表达的情况下,采用组成型启动子。可以在转化载体的表达构建体中包含来自核心启动子序列的上游和/或下游的附加调节序列,以便引起异源核苷酸序列在转基因植物中的不同水平的表达。
经常,希望的是在植物的特定组织或器官中表达DNA序列。例如,可通过遗传操纵植物基因组,使其包含可操作地连接至异源病原体抗性基因的组织偏好性启动子,使得所需的植物组织中产生病原体抗性蛋白,从而提高植物对土壤和空气传播的病原体感染的抗性。可替代地,可能需要抑制植物组织内天然DNA序列的表达以实现所需的表型。在这种情况下,可采用下述方式实现这种抑制:转化植物,使植物包含可操作地连接至反义核苷酸序列的组织偏好性启动子,使得反义序列的表达产生干扰天然DNA序列的mRNA翻译的RNA转录物。
通过使用基因工程技术遗传地改变植物并且因此产生具有有用性状的植物需要可获得多种调节元件。启动子和其他调节元件的积累将使研究者能够以所需水平和在所期望细胞位置表达重组DNA分子。因此,组成型启动子的集合将允许新性状以所需水平在所期望的组织中表达。要实现这一点,需分离组成型调节元件并加以表征,用于对植物进行遗传操纵,其中这些组成型调节元件可充当以实测组成型方式表达目的异源核苷酸序列的调节区。
为了影响植物的各种性状和为了与可评分标志物一起使用,需要分离和表征双生病毒调节元件,特别是能充当用于目的分离核苷酸序列的组成型表达的调节元件的启动子。
发明内容
提供了用于调节目的异源核苷酸序列在植物或植物细胞中表达的组合物和方法。提供了包含引发转录的调节元件的新型核苷酸序列的DNA分子。在一些实施例中,这种调节元件具有在植物细胞中引发转录的启动子活性。某些实施例包括SEQ ID NO:1-13所示核苷酸序列。还包括SEQ ID NO:4-13所示序列的功能片段或变体(其中所述序列启动植物细胞中的转录),以及包含与SEQ ID NO:4-13所示序列具有至少85%序列同一性的序列的多核苷酸序列(其中所述序列在植物细胞中启动转录)。实施例还包括DNA构建体,所述DNA构建体包含可操作地连接至目的异源核苷酸序列的启动子,其中所述启动子能够驱动所述异源核苷酸序列在植物细胞中的表达并且所述启动子包含本文所公开的核苷酸序列之一。还包括SEQ ID NO:1-3所示序列的增强子元件。实施例还包括DNA构建体,所述DNA构建体包含可操作地连接至目的异源多核苷酸序列的增强子和异源启动子,其中所述增强子和异源启动子能够驱动所述多核苷酸序列在植物细胞中的表达并且所述增强子和异源启动子各自包含SEQ ID NO:1-14所示多核苷酸序列之一。实施例进一步提供了表达载体,并且在其基因组中稳定掺入DNA构建体的植物或植物细胞是如上所述的。另外,组合物包括此类植物的转基因种子。
另外的实施例包括用于在植物中选择性表达多核苷酸序列的方法,该方法包括用DNA构建体转化植物细胞,并从所述植物细胞再生出转化植物,所述DNA构建体包含SEQ IDNO:4-13的启动子和可操作地连接到所述启动子的异源多核苷酸序列,其中所述启动子启动所述多核苷酸序列在再生的植物中的转录。按这个方式,所述启动子序列可用于以组织偏好性方式控制可操作地连接的编码序列的表达。在另一个实施例中,所述DNA构建体进一步包含异源增强子元件。
在调节元件的转录起始区的下游将是目的序列,其将提供对植物的表型的修饰。这种修饰包括调控内源产物的生成(数量、相对分布等方面)或者外源表达产物的生成,以在植物中提供新功能或调控的功能或者产物。例如,涵盖了编码基因产物的异源多核苷酸序列,该基因产物赋予对除草剂、盐、寒冷、干旱、病原体、线虫类或昆虫的抗性或耐性。
在一个另外的实施例中,提供了用于调控基因在稳定转化的植物中的表达的方法,该方法包括以下步骤:(a)用包含与至少一种异源多核苷酸序列可操作地连接的本文所公开的启动子的DNA构建体转化植物细胞;(b)使该植物细胞在植物生长条件下生长,以及(c)从其中该连接的核苷酸序列的表达改变该植物的表型的植物细胞再生出稳定转化的植物。在另一个实施例中,所述DNA构建体进一步包含异源增强子元件。
提供了表达盒,所述表达盒包含可操作地连接至目的异源核苷酸序列的SEQ IDNO:1-13的调节元件序列。还另外提供了转化的植物细胞、植物组织、种子和植物。
附图说明
图1.MMV增强子序列(SEQ ID NO:1)。
图2.通过切割XhoI和SalI位点然后将它们填入并连接而从3x形式(SEQ ID NO:3)产生了2XMMV增强子形式(SEQ ID NO:2),这产生了在这两个序列(加下划线)之间具有几个额外碱基的PvuI位点。
图3.通过将MMV增强子序列的三个拷贝与第一和第二MMV区段之间的XhoI位点以及第二和第三MMV区段之间的SalI位点进行组装来产生3XMMV增强子形式(SEQ ID NO:3)。为了克隆目的,将NotI和PspMOI位点分别添加到序列的5’端和3’端(加下划线)。
具体实施方式
本文所用的冠词“一个”和“一种”指一个(种)或多于一个(种)(即,指至少一个(种))所述冠词的语法对象。通过举例,“一个元件”是指一个或多个元件。
本公开涉及针对植物调节元件的组合物和方法以及它们的使用方法。所述组合物包含以下的调节区的核苷酸序列:豆黄矮病毒(BYDV)、甜菜轻度卷顶病毒(BMTV)、东非木薯花叶(喀麦隆)病毒(EACMCV)、蜀葵皱叶病毒(HLCV)、辣根卷顶病毒(HCTV)、紫茉莉属(Mirabilis)花叶病毒(MMV)、大翼豆属(Macroptilium)黄花叶佛罗里达病毒(MYMFV)、甘蔗条纹(埃及)病毒(SSEV)、甘蔗条纹病毒(SSV)、番茄卷曲矮化病毒(南非)(TCSVSA)、和小麦矮病毒(WDWV)。所述组合物进一步包含DNA构建体,所述DNA构建体包含与目的异源多核苷酸序列可操作地连接的任何BYDV、BMTV、EACMCV、HLCV、HCTV、MMV、MYMFV、SSEV、SSV、TCSVSA、和WDWV的调节区的至少一个多核苷酸序列。具体而言,提供了包含SEQ ID NO:1-13所示的多核苷酸序列的分离的核酸分子及其片段、变体和互补序列。
表1.
Figure BDA0001731550970000041
Figure BDA0001731550970000051
双生病毒调节元件序列SEQ ID NO:1-13包括允许在植物中启动转录的多核苷酸构建体。在特定实施例中,双生病毒调节元件允许以组成型方式启动转录。这类构建体可以包括与植物发育调节相关的受调节的转录起始区。因此,本文所公开的组合物可以包括DNA构建体,所述DNA构建体包含与植物启动子,特别是组成型启动子序列,更特别是双生病毒启动子和内含子序列可操作地连接的目的核苷酸序列。在另一个优选实施例中,所述DNA构建体进一步包含异源增强子元件。在一个实施例中,异源增强子元件包含SEQ ID NO:1-3。双生病毒调节区序列如SEQ ID NO:1-13所示。
组合物可以包括双生病毒调节元件的核苷酸序列、其片段和变体。在特定实施例中,本本所公开的调节元件序列可用于以组成型方式表达目的序列。所述核苷酸序列还可以用于构建表达载体(这些表达载体后续用于在目的植物中表达异源核苷酸序列),或用作用于分离其他双生病毒样调节元件的探针。提供了DNA构建体的一个实施例,所述DNA构建体包含可操作地连接到目的异源多核苷酸序列的SEQ ID NO:4-13所示的双生病毒调节元件核苷酸序列或SEQ ID NO:14所示的基于植物的调节元件、以及SEQ ID NO:1-3所示的异源增强子元件及其任何组合。
调节元件
术语“调节元件”是指具有基因调节活性的核酸分子,也就是能够影响可操作地连接的可转录多核苷酸分子的转录和/或翻译的核酸分子。因此,术语“基因调节活性”是指通过影响可操作地连接的可转录多核苷酸分子的转录和/或翻译,从而影响这种可操作地连接的可转录多核苷酸分子表达的能力。基因调节活性可为正性和/或负性,并且所述影响可通过其下列特性来表征:时间、空间、发育、组织、环境、生理、病理、细胞周期和/或化学响应等,还可通过定量指示或定性指示来表征。
调节元件(如启动子、增强子、前导序列、内含子和转录终止区)是具有基因调节活性的核酸分子,也是活细胞中基因整体表达不可缺少的一部分。因此,可通过基因工程方法,使用在植物中起作用的分离的调节元件(如启动子和前导序列)来改变植物表型。启动子可用作调节元件,用来调控可操作地连接的可转录多核苷酸分子的表达。
如本文所用,“基因表达模式”为可操作地连接的核酸分子转录成转录的RNA分子的任何模式。表达可通过其下列特性来表征:时间、空间、发育、组织、环境、生理、病理、细胞周期和/或化学响应等,还可通过定量指示或定性指示来表征。转录的RNA分子可被翻译生成蛋白质分子,或可形成反义RNA分子或其他调节RNA分子,如dsRNA、tRNA、rRNA、miRNA等。
调节元件序列或其变体或片段当可操作地连接至目的异源核苷酸序列时,可以驱动该异源多核苷酸序列在表达该构建体的植物组织中的组成型表达。术语“组成型表达”是指在整个植物或植物的大部分组织中发现异源核苷酸序列的表达。
如本文所用,术语“蛋白质表达”为转录的RNA分子翻译成蛋白质分子的任何模式。蛋白质表达可通过其下列特性来表征:时间、空间、发育或形态等,还可通过定量指示或定性指示来表征。
如本文所用,术语“启动子”一般是指参与识别并结合RNA聚合酶II和其他蛋白质(反式作用转录因子)以启动转录的核酸分子。启动子最初可从基因的基因组拷贝的5′非翻译区(5′UTR)分离。可替代地,启动子可以是人工合成的DNA分子或受操纵的DNA分子。启动子也可为嵌合启动子,也就是通过融合两个或两个以上异源DNA分子而产生的启动子。
在一个实施例中,提供了本文公开的启动子序列的片段。启动子片段可表现启动子活性,并且可单独用于、或与其他启动子和启动子片段结合用于(如)构建嵌合启动子。在特定实施例中,提供了启动子的多个片段,这些片段包含本文公开的具有启动子活性的多核苷酸分子中的至少约50、95、150、250、500或750个连续核苷酸。当将这些片段与参比序列进行最佳比对时,可与参比序列具有至少约85%、约90%、约95%、约98%、约99%或更高的同一性。
也可分析启动子或启动子片段中是否存在已知的启动子元件,也就是DNA序列特性,诸如TATA框和其他已知的转录因子结合位点基序。本领域技术人员可使用鉴定出的这些已知的启动子元件,来设计与原始启动子具有相似表达模式的启动子变体。
如本文所用,术语“增强子”或“增强子元件”是指顺式作用转录调节元件,亦称顺式元件,其赋予整体表达模式的一个方面,但单靠其通常不足以驱动可操作地连接的多核苷酸序列转录。增强子元件与启动子不同,通常不包含转录起始位点(TSS)或TATA框。天然的启动子可包含一个或多个增强子元件,这些增强子元件影响可操作地连接的多核苷酸序列转录。分离的增强子元件还可与异源启动子融合,以产生异源嵌合启动子顺式元件,该元件赋予整体调控基因表达的一个方面。本文公开的启动子或启动子片段可包含一个或多个增强子元件,这些增强子元件影响可操作地连接的基因转录。据信,许多增强子元件结合DNA结合蛋白并/或影响DNA拓扑结构,从而产生局部构象,其选择性地允许或限制RNA聚合酶接近DNA模板或有利于在转录起始位点处选择性打开双螺旋。增强子元件可以起作用以结合调节转录的转录因子。有些增强子元件结合多于一种转录因子,而且转录因子可以不同的亲和力与多于一种增强子结构域相互作用。可采用多种技术鉴定增强子元件,这些技术包括:缺失分析,也就是从启动子5′端或内部缺失一个或多个核苷酸;使用DNase I足印法、甲基化干扰、电泳迁移率改变测定、通过连接介导PCR执行的体内基因组足印法和其他常规测定进行DNA结合蛋白分析;或者使用已知的顺式元件基序或增强子元件作为靶序列或靶基序,采用常规DNA序列比较方法(如BLAST)进行DNA序列相似性分析。增强子结构域的精细结构可通过一个或多个核苷酸的诱变(或取代)或通过其他常规方法进一步研究。增强子元件可通过化学合成获得,或从包含这种元件的调节元件中分离获得;并且增强子元件可与另外的含有可用限制性酶切位点的侧翼核苷酸一起合成,以便后续操纵。因此,涵盖了根据本文所公开的方法设计、构建和使用增强子元件,用于调控可操作地连接的可转录多核苷酸分子的表达。
如本文所用,术语“5′非翻译侧翼区”是指从基因的基因组拷贝的5′非翻译区(5′UTR)分离的DNA分子,并且通常被定义为位于转录起始位点(TSS)和蛋白质编码序列起始位点之间的核苷酸区段。这些序列或前导序列可为人工合成的DNA元件或受操纵DNA元件。前导序列可用作5′调节元件,用来调控可操作地连接的可转录多核苷酸分子的表达。前导序列分子可与异源启动子或其天然启动子一同使用。因此,启动子分子可以可操作地连接至其天然前导序列,或可以可操作地连接至异源前导序列。
如本文所用,术语“嵌合”是指通过将第一个DNA分子与第二个DNA分子融合而生成的单个DNA分子,其中,第一个DNA分子和第二个DNA分子通常都不会以该构型(也就是与另一个DNA分子融合的构型)存在。因此,嵌合DNA分子为通常原本不会天然存在的全新DNA分子。如本文所用,术语“嵌合启动子”是指将DNA分子这样操纵而产生的启动子。嵌合启动子可结合两个或两个以上DNA片段;实例可以为由启动子与异源增强子元件融合而成的嵌合启动子。因此,涵盖了根据本文所公开的方法设计、构建和使用嵌合启动子,用于调控可操作地连接的可转录多核苷酸分子的表达。
在一个实施例中,位于编码区序列的内含子内或3′的本文公开的核苷酸序列也可有助于调节目的编码区的表达。合适的内含子的实例包括但不限于玉米IVS6内含子、或玉米肌动蛋白内含子。调节元件还可包括那些位于转录起始位点的下游(3′)、或转录的区域内、或两者处的元件。转录后调节元件可包括在转录起始之后活跃的元件,例如翻译和转录增强子、翻译和转录阻遏子、以及mRNA稳定性决定子。
调节元件、或其变体或片段可以与一个或多个异源调节元件可操作地相关联以调控异源调节元件的活性。这种调控包括增强或抑制异源调节元件的转录活性、调控转录后事件、或者增强或抑制异源调节元件的转录活性并调控转录后事件。例如,可将一个或多个调节元件或其片段与组成型、诱导型或组织特异性启动子或其片段可操作地关联,以调控这种启动子在植物细胞中的所需组织内的活性。
所述组合物可以涵盖分离的或重组的核酸。“分离的”或“重组的”核酸分子(或DNA)在本文用来指不再处于其天然环境中,例如处于体外的或异源重组细菌或植物宿主细胞中的核酸序列(或DNA)。分离的或重组的核酸分子或其生物活性部分,当通过重组技术产生时基本上不含其他细胞材料或培养基,或者当用化学法合成时基本上不含化学前体或其他化学物质。分离的或重组的核酸不含在衍生该核酸的生物体的基因组DNA中天然位于该核酸的侧翼的序列(也就是位于该核酸5′和3′端的序列)(最佳地是蛋白质编码序列)。例如,在多个实施例中,分离的核酸分子可含有少于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核苷酸序列,该核苷酸序列在衍生出该核酸的细胞的基因组DNA中天然地位于该核酸分子的侧翼。本文所公开的双生病毒调节元件序列可以从处于它们各自的转录起始位点侧翼的5′非翻译区分离。如本文所用,术语“多核苷酸”和“核苷酸”都旨在意指一个或多个核苷酸,并且能以单数或复数形式互换使用。
所述组合物可以涵盖分离的或充分纯化的核酸组合物。“分离的”或“纯化的”核酸分子或其生物活性部分当通过重组技术产生时不含其他细胞物质或培养基,或者当化学合成时基本上不含化学前体或其他化学物质。“分离的”核酸基本上不含在衍生出该核酸的生物体的基因组DNA中天然地位于该核酸侧翼的序列(即位于该核酸的5′和3′端的序列)(包括蛋白质编码序列)。例如,在多个实施例中,分离的核酸分子可含有少于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核苷酸序列,该核苷酸序列在衍生出该核酸的细胞的基因组DNA中天然地位于该核酸分子的侧翼。本文公开的双生病毒序列可以从处于它们各自的转录起始位点侧翼的5′非翻译区分离。
本公开还涵盖了所公开的调节元件核苷酸序列的片段和变体。如本文所用,术语“片段”是指核酸序列的一部分。双生病毒调节元件序列的片段可保留启动转录,更具体地以组成型方式驱动转录的生物活性。可替代地,可用作杂交探针的核苷酸序列的片段可以不必保留生物活性。双生病毒调节区的核苷酸序列的片段范围可从至少约20个核苷酸、约50个核苷酸、约100个核苷酸直至SEQ ID NO:1-13的全长。
双生病毒调节元件的生物活性部分可通过分离本公开的双生病毒启动子序列的一部分并评估该部分的启动子活性来制备。作为双生病毒调节多核苷酸序列的片段的核酸分子包含至少约16、50、75、100、150、200、250、300、350、400、450、500、550、600、650、700或800个核苷酸或者直至本文所公开的全长双生病毒调节序列中存在的核苷酸数目。
对于核苷酸序列,变体包含在天然多核苷酸序列中的一个或多个内部位点处的一个或多个核苷酸的缺失和/或添加,和/或在天然多核苷酸中的一个或多个位点处的一个或多个核苷酸的取代。对于核苷酸序列,可使用熟知的分子生物学技术来鉴定变体,例如,用下文概述的聚合酶链反应(PCR)和杂交技术来鉴定。变体核苷酸序列可以包括合成来源的核苷酸序列,例如那些通过使用定点诱变而产生的核苷酸序列。通常,如通过本文别处所描述的序列比对程序和参数所确定的,本公开的特定核苷酸序列的变体将与该特定核苷酸序列具有至少约40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的序列同一性。本公开的核苷酸序列的生物活性变体与该序列不同的核酸残基数可能只有1至15个,只有1至10个,只有6至10个,只有5个,只有4、3、2个,或甚至只有1个。
核苷酸序列变体还涵盖由诱变和重组发生程序(如DNA改组)产生的序列。采用这种程序时,可操纵双生病毒调节元件核苷酸序列,以创建新的双生病毒调节元件。以此方式,由一群相关的序列多核苷酸产生重组多核苷酸文库,这些多核苷酸包含具有基本序列同一性并且能够在体外或体内同源重组的序列区域。这种DNA改组的策略在本领域中是已知的。参见,例如,Stemmer(1994)Proc.Natl.Acad.Sci.USA[美国科学院院报]91:10747-10751;Stemmer(1994)Nature[自然]370:389-391;Crameri等人(1997)Nature Biotech.[自然生物技术]15:436-438;Moore等人(1997)J.Mol.Biol.[分子生物学杂志]272:336-347;Zhang等人(1997)Proc.Natl.Acad.Sci.USA[美国科学院院报]94:4504-4509;Crameri等人(1998)Nature[自然]391:288-291;和美国专利号5,605,793和5,837,458。
本公开的核苷酸序列可用于分离来自其他生物,尤其其他植物,更具体地,其他单子叶植物的相应序列。以这种方式,可以使用如PCR、杂交等方法来识别这样的序列(基于其与本文所述序列的序列同源性)。本公开涵盖了基于其与本文所示的完整双生病毒序列或者与完整双生病毒序列的片段的序列同一性而分离的序列。
在PCR方法中,可以设计寡核苷酸引物,用于在PCR反应中由从任何目的植物中提取的cDNA或基因组DNA扩增相应的DNA序列。用于设计PCR引物与PCR克隆的方法是本领域普遍已知的并公开于Sambrook(同上)中。还参见Innis等人编辑(1990)PCR Protocols:AGuide to Methods and Applications[PCR方案:方法与应用指南](学术出版社,纽约);Innis和Gelfand编辑(1995)PCR Strategies[PCR策略](学术出版社,纽约);以及Innis和Gelfand编辑(1999)PCR Methods Manual[PCR方法手册](学术出版社,纽约);通过引用以其全文结合在此。已知的PCR方法包括但不限于:使用成对引物、巢式引物、单特异性引物、简并引物、基因特异性引物、载体特异性引物、部分错配引物等的方法。
在杂交技术中,利用已知核苷酸序列的全部或部分作为探针,该探针选择性杂交来自所选生物体的一群克隆基因组DNA片段或cDNA片段(即基因组或cDNA文库)中存在的其他相应核苷酸序列。这些杂交探针可以是基因组DNA片段、cDNA片段、RNA片段、或其他寡核苷酸,并且可以用可检测基团如32P或任何其他可检测标记进行标记。因此,例如,杂交用探针可通过在本公开的双生病毒调节元件序列基础上,对合成的寡核苷酸进行标记来制备。用于制备杂交用探针和用于构建基因组文库的方法是本领域普遍已知的并且公开于Sambrook(同上)中。
例如,本文所公开的完整双生病毒调节元件序列或其一个或多个部分可用作能够与相应的双子叶植物双生病毒调节元件序列和信使RNA特异性杂交的探针。要在多种条件下实现特异性杂交,此类探针包含的序列是双生病毒调节元件序列中独一无二的,并且其长度通常为至少约10个核苷酸或者其长度为至少约20个核苷酸。可以使用此类探针通过PCR由选择的植物扩增相应的双生病毒调节元件序列。可以使用这种技术从所希望的生物体中分离另外的编码序列,或作为用于确定生物体中存在编码序列的诊断测定。杂交技术包括铺板的DNA文库的杂交筛选(斑块或菌落,参见例如Sambrook,同上)。
此类序列的杂交可以在严格条件下进行。术语“严格条件”或“严格杂交条件”意指探针与其靶序列杂交的程度比其与其他序列杂交的程度可检测地更高(例如比背景高至少2倍)的条件。严格条件是序列依赖性的,并且在不同情况下将有所不同。通过控制杂交和/或洗涤条件的严格性,可以鉴定与该探针100%互补的靶序列(同源探测)。可替代地,也可以调节严格条件以允许序列中的某些错配,以便检测到更低程度的相似性(异源探测)。探针长度通常小于约1000个核苷酸,最佳地,其长度小于500个核苷酸。
典型地,严格条件将是以下条件,在这些条件下该盐浓度在pH 7.0至8.3时是小于约1.5M Na离子、典型地约0.01至1.0M Na离子浓度(或其他盐类),并且温度对于短探针(例如,10至50个核苷酸)为至少约30℃,而对于长探针(例如,超过50个核苷酸)为至少约60℃。添加去稳定剂例如甲酰胺也可以实现严格条件。示例性低严格性条件包括在37℃使用30%至35%甲酰胺、1M NaCl、1%SDS(十二烷基硫酸钠)的缓冲溶液进行杂交,并且在50℃至55℃在1倍至2倍SSC(20倍SSC=3.0M NaCl/0.3M柠檬酸三钠)中洗涤。示例性中严格条件包括在37℃在40%至45%甲酰胺、1.0M NaCl、1%SDS中进行杂交,并且在55℃至60℃在0.5倍至1倍SSC中洗涤。示例性高严格条件包括在37℃在50%甲酰胺、1M NaCl、1%SDS中杂交,并且在60℃至65℃在0.1倍SSC中最后洗涤至少30分钟的持续时间。杂交持续时间通常小于约24小时,通常为约4至约12小时。洗涤的持续时间将为至少足以达到平衡的时间长度。
特异性典型地取决于杂交后洗涤的功能,关键因素是最终洗涤溶液的离子强度以及温度。对于DNA-DNA杂交体,热熔点(Tm)可以从Meinkoth和Wahl,(1984)Anal.Biochem[分析生物化学]138:267 284的等式粗略估计Tm=81.5℃+16.6(log M)+0.41(%GC)-0.61(%form)-500/L;其中M为单价阳离子的摩尔浓度,%GC为DNA中鸟苷和胞嘧啶核苷酸的百分比,%form为杂交溶液中甲酰胺的百分比,并且L为杂合体的碱基对长度。Tm是50%的互补靶序列与完全匹配的探针杂交的温度(在所限定的离子强度和pH下)。对于每1%的错配,Tm减少大约1℃;因此,可以调整Tm、杂交、和/或洗涤条件,以便与具有所希望的同一性的序列进行杂交。例如,如果寻找具有90%同一性的序列,则可将Tm降低10℃。通常,将严格条件选择为比特定序列及其互补序列在所限定的离子强度和pH下的Tm低约5℃。然而,极严格条件可以利用比Tm低1℃、2℃、3℃或4℃的杂交和/或洗涤;中等严格条件可以利用比Tm低6℃、7℃、8℃、9℃或10℃的杂交和/或洗涤;低严格条件可以利用比Tm低11℃、12℃、13℃、14℃、15℃或20℃的杂交和/或洗涤。使用等式、杂交和洗涤组合物以及所需的Tm,普通技术人员将理解,本质上描述了杂交和/或洗涤溶液的严格性的变化。如果所希望的错配程度导致Tm小于45℃(水溶液)或32℃(甲酰胺溶液),则优选增加SSC浓度以使得可使用较高温度。有关核酸杂交的详尽指南见于Tijssen,(1993)Laboratory Techniques in Biochemistry andMolecular Biology--Hybridization with Nucleic Acid Probes[生物化学与分子生物学技术-与核酸探针的杂交],第I部分,第2章(爱思唯尔出版社(Elsevier),纽约);以及Ausubel等人编辑(1995)Current Protocols in Molecular Biology[分子生物学当前方案],第2章(格林出版与威利交叉科学出版社(Greene Publishing and Wiley-Interscience),纽约)中,这些文献均通过引用以其全文结合在此。还参见Sambrook。
因此,本公开涵盖具有组成型启动子活性的分离序列,这种分离序列在严格条件下与本文所公开的双生病毒调节序列或其片段杂交。
一般而言,具有启动子活性并且与本文所公开的多核苷酸序列杂交的序列将与所公开的序列有至少40%至50%的同源性,约60%、70%、80%、85%、90%、95%至98%或更高的同源性。即,序列的序列相似性可以在一定范围内,共有至少约40%至50%,约60%至70%,以及约80%、85%、90%、95%至98%的序列相似性。
以下术语用于描述两个或多个核酸或多核苷酸之间的序列关系:(a)“参比序列”,(b)“比较窗口”,(c)“序列同一性”,(d)“序列同一性百分比”和(e)“实质同一性”。
(a)如本文所用,“参比序列”是用作序列比较的基础的所定义的序列。参比序列可以是指定序列的子集或整体;例如,作为全长cDNA或基因序列的区段、或完整的cDNA或基因序列。
(b)如在此使用,“比较窗口”参考了多核苷酸序列的连续并指定的区段,其中与用于两个序列的最佳比对的参比序列(其不包括添加或缺失)相比,比较窗口中的多核苷酸序列可能包括添加或缺失(即空位)。通常,比较窗口的长度为至少20个连续核苷酸,并且任选地可以是30、40、50、100个或更长。本领域技术人员应当理解,由于多核苷酸序列中含有缺口,为了避免与参比序列的高相似性,典型地引入缺口罚分,并且将其从匹配数中减去。
用于比较的序列比对的方法是本领域熟知的。因此,任意两个序列之间的百分序列同一性的测定能够用一种数学算法进行。此类数学算法的非限制性实例是Myers和Miller,(1988)CABIOS 4:11-17的算法;Smith等人,(1981)Adv.Appl.Math.[应用数学进展]2:482的算法;Needleman和Wunsch,(1970)J.Mol.Biol.[分子生物学杂志]48:443-453的算法;Pearson和Lipman,(1988)Proc.Natl.Acad.Sci.[美国科学院院报]85:2444-2448的算法;Karlin和Altschul,(1990)Proc.Natl.Acad.Sci.USA[美国科学院院报]872:264的算法;如在Karlin和Altschul(1993)Proc.Natl.Acad.Sci.USA[美国科学院院报]90:5873-5877中修改的;这些文献通过引用以其全文结合在此。
这些数学算法的计算机实现能够用于序列比较以确定序列同一性。这些实现方法包括,但不限于:PC/Gene程序(可获自加利福尼亚州山景城的易达利遗传学公司(Intelligenetics,Mountain View,Calif.))中的CLUSTAL;ALIGN程序(版本2.0)以及
Figure BDA0001731550970000152
Figure BDA0001731550970000153
版本10(可获自美国加利福尼亚州圣迭戈的斯克兰顿路9685号的Accelrys公司(Accelrys Inc.,9685Scranton Road,San Diego,Calif.,USA)获得)中的GAP、BESTFIT、BLAST、FASTA、以及TFASTA。利用这些程序的比对可以使用缺省参数来进行。以下充分描述了CLUSTAL程序:Higgins等人(1988)Gene[基因]73:237-244(1988);Higgins等人(1989)CABIOS 5:151-153;Corpet等人(1988)Nucleic Acids Res.[核酸研究]16:10881-90;Huang等人(1992)CABIOS 8:155-65;以及Pearson等人(1994)Meth.Mol.Biol.[分子生物学方法]24:307-331;这些文献通过引用以其全文结合在此。ALIGN程序是基于Myers和Miller(1988)(同上)的算法。当比较氨基酸序列时,ALIGN程序可以使用PAM120权重残基表,缺口长度罚分为12、缺口罚分为4。Altschul等人,(1990)J.Mol.Biol.[分子生物学杂志]215:403(通过引用以其全文结合在此)的BLAST程序是基于Karlin和Altschul(1990)(同上)的算法。BLAST核苷酸搜索可用BLASTN程序、得分=100、字长=12来进行,以获得与编码本公开的蛋白质的核苷酸序列同源的核苷酸序列。BLAST蛋白质搜索可用BLASTX程序、得分=50、字长=3来进行,以获得与本公开的蛋白质或多肽同源的氨基酸序列。为了获得用于比较目的的缺口比对,可以使用如Altschul等人,(1997)Nucleic Acids Res.[核酸研究]25:3389(通过引用以其全文结合在此)中所述的缺口BLAST(在BLAST 2.0中)。可替代地,PSI-BLAST(在BLAST 2.0中)可以用于进行检测分子之间远缘关系的迭代搜索。参见Altschul等人,(1997),同上。当使用BLAST、缺口BLAST、PSI-BLAST时,可以使用各自程序的默认参数(例如,用于核苷酸序列的BLASTN、用于蛋白质的BLASTX)。参见美国国家生物技术信息中心(National Center for BiotechnologyInformation)网址www.ncbi.nlm.nih.gov。还可以通过检查,手动进行比对。
除非另有说明,本文提供的序列同一性/相似性值是指使用GAP版本10使用以下参数获得的值:对于核苷酸序列的同一性%和相似性%,使用GAP加权50和长度加权3、以及nwsgapdna.cmp评分矩阵;对于氨基酸序列的同一性%和相似性%,使用GAP加权8和长度加权2、以及BLOSUM62评分矩阵;或其任何等效程序。如本文所用,“等效程序”是任何序列比较程序,该程序对于任何两个所讨论的序列产生一个比对,当与GAP版本10所产生的对应的比对相比较时,该比对具有相同的核苷酸或氨基酸残基配对以及相同的百分比序列同一性。
GAP程序使用Needleman和Wunsch(同上)的算法来找到使匹配数目最大化并且使空位数目最小化的两个完整序列的比对。GAP考虑所有可能的比对和空位位置,并且产生具有最大匹配碱基数量和最少空位的比对。它允许以匹配碱基单位提供空位产生罚分和空位延伸罚分。GAP必须为它插入的每个空位获取空位产生罚分匹配数目的收益。如果选择大于零的空位延伸罚分,GAP必须另外地为每个所插入空位获取空位长度乘以空位延伸罚分的收益。在
Figure BDA0001731550970000173
Figure BDA0001731550970000172
的版本10中,蛋白质序列默认空位产生罚分值和空位延伸罚分值分别为8和2。对于核苷酸序列,默认空位产生罚分为50,而默认空位延伸罚分为3。空位产生和空位延伸罚分可以表示为选自下组的整数,该组由0至200组成。因此,例如,空位产生和空位延伸罚分可以为0、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、60、65或更多。
GAP代表最佳比对家族的一个成员。可以存在这个家族的许多成员,但是其他成员没有更好的品质。GAP展示出用于比对的四个性能因数:质量、比率、同一性和相似性。为了比对序列,质量是最大化的度量。比率是质量除以更短区段中的碱基数。同一性百分比是实际匹配的符号的百分比。相似性百分比是相似符号的百分比。空位对面的符号被忽略。当一对符号的评分矩阵值大于或等于相似性阈值0.50时,相似性得分。
Figure BDA0001731550970000174
版本10中所用的评分矩阵是BLOSUM62(参见Henikoff和Henikoff,(1989)Proc.Natl.Acad.Sci.USA[美国科学院院报]89:10915,通过引用以其全文结合在此)。
(c)如本文所用,在两个核酸或多肽序列的上下文中的“序列同一性”或“同一性”是指,当在指定比较窗口上比对最大对应性时,两个序列中的相同残基。当使用关于蛋白质的序列同一性百分比时,认识到不相同的残基位置通常相差保守氨基酸取代,其中氨基酸残基被具有相似化学性质(例如电荷或疏水性)的其他氨基酸残基取代,并且因此不改变分子的功能性质。当序列在保守取代方面不同时,可以向上调节序列同一性百分比,以校正该取代的保守性质。相差这些保守取代的序列被称为具有“序列相似性”或“相似性”。进行这种调节的方法是本领域技术人员熟知的。典型地,这涉及作为部分而不是完全错配对保守取代打分,从而提高百分比序列同一性。因此,例如,当完全相同的氨基酸给出1的分数并且非保守取代给出0的分数时,保守取代给出在0和1之间的分数。计算保守取代的评分,例如,如在程序PC/GENE(加利福尼亚州山景城的易达利遗传学公司)中实现的。
(d)如本文所用,“序列同一性百分比”意指在比较窗口上比较两个最佳比对序列所确定的值,其中与参比序列(其不包含添加或缺失)相比,该比较窗中的多核苷酸序列部分可以包含添加或缺失(即空位),以进行这两个序列的最佳比对。通过以下方式计算该百分比:确定在两个序列中出现相同核酸碱基或氨基酸残基的位置的数目以产生匹配位置的数目,将匹配位置的数目除以比较窗口中的位置的总数目,然后将该结果乘以100以产生序列同一性百分比。
(e)术语多核苷酸序列的“实质同一性”意指,使用所描述的比对程序之一使用标准参数与参比序列比较时,多核苷酸包含具有至少70%、至少80%、至少90%、和至少95%序列同一性的序列。
核苷酸序列实质相同的另一个指示是两个分子在严格条件下是否彼此杂交。通常,严格条件被选择为在所限定的离子强度和pH下比特定序列的Tm低约5℃。然而,严格条件涵盖比Tm低约1℃至约20℃范围的温度,这取决于如本文其他部分所限制的所需的严格程度。
在一个实施例中,SEQ ID NO:1-3所示的增强子可以与SEQ ID NO:4-13所示的启动子序列组合使用。增强子是可以发挥作用以增加启动子区的表达的核苷酸序列。增强子包括SV40增强子区域、35S增强子元件等。一些增强子还可以改变正常的启动子表达模式,例如通过引起启动子组成型表达,当不具有增强子时同一启动子仅在一个特定组织或一些特定组织中表达。
对本公开的分离的调节元件序列进行修饰可以提供异源核苷酸序列的一系列表达。因此,可将这些调节元件序列修饰为弱启动子或强启动子。通常,“弱启动子”是指以低水平驱动编码序列的表达的启动子。“低水平”表达意指以约1/10,000个转录物至约1/100,000个转录物至约1/500,000个转录物的水平表达。相反地,强启动子以高水平或者说以约1/10个转录物至约1/100个转录物至约1/1,000个转录物的水平驱动编码序列的表达。
本文公开的双生病毒调节元件可用来增加或减少表达,从而导致转化植物的表型改变。本文所公开的核苷酸序列及其变体和片段可用于任何植物的遗传操纵。双生病毒调节元件序列在与待控制其表达以实现所需表型响应的异源核苷酸序列可操作地连接时,可用于这个方面。术语“可操作地连接的”,意指异源核苷酸序列的转录或翻译受调节元件序列的影响。以此方式,可将本文公开的调节元件序列与目的异源核苷酸序列一起在表达盒中提供,以在目的植物中表达,更具体地在转化的植物的繁殖组织中表达。
在DNA构建体中提供实施例的调节序列,用于在目的生物体中表达。如本文所用,“表达盒”意指包含本公开实施例的调节元件序列的DNA构建体,其中该调节元件序列可操作地连接至编码目的多肽的异源多核苷酸。这种表达盒包含转录起始区,该转录起始区包含可操作地连接至异源核苷酸序列的本公开的调节元件核苷酸序列之一或其变体或片段。这种表达盒可具有多个限制位点,用于使插入该核苷酸序列的过程受调节区的转录调节。表达盒可另外含有选择性标记基因以及3′终止区。
表达盒在转录的5′-3′方向上可包含转录起始区(即本公开的启动子或其变体或片段)、翻译起始区、目的异源核苷酸序列、翻译终止区,并且任选地包含在宿主生物中有功能的转录终止区。实施例的调节区(即启动子、增强子、转录调节区和翻译终止区)和/或多核苷酸对于宿主细胞或彼此之间可以是天然的/类似的。可替代地,实施例的调节区和/或多核苷酸对于宿主细胞或彼此之间可以是异源的。
如本文所用,关于序列的“异源性”是指该序列源于外来物种,或者,如果源于相同物种的话,则是通过蓄意人为干预从其在组合物和/或基因组基因座中的天然形式进行实质性修饰得到的序列。例如,可操作地连接至异源多核苷酸的调节元件来自与从其衍生该多核苷酸的物种不同的物种,或者,如果来自相同/类似的物种,那么一方或双方基本上由它们的原来形式和/或基因组基因座修饰得到,或者该调节元件不是被可操作地连接的多核苷酸的天然调节元件。
终止区对于转录起始区可以是天然的,对于可操作地连接的目的DNA序列可以是天然的,对于植物宿主可以是天然的,或者可能源自另一种来源(即,对于调节元件、被表达的DNA序列、植物宿主或其任何组合来说为外源的或异源的)。
本文所公开的双生病毒调节序列及其变体和片段可用于植物的基因工程,例如,用于产生转化的或转基因的植物,来表达目的表型。如本文使用的,术语“转化的植物”和“转基因植物”是指在其基因组内包含异源多核苷酸的植物。通常,异源多核苷酸稳定整合于转基因或转化的植物基因组内,这样使得多核苷酸得以传递至连续世代。异源多核苷酸可以单独地或作为重组DNA构建体的部分整合进基因组中。应该理解,如本文使用的,术语“转基因的”包括其基因型已经通过异源核酸的存在改变的任何细胞、细胞系、愈伤组织、组织、植物部分或植物,包括最初如此改变的那些转基因以及通过有性杂交或无性繁殖从初始转基因产生的那些。
通过以下来产生转基因事件:用包含核酸表达盒的异源DNA构建体转化植物细胞,该核酸表达盒包含目的转基因;再生由该转基因插入该植物的基因组中所产生的植物群体;并且选择表征为插入特定基因组位置的特定植物。事件在表型上表征为转基因的表达。在遗传水平,事件是植物遗传组成的一部分。术语“事件”也指转化株和另一个植物之间有性杂交所产生的后代,其中所述后代包含异源DNA。
如本文所用,术语植物包括全植物、植物器官(例如,叶、茎、根等)、植物细胞、植物原生质体、可再生植物的植物细胞组织培养物、植物愈伤组织、植物块和在植物或植物部分(如胚、花粉、胚珠、种子、叶、花、枝、果、核、穗、穗轴、壳、茎、根、根尖、花药等)中完好的植物细胞。籽粒意指由商业种植者出于栽培或繁殖物种之外的目的所生产的成熟种子。再生的植物的子代、变体和突变体也包括在本公开的范围内,其条件是这些部分包含引入的多核苷酸。
本公开可用于任何植物物种(包括但不限于单子叶植物和双子叶植物)的转化。植物物种的实例包括玉米(玉蜀黍(Zea mays)),芸苔属物种(例如,甘蓝型油菜、芜菁、芥菜)(特别是可用作种子油来源的那些芸苔属物种),苜蓿(紫花苜蓿(Medicago sativa)),稻(rice,Oryza sativa),黑麦(rye,Secale cereale),高粱(sorghum,Sorghum bicolor,Sorghum vulgare)),粟(例如,珍珠粟(御谷(Pennisetum glaucum)),黍(粟米(Panicummiliaceum)),粟(谷子(Setaria italica)),穇子(龙爪稷(Eleusine coracana))),向日葵(sunflower,Helianthus annuus),红花(safflower,Carthamus tinctorius),小麦(wheat,Triticum aestivum),大豆(soybean,Glycine max),烟草(tobacco,Nicotianatabacum),马铃薯(potato,Solanum tuberosum),花生(peanut,Arachis hypogaea),棉花(海岛棉(Gossypium barbadense)、陆地棉(Gossypium hirsutum)),甘薯(番薯(Ipomoeabatatas)),木薯(cassava,Manihot esculenta),咖啡(咖啡属物种(Coffea spp.)),椰子(coconut,Cocos nucifera),菠萝(pineapple,Ananas comosus),柑橘树(柑橘属物种(Citrus spp.)),可可(cocoa,Theobroma cacao),茶树(tea,Camellia sinensis),香蕉(芭蕉属物种(Musa spp.)),鳄梨(avocado,Persea americana),无花果(fig或(Ficuscasica)),番石榴(guava,Psidium guajava),芒果(mango,Mangifera indica),橄榄(olive,Olea europaea),木瓜(番木瓜(Carica papaya)),腰果(cashew,Anacardiumoccidentale),澳洲坚果(macadamia,Macadamia integrifolia),巴旦杏(almond,Prunusamygdalus),甜菜(sugar beets,Beta vulgaris),甘蔗(甘蔗属物种(Saccharum spp.)),燕麦,大麦,蔬菜,观赏植物和针叶树。
蔬菜包括番茄(tomatoes,Lycopersicon esculentumn)、莴苣(例如,莴苣(Lactuca sativa))、青豆(菜豆(Phaseolus vulgaris))、利马豆(lima bean,Phaseoluslimensis)、豌豆(香豌豆属物种(Lathyrus spp.))和黄瓜属(Cucumis)的成员诸如黄瓜(cucumber,C.sativus)、香瓜(cantaloupe,C.cantalupensis)和甜瓜(musk melon、C.melo)。观赏植物包括杜鹃(杜鹃花属物种(Rhododendron spp.))、绣球花(hydrangea,Macrophylla hydrangea)、木槿(hibiscus,Hibiscus rosasanensis)、玫瑰(蔷薇属物种(Rosa spp.))、郁金香(郁金香属物种(Tulipa spp.))、水仙(水仙属物种(Narcissusspp.))、矮牵牛(petunias,Petunia hybrida)、康乃馨(carnation,Dianthuscaryophyllus)、一品红(poinsettia,Euphorbia pulcherrima)和菊花。
可以用于实践本公开的针叶树包括例如松树,诸如火炬松(loblolly pine,Pinustaeda)、湿地松(slash pine,Pinus elliotii)、西黄松(ponderosa pine,Pinusponderosa)、黑松(lodgepole pine,Pinus contorta)和辐射松(Monterey pine,Pinusradiata);花旗松(Douglas-fir,Pseudotsuga menziesii);西方铁杉(Western hemlock,Tsuga canadensis);北美云杉(白云杉(Picea glauca));红杉(北美红杉(Sequoiasempepvipens));冷杉,如银杉(胶冷杉(Abies amabilis))和香脂冷杉(balsam fir,Abiesbalsamea);以及雪松,如西部红雪松(Thuja plicata)和阿拉斯加黄雪松(黄扁柏(Chamaecyparis nootkatensis))。在特定实施例中,本公开的植物是作物植物(例如,玉米、苜蓿、向日葵、芸苔属植物、大豆、棉花、红花、花生、高粱、小麦、粟、烟草等)。在其他实施例中,玉米和大豆植物是最佳的,并且在仍然其他的实施例中,玉米植物是最佳的。
其他目的植物包括提供目的种子的谷物类植物、油料种子植物和豆科植物。目的种子包括谷物种子,例如玉米、小麦、大麦、稻、高粱、黑麦等。油料种子植物包括棉花、大豆、红花、向日葵、芸苔属、玉米、苜蓿、棕榈、椰子等。豆科植物包括豆类和豌豆。豆类包括瓜尔豆、槐豆、胡芦巴、大豆、四季豆、豇豆、绿豆、利马豆、蚕豆、小扁豆、鹰嘴豆等。
由本公开的双生病毒调节元件序列所表达的异源编码序列可用于改变植物的表型。表型的各种变化是所关注的,包括修饰基因在植物中的表达,改变植物对病原体或昆虫的防御机制,提高植物对除草剂的耐受性,改变植物发育以响应环境胁迫,调控植物对盐、温度(热和寒冷)、干旱等的响应。这些结果可通过表达包含适当基因产物的目的异源核苷酸序列来获得。在特定实施例中,目的异源核苷酸序列是在植物或植物部分中表达水平提升的植物内源序列。可以通过提供改变的一个或多个内源基因产物(特别是激素、受体、信号分子、酶、转运蛋白或辅因子)的表达或通过影响植物中的营养摄取来获得结果。由双生病毒调节元件提供的组成型表达可以改变表达。这些改变导致转化的植物的表型的变化。在某些实施例中,由于表达模式是组成型的,因此本文公开的双生病毒调节元件的表达模式可用于许多类型的筛选。
可以与本文所公开的双生病毒调节序列一起使用的目的核苷酸序列的大体种类包括例如涉及信息的那些基因(如锌指)、涉及通信的那些基因(如激酶)和涉及持家的那些基因(如热休克蛋白)。转基因的更具体的类别例如包括编码农艺学、昆虫抗性、抗病性、除草剂抗性、环境胁迫抗性(对寒冷、盐、干旱等的耐受性改变)和谷物特征的重要性状的基因。仍另外的转基因种类包括从植物和其他真核生物以及原核生物诱导外源性产物(如酶、辅因子及激素)的表达的基因。应认识到,任何目的基因可以可操作地连接至本公开的启动子并在植物中表达。
以说明的方式,而非意图限制,以下是可与本文公开的调节序列一起使用的基因类型的其他实例的列表。
1.转基因,其赋予对昆虫或疾病的抗性并编码:
(A)植物抗病性基因。通常通过植物中抗病性基因(R)的产物与病原体中相应的无毒性(Avr)基因的产物之间的特异性相互作用来活化植物防御。可以用经克隆的抗性基因来转化植物变种,以工程化对特定病原菌株具有抗性的植物。参见,例如Jones等人(1994)Science[科学]266:789(cloning of the tomato Cf-9 gene for resistance toCladosporium fulvum[克隆番茄Cf-9基因以抵抗番茄叶霉病菌]);Martin等人(1993)Science[科学]262:1432(tomato Pto gene for resistance to Pseudomonas syringaepv.tomato encodes a protein kinase[用于抵抗丁香假单胞菌番茄致病变体的番茄Pto基因编码蛋白激酶]);Mindrinos等人(1994)Cell[细胞]78:1089(Arabidopsis RSP2genefor resistance to Pseudomonas syrmgae[用于抵抗丁香假单胞菌的拟南芥属RSP2基因]);McDowell和Woffenden,(2003)Trends Biotechnol.[生物技术趋势]21(4):178-83;和Toyoda等人,(2002)Transgenic Res.[转基因研究]11(6):567-82;这些文献通过引用以其全文结合在此。与野生型植物相比,对疾病具有抗性的植物对病原体更具抗性。
(B)苏云金芽孢杆菌蛋白、其衍生物或其上建模的合成多肽。参见,例如,Geiser等人,(1986)Gene[基因]48:109,Geiser公开了Btδ-内毒素基因的克隆和核苷酸序列。此外,编码δ-内毒素基因的DNA分子可购自美国典型培养物保藏中心(American Type CultureCollection)(美国马里兰州罗克韦尔市(Rockville,MD)),例如ATCC登录号40098、67136、31995和31998下。经遗传工程化的苏云金芽孢杆菌转基因的其他实例在以下专利和专利申请中给出,并且为此通过引用特此结合:美国专利号5,188,960、5,689,052、5,880,275;WO91/14778、WO 99/31248、WO 01/12731、WO 99/24581、WO 97/40162;以及美国申请序列号10/032,717、10/414,637和10/606,320;这些文献通过引用以其全文结合在此。
(C)昆虫特异性激素或信息素,例如蜕皮激素和保幼激素、其变体、基于其的模拟物、或其拮抗剂或激动剂。参见例如,Hammock等人,(1990)Nature[自然]344:458公开了经克隆的保幼激素酯酶(保幼激素的灭活剂)的杆状病毒表达,将该文献通过引用以其全文结合在此。
(D)昆虫特异性肽,其表达时破坏受影响害虫的生理学。例如,参见以下公开:Regan,(1994)J.Biol.Chem.[生物化学杂志]269:9(expression cloning yields DNAcoding fbr insect diuretic hormone receptor[表达克隆产生编码昆虫利尿激素受体的DNA]);Pratt等人,(1989)Biochem.Biophys.Res.Comm.[生物化学与生物物理学研究通讯]163:1243(an allostatin is identified in Diploptera puntata[在紫斑折翅类中鉴定一种同分异构他汀]);Chattopadhyay等人,(2004)Critical Reviews inMicrobiology[微生物学重要评论]30(1):33-54;Zjawiony,(2004)J Nat Prod[天然产物杂志]67(2):300-310;Carlini和Grossi-de-Sa,(2002)Toxicon[毒素]40(11):1515-1539;Ussuf等人,(2001)Curr Sci.[当代科学]80(7):847-853;以及Vasconcelos和Oliveira,(2004)Toxicon[毒素]44(4):385-403;将这些文献通过引用以其全文结合在此。还参见Tomalski等人的美国专利号5,266,317,他们公开了编码昆虫特异性毒素的基因,将该文献通过引用以其全文结合在此。
(E)引起单萜、倍半萜、类固醇、异羟肟酸、类苯基丙烷衍生物或具有杀昆虫活性的另一种非蛋白质分子超积累的酶。
(F)涉及生物活性分子修饰(包括翻译后修饰)的酶;例如,糖解酶、蛋白水解酶、脂肪分解酶、核酸酶、环化酶、转氨酶、酯酶、水解酶、磷酸酶、激酶、磷酸化酶、聚合酶、弹性蛋白酶、几丁质酶以及葡聚糖酶,无论是天然的还是合成的。参见,所属人为Scott等人的PCT申请号WO 93/02197,其公开了愈创葡聚糖酶(callase)基因的核苷酸序列,将该文献通过引用以其全文结合在此。含有几丁质酶编码序列的DNA分子可以例如从登录号39637和67152下的ATCC获得。还参见,Kramer等人,(1993)Insect Biochem.Molec.Biol.[昆虫生物化学与分子生物学]23:691,他们教导了编码烟草钩虫几丁质酶的cDNA的核苷酸序列;以及Kawalleck等人,(1993)Plant Molec.Biol.[植物分子生物学]21:673,他们提供了欧芹ubi4-2聚泛素基因的核苷酸序列;美国专利申请序列号10/389,432、10/692,367以及美国专利号6,563,020;将这些文献通过引用以其全文结合在此。
(G)刺激信号转导的分子。例如,参见Botella等人,(1994)Plant Molec.Biol.[植物分子生物学]24:757,该文献公开了绿豆钙调素cDNA克隆的核苷酸序列;以及Griess等人,(1994)Plant Physiol.[植物生理学]104:1467,他们提供了玉米钙调素cDNA克隆的核苷酸序列;将这些文献通过引用以其全文结合在此。
(H)疏水性瞬时肽。参见,PCT申请号WO 95/16776和美国专利号5,580,852(公开了速普肽(其抑制真菌植物病原体)的肽衍生物)以及PCT申请号WO 95/18855和美国专利号5,607,914(教导了赋予抗病性的合成抗微生物肽);将这些文献通过引用以其全文结合在此。
(I)膜透性酶,一种通道形成剂或通道阻断剂。例如,参见Jaynes等人,(1993)Plant Sci.[植物科学]89:43,该文献公开了天蚕素-β裂解肽类似物的异源表达,以提供对青枯假单胞菌(Pseudomonas solanacearum)具有抗性的转基因烟草植物;将该文献通过引用以其全文结合在此。
(J)病毒侵入性蛋白或其衍生的复合毒素。例如,病毒外壳蛋白在转化的植物细胞中的积累赋予由外源蛋白基因来源的病毒以及由相关病毒导致的病毒侵染和/或疾病发展的抗性。参见,Beachy等人,(1990)Ann.Rev.Phytopathol.[植物病理学年评]28:451,将该文献通过引用以其全文结合在此。外壳蛋白介导的抗性已被赋予至转化植物抵抗:苜蓿花叶病毒、黄瓜花叶病毒、烟草线条病毒、马铃薯X病毒、马铃薯Y病毒、烟草蚀纹病毒、烟草脆裂病毒和烟草花叶病毒。同上。
(K)昆虫特异性抗体或其衍生的免疫毒素。因此,靶向昆虫肠道中关键代谢功能的抗体将使受影响的酶失活,从而杀灭昆虫。参看Taylor等人,摘要#497,关于分子植物-微生物相互作用的第七届国际研讨会(SEVENTH INT′L SYMPOSIUM ON MOLECULAR PLANT-MICROBE INTERACTIONS)(苏格兰爱丁堡(Edinburgh,Scotland),1994)(通过生产单链抗体片段在转基因烟草中的酶失活):将该文献通过引用以其全文结合在此。
(L)病毒特异性抗体。参见,例如Tavladoraki等人,(1993)Nature[自然]366:469,他们示出表达重组抗体基因的转基因植物不受病毒侵袭,将该文献通过引用以其全文结合在此。
(M)在自然界中由病原体或寄生虫产生的发育阻滞蛋白(Developmental-arrestive protein)。因此,真菌内切α-1,4-D-多聚半乳糖醛酸酶通过溶解植物细胞壁均-α-1,4-D-半乳糖醛酸酶来促进真菌定植和植物营养释放。参见,Lamb等人,(1992)Bio/Technology[生物/技术]10:1436,将该文献通过引用以其全文结合在此。Toubar等人,(1992)Plant J.[植物杂志]2:367描述了编码豆内聚半乳糖醛酸酶抑制蛋白的基因的克隆和表征,将该文献通过引用以其全文结合在此。
(N)在自然界中由植物产生的发育阻滞蛋白。例如,Logemann等人,(1992)Bio/Technology[生物/技术]10:305已经表明表达大麦核糖体失活基因的转基因植物具有增加的对真菌病的抗性,将该文献通过引用以其全文结合在此。
(O)参与系统获得抗性(SAR)应答的基因和/或发病机制相关基因。Briggs,(1995)Current Biology[当代生物学]5(2):128-131;Pieterse和Van Loon,(2004)Curr.Opin.Plant Bio.[植物生物学新观点]7(4):456-64;以及Somssich,(2003)Cell[细胞]113(7):815-6;将这些文献通过引用以其全文结合在此。
(P)抗真菌基因(Cornelissen和Melchers,(1993)Pl.Physiol.[植物生理学]101:709-712;和Parijs等人,(1991)Planta[植物]183:258-264;以及Bushnell等人,(1998)Can.J.of Plant Path.[加拿大植物病理学杂志]20(2):137-149)。还参见美国专利申请号09/950,933,将该文献通过引用以其全文结合在此。
(Q)解毒基因,如伏马菌素、白僵菌素、念珠菌素和玉米赤霉烯酮及其结构相关的衍生物的基因。例如参见美国专利号5,792,931,将该文献通过引用以其全文结合在此。
(R)胱抑素和半胱氨酸蛋白酶抑制剂。参见美国申请序列号10/947,979,将该文献通过引用以其全文结合在此。
(S)防御素基因。参见WO 03/000863和美国申请序列号10/178,213,将这些文献通过引用以其全文结合在此。
(T)赋予对线虫的抗性的基因。参见,WO 03/033651和Urwin等人,(1998)Planta[植物]204:472-479,Williamson(1999)Curr Opin Plant Bio.[植物生物学新观点]2(4):327-31,将这些文献通过引用以其全文结合在此。
(U)赋予对炭疽茎腐病(由真菌禾生炭疽菌引起)的抗性的基因,如rcg1。参见,Jung等人,Generation-means analysis and quantitative trait locus mapping ofAnthracnose Stalk Rot genes in Maize[玉米中炭疽茎腐病基因的代平均值分析和数量性状基因座谱图],Theor.Appl.Genet.[理论与应用遗传学](1994)89:413-418,以及美国临时专利申请号60/675,664,将这些文献通过引用以其全文结合在此。
(V)核酸,所述核酸涉及通过干扰核糖核酸(RNA)分子而下调昆虫有害生物物种中靶基因的表达,这些核糖核酸分子防治昆虫有害生物物种。PCT公开WO 2007/074405描述了抑制无脊椎动物有害生物(包括科罗拉多马铃薯甲虫)中靶基因表达的方法。PCT公开WO2005/110068描述了抑制无脊椎动物有害生物(特别是包括西方玉米根虫)中靶基因表达的方法,该方法作为防治昆虫侵染的手段。此外,PCT公开WO 2009/091864描述了用于抑制来自昆虫有害生物物种(包括来自草盲蝽属的有害生物)的靶基因的组合物和方法。
2.赋予对除草剂的抗性的转基因,例如:
(A)抑制生长点或分生组织的除草剂,如咪唑啉酮或磺酰脲。这个类别的示例性基因编码突变体ALS和AHAS酶,分别如例如Lee等人,(1988)EMBO J.[欧洲分子生物学学会杂志]7:1241和Miki等人,(1990)Theor.Appl.Genet.[理论与应用遗传学]80:449中所述。还参见,美国专利号5,605,011;5,013,659;5,141,870;5,767,361;5,731,180;5,304,732;4,761,373;5,331,107;5,928,937和5,378,824以及国际公开WO 96/33270,将这些文献通过引用以其全文结合在此。
(B)草甘膦(分别由突变体5-烯醇丙酮酰-3-磷酸莽草酸合酶(EPSP)和aroA基因赋予的抗性)和其他膦酰基化合物如草铵膦(草丁膦乙酰转移酶(PAT)和吸水链霉菌草丁膦乙酰转移酶(bar)基因)、以及吡啶氧基或苯氧基丙酸和环己酮(ACC酶抑制剂编码基因)。参见,例如Shah等人的美国专利号4,940,835,其公开了EPSPS形式的能赋予草甘磷抗性的核苷酸序列。Barry等人的美国专利号5,627,061也描述了编码EPSPS酶的基因。还参见,美国专利号6,566,587、6,338,961、6,248,876 B1、6,040,497、5,804,425、5,633,435、5,145,783、4,971,908、5,312,910、5,188,642、4,940,835、5,866,775、6,225,114 B1、6,130,366、5,310,667、4,535,060、4,769,061、5,633,448、5,510,471、Re.36,449、RE 37,287 E和5,491,288以及国际公开EP 1173580、WO 01/66704、EP 1173581和EP 1173582,将这些文献通过引用以其全文结合在此。还给予植物草甘磷抗性,使该植物表达编码草甘磷氧化还原酶的基因,这在美国专利号5,776,760和5,463,175中进行了更全面地描述,将这些文献通过引用以其全文结合在此。另外,可通过过量表达编码草甘磷N-乙酰转移酶的基因,来赋予植物草甘磷抗性。参见,例如美国专利申请序列号11/405,845和10/427,692以及PCT申请号US01/46227,将这些文献通过引用以其全文结合在此。编码突变aroA基因的DNA分子可以在ATCC登录号39256下获得,并且该突变基因的核苷酸序列公开于Comai的美国专利号4,769,061中,将该文献通过引用以其全文结合在此。Kumada等人的欧洲专利申请号0 333 033和Goodman等人的美国专利号4,975,374公开了赋予除草剂(如L-草丁膦)抗性的谷氨酰胺合成酶基因的核苷酸序列,将这些文献通过引用以其全文结合在此。Leemans等人的欧洲专利号0 242 246和0 242 236、以及De Greef等人,(1989)Bio/Technology[生物/技术]7:61(其描述了表达编码草丁膦乙酰转移酶活性的嵌合bar基因的转基因植物的产生)提供了草丁膦-乙酰基-转移酶基因的核苷酸序列,将这些文献通过引用以其全文结合在此。还参见,美国专利号5,969,213;5,489,520;5,550,318;5,874,265;5,919,675;5,561,236;5,648,477;5,646,024;6,177,616 B1和5,879,903,将这些文献通过引用以其全文结合在此。赋予苯氧基丙酸和环己酮(如稀禾啶和吡氟氯禾灵)抗性的示例性基因是Acc1-S1、Acc1-S2和Acc1-S3基因,它们描述于Marshall等人,(1992)Theor.Appl.Genet.[理论与应用遗传学]83:435中,将该文献通过引用以其全文结合在此。
(C)抑制光合作用的除草剂,如三嗪(psbA基因和gs+基因)和苄腈(腈水解酶基因)。Przibilla等人,(1991)Plant Cell[植物细胞]3:169描述了用编码突变体psbA基因的质粒对衣藻进行的转化,将该文献通过引用以其全文结合在此。Stalker的美国专利号4,810,648中公开了腈水解酶基因的核苷酸序列,并且包含这些基因的DNA分子可在ATCC登录号53435、67441和67442下获得,将该文献通过引用以其全文结合在此。编码谷胱甘肽S-转移酶的DNA的克隆和表达描述于Hayes等人,(1992)Biochem.J.[生物化学杂志]285:173中,将该文献通过引用以其全文结合在此。
(D)乙酰羟酸合酶,已经发现其使表达该酶的植物对多种类型的除草剂具有抗性,已经被引入到各种植物中(参见,例如,Hattori等人,(1995)Mol Gen Genet.[分子和普通遗传学]246:419,将该文献通过引用以其全文结合在此)。赋予除草剂抗性的其他基因包括:编码大鼠细胞色素P4507A1和酵母NADPH-细胞色素P450氧化还原酶的嵌合蛋白的基因(Shiota等人,(1994)Plant Physiol[植物生理学]106(1):17-23),针对谷胱甘肽还原酶和超氧化物歧化酶的基因(Aono等人,(1995)Plant Cell Physiol[植物细胞生理学]36:1687)和各种磷酸转移酶的基因(Datta等人,(1992)Plant Mol Biol[植物分子生物学]20:619),将这些文献通过引用以其全文结合在此。
(E)原卟啉原氧化酶(protox)是叶绿素的生成所必需的,而叶绿素是所有植物存活所必需的。原卟啉原氧化酶用作多种除草剂化合物的靶标。这些除草剂也抑制存在的所有不同物种的植物的生长,导致其完全破坏。含有对这些除草剂具有抗性的经改变的原卟啉原氧化酶活性的植物的发育描述于美国专利号6,288,306B1、6,282,837 B1和5,767,373;以及国际公开号WO 01/12825中,将这些文献通过引用以其全文结合在此。
3.赋予或贡献于改变的谷物特征的转基因,如:
(A)改变的脂肪酸,例如,通过以下方式
(1)下调硬脂酰-ACP去饱和酶以提高植物的硬脂酸含量。参见,Knultzon等人,(1992)Proc.Natl.Acad.Sci.USA[美国科学院院报]89:2624和WO 99/64579(Genes forDesaturases to Alter Lipid Profiles in Corn[改变玉米中脂质谱的去饱和酶的基因]),将这些文献通过引用以其全文结合在此,
(2)通过FAD-2基因修饰升高油酸和/或通过FAD-3基因修饰降低亚麻酸(参见,美国专利号6,063,947、6,323,392、6,372,965和WO 93/11245,将这些文献通过引用以其全文结合在此),
(3)改变共轭的亚麻酸或亚油酸含量,如WO 01/12800中,将该文献通过引用以其全文结合在此,
(4)改变LEC1、AGP、Dek1、Superal1、mi1ps、各种lpa基因(如lpa1、lpa3、hpt或hggt)。例如,参见,WO 02/42424、WO 98/22604、WO 03/011015,美国专利号6,423,886、美国专利号6,197,561、美国专利号6,825,397,美国专利申请公开号2003/0079247、2003/0204870、WO 02/057439、WO 03/011015以及Rivera-Madrid等人,(1995)Proc.Natl.Acad.Sci.[美国科学院院报]92:5620-5624,将这些文献通过引用以其全文结合在此。
(B)改变的磷含量,例如,通过
(1)引入植酸酶编码基因将促进植酸盐的分解,向经转化的植物中添加更多的游离磷酸根。例如,参见Van Hartingsveldt等人,(1993)Gene[基因]127:87,该文献公开了黑曲霉植酸酶基因的核苷酸序列,将该文献通过引用以其全文结合在此。
(2)上调降低植酸盐含量的基因。在玉米中,这例如可通过以下方式来实现:将与一种或多种等位基因如LPA等位基因(在以低水平植酸为特征的玉米突变株中鉴定到)相关的DNA进行克隆并再引入,如Raboy等人,(1990)Maydica[美迪卡杂志]35:383中所述,和/或通过改变肌醇激酶活性,如WO 02/059324、美国专利申请公开号2003/0009011、WO 03/027243、美国专利申请公开号2003/0079247、WO 99/05298、美国专利号6,197,561、美国专利号6,291,224、美国专利号6,391,348、WO 2002/059324、美国专利申请公开号2003/0079247、WO 98/45448、WO 99/55882、WO 0I/04147中所述,将这些文献通过引用以其全文结合在此。
(C)例如,通过改变影响淀粉分支模式的酶的基因,或改变硫氧还蛋白如NTR和/或TRX(参见,美国专利号6,531,648,将该文献通过引用以其全文结合在此)和/或γ玉米醇溶蛋白敲除或突变体如cs27或TUSC27或en27的基因(参见,美国专利号6,858,778和美国专利申请公开号2005/0160488和2005/0204418,将这些文献通过引用以其全文结合在此)来产生改变的碳水化合物。参见,Shiroza等人,(1988)J.Bacteriol.[细菌学杂志],170:810(链球菌突变体果糖基转移酶基因的核苷酸序列),Steinmetz等人,(1985)Mol.Gen.Genet.[分子和普通遗传学]200:220(枯草芽孢杆菌果聚糖蔗糖酶基因的核苷酸序列),Pen等人,(1992)Bio/Technology[生物/技术]10:292(生产表达地衣芽孢杆菌α-淀粉酶的转基因植物),Elliot等人,(1993)Plant Molec.Biol.[植物分子生物学]21:515(番茄转化酶基因的核苷酸序列),
Figure BDA0001731550970000331
等人,(1993)J.Biol.Chem.[生物化学杂志]268:22480(大麦α-淀粉酶基因的定点诱变)和Fisher等人,(1993)Plant Physiol.[植物生理学]102:1045(玉米胚乳淀粉分支酶II),WO 99/10498(通过修饰UDP-D-木糖4-差向异构酶、脆性1和2、Ref1、HCHL、C4H而改进的消化性和/或淀粉提取),美国专利号6,232,529(通过改变淀粉水平(AGP)生产高油种子的方法),将这些文献通过引用以其全文结合在此。以上提到的脂肪酸修饰基因还可用来通过淀粉途径和油途径的相互关系影响淀粉含量和/或组成。
(D)改变的抗氧化剂含量或组成,如改变生育酚或生育三烯酚。例如,参见涉及通过改变植基异戊烯基转移酶(ppt)来操纵抗氧化剂水平的美国专利号6,787,683、美国专利申请公开号2004/0034886和WO 00/68393,涉及通过改变尿黑酸香叶基香叶基转移酶(hggt)来操纵抗氧化剂水平的WO 03/082899,将这些文献通过引用以其全文结合在此。
(E)改变的必需种子氨基酸。例如,参见美国专利号6,127,600(增加种子中必需氨基酸的积累的方法)、美国专利号6,080,913(增加种子中必需氨基酸的积累的二元方法)、美国专利号5,990,389(高赖氨酸)、WO 99/40209(改变种子中氨基酸组成)、WO 99/29882(用于改变蛋白质的氨基酸含量的方法)、美国专利号5,850,016(改变种子中氨基酸组成)、WO 98/20133(具有升高水平的必需氨基酸的蛋白质)、美国专利号5,885,802(高甲硫氨酸)、美国专利号5,885,801(高苏氨酸)、美国专利号6,664,445(植物氨基酸生物合成酶)、美国专利号6,459,019(赖氨酸和苏氨酸增加)、美国专利号6,441,274(植物色氨酸合酶β亚基)、美国专利号6,346,403(甲硫氨酸代谢酶)、美国专利号5,939,599(高硫)、美国专利号5,912,414(甲硫氨酸增加)、WO 98/56935(植物氨基酸生物合成酶)、WO 98/45458(具有较高百分比的必需氨基酸的工程化的种子蛋白)、WO 98/42831(赖氨酸增加)、美国专利号5,633,436(增加含硫氨基酸含量)、美国专利号5,559,223(具有含可编程水平的必需氨基酸的限定的结构的合成储存蛋白,用于改进植物的营养价值)、WO 96/01905(苏氨酸增加)、WO95/15392(赖氨酸增加)、美国专利申请公开号2003/0163838、美国专利申请公开号2003/0150014、美国专利申请公开号2004/0068767、美国专利号6,803,498、WO 01/79516和WO00/09706(Ces A:纤维素合酶)、美国专利号6,194,638(半纤维素)、美国专利号6,399,859和美国专利申请公开号2004/0025203(UDPGdH)、美国专利号6,194,638(RGP),将这些文献通过引用以其全文结合在此。
4.控制雄性不育的基因
有几种赋予遗传性雄性不育的方法,例如赋予雄性不育的基因组内单独位置处的多个突变基因,如Brar等人在美国专利号4,654,465和4,727,219中所公开的,以及染色体易位,如Patterson在美国专利号3,861,709和3,710,511中所述的,将这些文献通过引用以其全文结合在此。除这些方法之外,Albertsen等人的美国专利号5,432,068(通过引用以其全文结合在此)描述了核雄性不育的系统,其包括:鉴定对雄性能育性至关重要的基因;沉默这种对雄性能育性至关重要的天然基因;从基本的雄性能育性基因中除去天然启动子并用诱导型启动子替换;将这个遗传工程化的基因插回植物中,并因此产生雄性不育的植物,因为诱导型启动子不是“开”的,导致雄性能育性基因不被转录。通过诱导或将启动子打“开”来恢复能育性,该启动子反过来又允许赋予雄性能育性的基因被转录。
(A)在绒毡层特异性启动子的控制下并施用化学品N-Ac-PPT来引入脱乙酰酶基因(WO 01/29237,将该文献通过引用以其全文结合在此)。
(B)引入各种雄蕊特异性启动子(WO 92/13956、WO 92/13957,将这些文献通过引用以其全文结合在此)。
(C)引入芽孢杆菌RNA酶(barnase)和孢杆菌RNA酶抑制剂(barstar)基因(Paul等人,(1992)Plant Mol.Biol.[植物分子生物学]19:611-622,将该文献通过引用以其全文结合在此)。
对于核雄性和雌性不育系统和基因的另外的实例,还参见美国专利号5,859,341、6,297,426、5,478,369、5,824,524、5,850,014和6,265,640,将其全部通过引用以其全文结合在此。
5.创建用于位点特异性DNA整合的位点的基因
这包括引入可以在FLP/FRT系统中使用的FRT位点和/或可以在Cre/Loxp系统中使用的Lox位点。例如,参见Lyznik等人,(2003)Plant Cell Rep[植物细胞报告]21:925-932和WO 99/25821,将这些文献通过引用以其全文结合在此。可以使用的其他系统包括噬菌体Mu的Gin重组酶(Maeser等人,1991;Vicki Chandler,The Maize Handbook[玉米手册]第118章(施普林格出版社,1994))、大肠杆菌的Pin重组酶(Enomoto等人,1983)和pSR1质粒的R/RS系统(Araki等人,1992),将这些文献通过引用以其全文结合在此。
6.影响非生物胁迫抗性(包括但不限于开花、穗和种子发育、提高氮利用效率、改变氮响应性、抗旱性或耐旱性、抗寒性或耐寒性、抗盐性或耐盐性)和胁迫下产量提高的基因。例如,参见WO 00/73475,其中通过改变苹果酸盐而改变水利用效率;描述基因(包括CBF基因)和转录因子(这些基因和转录因子有效于减轻冻害、高盐度和干旱对植物的负面影响,并对植物表型赋予其他积极影响)的美国专利号5,892,009、美国专利号5,965,705、美国专利号5,929,305、美国专利号5,891,859、美国专利号6,417,428、美国专利号6,664,446、美国专利号6,706,866、美国专利号6,717,034、WO 2000060089、WO 2001026459、WO2001035725、WO 2001034726、WO 2001035727、WO 2001036444、WO 2001036597、WO2001036598、WO 2002015675、WO 2002017430、WO 2002077185、WO 2002079403、WO2003013227、WO 2003013228、WO 2003014327、WO 2004031349、WO 2004076638、WO9809521、和WO 9938977;美国专利申请公开号2004/0148654和WO 01/36596,其中植物中的脱落酸被改变,导致植物表型改进,如产量提高和/或对非生物胁迫的耐受性提高;WO2000/006341、WO 04/090143、美国专利申请序列号10/817483和美国专利号6,992,237,其中细胞分裂素表达被改变,产生胁迫耐受性(如耐旱性)提高和/或产量提高的植物,将这些文献通过引用以其全文结合在此。还参见WO 0202776、WO 2003052063、JP 2002281975、美国专利号6,084,153、WO 0164898、美国专利号6,177,275和美国专利号6,107,547(氮利用率的提高和氮响应性的改变),将这些文献通过引用以其全文结合在此。关于乙烯改变,参见美国专利申请公开号2004/0128719、美国专利申请公开号2003/0166197和WO200032761,将这些文献通过引用以其全文结合在此。关于非生物胁迫的植物转录因子或转录调节子,参见例如美国专利申请公开号2004/0098764或美国专利申请公开号2004/0078852,将这些文献通过引用以其全文结合在此。
影响植物生长和农艺性状(如产量、开花、植物生长和/或植物结构)的其他基因和转录因子可被引入或渗入到植物中,参见例如WO 97/49811(LHY)、WO 98/56918(ESD4)、WO97/10339和美国专利号6,573,430(TFL)、美国专利号6,713,663(FT)、WO 96/14414(CON)、WO 96/38560、WO 01/21822(VRN1)、WO 00/44918(VRN2)、WO 99/49064(GI)、WO 00/46358(FRI)、WO 97/29123、美国专利号6,794,560、美国专利号6,307,126(GAI)、WO 99/09174(D8和Rht)以及WO 2004076638和WO 2004031349(转录因子),将这些文献通过引用以其全文结合在此。
“RNAi”是指用于降低基因表达的一系列相关技术(参见例如美国专利号6,506,559)。由其他名称所指的一些技术现在据认为基于相同的机制,不过在文献中被给予不同的名称。这些名称包括“反义抑制”,即产生能够抑制目标蛋白质的表达的反义RNA转录物,以及“共抑制”或“正义抑制”,指产生能够抑制相同的或者实质上相似的外来基因或者内源基因的表达的正义RNA转录物(美国专利号5,231,020,将其通过引用以其全文结合在此)。这种技术依赖于使用能导致积累这样的双链RNA的构建体,该双链RNA中的一条链与要沉默的靶基因互补。本文公开的双生病毒调节序列可用来驱动将会产生RNA干扰的构建体(包括微RNA和siRNA)的表达。
可对本文公开的分离的调节元件序列进行修饰,以提供所述异源核苷酸序列的一系列水平表达。因此,可利用完整调节元件区域的一部分,且驱动目的核苷酸序列表达的能力得到保持。应认识到,可采用不同方式缺失掉启动子序列的一部分,来改变mRNA的表达水平。可降低mRNA表达水平,或者可替代地,如果例如在截短过程中有负调节元件(对于阻遏子)被去除的话,则由于启动子缺失,可以增加表达。通常,分离的启动子序列的至少约20个核苷酸将用于驱动核苷酸序列的表达。
方便的终止区可获得自根癌农杆菌(A.tumefaciens)的Ti质粒,如章鱼碱合酶和胭脂碱合酶终止区。还参见Guerineau等人,(1991)Mol.Gen.Genet.[分子遗传学和普通遗传学]262:141-144;Proudfoot,(1991)Cell[细胞]64:671-674;Sanfacon等人,(1991)Genes Dev.[基因与发育]5:141-149;Mogen等人,(1990)Plant Cell[植物细胞]2:1261-1272;Munroe等人,(1990)Gene[基因]91:151-158;Ballas等人,(1989)Nucleic AcidsRes.[核酸研究]17:7891-7903;以及Joshi等人,(1987)Nucleic Acids Res.[核酸研究]15:9627-9639。
包含本文公开的序列的表达盒还可含有要共转化到该生物体中的基因的至少一个另外的核苷酸序列。可替代地,所述一个或多个另外的序列可以在另一表达盒中提供。
在适当的情况下,可以优化其表达待处于本公开的早期胚乳组织偏好性启动子序列控制下的核苷酸序列和任何另外的一个或多个核苷酸序列,以便在转化的植物中增加表达。也就是说,可使用植物偏好性密码子来合成这些核苷酸序列,从而改进表达。对于宿主偏好性密码子使用的讨论,参见,例如,Campbell和Gowri,(1990)Plant Physiol.[植物生理学]92:1-11。用于合成植物优选基因的方法是本技术领域已知的。参见例如,美国专利号5,380,831、5,436,391和Murray等人,(1989)Nucleic Acids Res.[核酸研究]17:477-498。
已知另外的序列修饰增强细胞宿主中的基因表达。这些包括:消除编码假的聚腺苷酸化信号和外显子-内含子剪接位点信号的序列、转座子样重复序列、及可能不利于基因表达的其他经充分表征的序列。可以将异源核苷酸序列的G-C含量调整至给定细胞宿主的平均水平,所述平均水平通过参考该宿主细胞中表达的已知基因来计算。当可能时,修饰序列以避免出现预测的发夹二级mRNA结构。
表达盒可以另外包含5′前导序列。这些前导序列可以起到增强翻译的作用。翻译前导序列是本领域已知的并且包括但不限于:小核糖核酸病毒前导序列,例如,EMCV前导序列(脑心肌炎5’非编码区域)(Elroy-Stein等人,(1989)Proc.Nat.Acad.Sci.USA[美国科学院院报]86:6126-6130);马铃薯Y病毒组前导序列,例如,TEV前导序列(烟草蚀纹病毒)(Gallie等人,(1986)Gene[基因]154:9-20);MDMV前导序列(玉米矮花叶病毒)、人类免疫球蛋白重链结合蛋白(BiP)(Macejak等人,(1991)Nature[自然]353:90-94);来自苜蓿花叶病病毒的外壳蛋白mRNA的非翻译前导序列(AMV RNA 4)(Jobling等人,(1987)Nature[自然]325:622-625);烟草花叶病毒前导序列(TMV)(Gallie等人,(1989)Molecular Biology ofRNA[RNA的分子生物学],第237-256页);和玉米褪绿斑驳病毒前导序列(MCMV)(Lommel等人,(1991)Virology[病毒学]81:382-385)。还参见,Della-Cioppa等人,(1987)PlantPhysiology[植物生理学]84:965-968,将该文献通过引用以其全文结合在此。也可采用已知的用来提高mRNA稳定性的方法,例如内含子,如玉米泛素内含子(Christensen和Quail,(1996)Transgenic Res.[转基因研究]5:213-218;Christensen等人,(1992)PlantMolecular Biology[植物分子生物学]18:675-689)或者玉米AdhI内含子(Kyozuka等人,(1991)Mol.Gen.Genet.[分子遗传学和普通遗传学]228:40-48;Kyozuka等人,(1990)Maydica[美迪卡杂志]35:353-357)等等。
在制备表达盒时,可以操作各种DNA片段,以提供处于适当方向以及合适时,处于适当阅读框中的DNA序列。为此,可使用衔接子(adapter)或接头以连接DNA片段,或可以涉及其他操纵以提供方便的限制位点、去除多余的DNA、去除限制位点等。出于这个目的,可以涉及体外诱变、引物修复、限制性酶切(restriction)、退火、再取代(例如转换和颠换)。
还可以在表达盒中包含报道基因或者选择性标记基因。本领域已知的合适报道基因的实例可以见于例如以下文献:Jefferson等人,(1991)Plant Molecular BiologyManual[植物分子生物手册],Gelvin等人编辑(Kluwer Academic Publishers[克吕韦尔学术出版集团]),第1-33页;DeWet等人,(1987)Mol.Cell.Biol.[分子细胞生物学]7:725-737;Goff等人,(1990)EMBO J.[欧洲分子生物学学会杂志]9:2517-2522;Kain等人,(1995)Bio Techniques[生物技术]19:650-655;和Chiu等人,(1996)Current Biology[当代生物学]6:325-330。
用于选择转化细胞或者组织的选择性标记基因可以包括赋予抗生素抗性或除草剂抗性的基因。合适的选择性标记基因的实例包括但不限于编码对以下具有抗性的基因:氯霉素(Herrera Estrella等人,(1983)EMBO J.[欧洲分子生物学杂志]2:987-992);甲氨蝶呤(Herrera Estrella等人,(1983)Nature[自然]303:209-213;Meijer等人,(1991)Plant Mol.Biol.[植物分子生物学]16:807-820);潮霉素(Waldron等人,(1985)PlantMol.Biol.[植物分子生物学]5:103-108和Zhijian等人,(1995)Plant Science[植物科学]108:219-227);链霉素(Jones等人,(1987)Mol.Gen.Genet.[分子遗传学和普通遗传学]210:86-91);壮观霉素(Bretagne-Sagnard等人,(1996)Transgenic Res.[转基因研究]5:131-137);博莱霉素(Hille等人,(1990)Plant Mol.Biol.[植物分子生物学]7:171-176);磺酰胺(Guerineau等人(1990)Plant Mol.Biol.[植物分子生物学]15:127-36);溴苯腈(Stalker等人,(1988)Science[科学]242:419-423);草甘膦(Shaw等人,(1986)Science[科学]233:478-481和美国专利申请序列号10/004,357和10/427,692);草丁膦(DeBlock等人,(1987)EMBO J.[欧洲分子生物学杂志]6:2513-2518),将这些文献通过引用以其全文结合在此。
其他可在转基因事件的恢复中发挥实用的基因将包括但不限于以下实例,如:GUS(β-葡糖醛酸酶;Jefferson,(1987)Plant Mol.Biol.Rep.[植物分子生物学报告]5:387)、GFP(绿色荧光蛋白;Chalfie等人,(1994)Science[科学]263:802)、荧光素酶(Riggs等人,(1987)Nucleic Acids Res.[核酸研究]15(19):8115和Luehrsen等人,(1992)MethodsEnzymol.[酶学方法]216:397-414)以及编码用于花青素生产的玉米基因(Ludwig等人,(1990)Science[科学]247:449)。
包含可操作地连接至目的核苷酸序列的SEQ ID NO:1-13的序列的表达盒可用于转化任何植物。以此方式,可以获得基因修饰的植物、植物细胞、植物组织、种子、根等。
本文公开的某些方法涉及将多核苷酸引入到植物中。如本文所用,“引入”旨在表示将多核苷酸呈送给植物,以这样的方式使得序列进入植物细胞的内部。本公开的方法不取决于将序列引入植物中的具体方法,只要多核苷酸进入植物的至少一个细胞的内部即可。将多核苷酸引入植物的方法是本领域已知的,所述方法包括但不限于稳定转化法、瞬时转化法和病毒介导法。
“稳定转化”是其中引入到植物中的多核苷酸构建体整合到植物的基因组中并能由其子代继承的转化。“瞬时转化”意指将多核苷酸引入植物中并且它不整合到该植物的基因组中。
转化方案以及将核苷酸序列引入植物中的方案,可根据要靶向转化的植物或者植物细胞的类型(即单子叶植物或者双子叶植物)而变化。将核苷酸序列引入植物细胞并随后插入植物基因组的合适方法包括显微注射(Crossway等人,(1986)Biotechniques[生物技术]4:320-334)、电穿孔(Riggs等人,(1986)Proc.Natl.Acad.Sci.USA[美国科学院院报]83:5602-5606)、农杆菌介导的转化(Townsend等人,美国专利号5,563,055和Zhao等人,美国专利号5,981,840)、直接基因转移(Paszkowski等人,(1984)EMBO J.[欧洲分子生物学杂志]3:2717-2722)和弹道粒子加速(参见,例如,美国专利号4,945,050、5,879,918、5,886,244、5,932,782;Tomes等人,(1995)在Plant Cell,Tissue,and Organ Culture:Fundamental Methods[植物细胞、组织和器官培养:基本方法]中,Gamborg和Phillips编辑(施普林格出版社,柏林);McCabe等人,(1988)Biotechnology[生物技术]6:923-926)以及Lecl转化(WO 00/28058)。还参见Weissinger等人,(1988)Ann.Rev.Genet.[遗传学年鉴]22:421-477;Sanford等人,(1987)Particulate Science and Technology[微粒科学与技术]5:27-37(洋葱);Christou等人,(1988)Plant Physiol.[植物生理学]87:671-674(大豆);McCabe等人,(1988)Bio/Technology[生物/技术]6:923-926(大豆);Fiher和McMullen,(1991)In Vitro Cell Dev.Biol.[体外细胞与发育生物学]27P:175-182(大豆);Singh等人,(1998)Theor.Appl.Genet.[理论与应用遗传学]96:319-324(大豆);Datta等人,(1990)Biotechnology[生物技术]8:736-740(稻);Klein等人,(1988)Proc.Natl.Acad.Sci.USA[美国科学院院报]85:4305-4309(玉米);Klein等人,(1988)Biotechnology[生物技术]6:559-563(玉米);美国专利号5,240,855、5,322,783、和5,324,646;Klein等人,(1988)Plant Physiol.[植物生理学]91:440-444(玉米);Fromm等人,(1990)Biotechnology[生物技术]8:833-839(玉米);Hooykaas-Van Slogteren等人,(1984)Nature[自然](伦敦)311:763-764;美国专利号5,736,369(谷类);Bytebier等人,(1987)Proc.Natl.Acad.Sci.USA[美国科学院院报]84:5345-5349(百合科);De Wet等人,(1985)在The Experimental Manipulation of Ovule Tissues[卵巢组织的实验操作]中,Chapman等人编辑(纽约朗文出版社(Longman,New York)),第197-209页(花粉);Kaeppler等人,(1990)Plant Cell Reports[植物细胞报告]9:415-418和Kaeppler等人,(1992)Theor.Appl.Genet.[理论与应用遗传学]84:560-566(晶须介导的转化);D′Halluin等人,(1992)Plant Cell[植物细胞]4:1495-1505(电穿孔);Li等人,(1993)Plant Cell Reports[植物细胞报告]12:250-255以及Christou和Ford(1995)Annals of Botany[植物学年鉴]75:407-413(稻);Osjoda等人,(1996)Nature Biotechnology[自然生物技术]14:745-750(经由根癌农杆菌的玉米)。
在一个实施例中,可以使用各种瞬时转化方法将包含所公开的序列SEQ ID NO:1-13的DNA构建体提供给植物。这类瞬时转化方法包括但不限于病毒载体系统,和以阻止DNA后续释放的方式沉淀多核苷酸。因此,可以发生来自粒子结合的DNA的转录,但是其被释放以整合到基因组中的频率大大降低。此类方法包括使用涂覆有聚乙亚胺(PEI;西格玛公司#P3143)的颗粒。
在其他实施例中,可以通过使植物与病毒或病毒核酸接触而将多核苷酸引入植物中。通常,这类方法涉及将本公开的多核苷酸构建体掺入病毒DNA或RNA分子内。涉及病毒DNA或RNA分子、用于将多核苷酸引入植物中并表达其中所编码的蛋白质的方法是本领域已知的。参见例如,美国专利号5,889,191、5,889,190、5,866,785、5,589,367、5,316,931和Porta等人,(1996)Molecular Biotechnology[分子生物技术]5:209-221。
本领域已知用于在植物基因组中的特定位置靶向插入多核苷酸的方法。在一个实施例中,使用位点特异性重组系统实现多核苷酸在希望的基因组位置的插入。参见例如,WO99/25821、WO 99/25854、WO 99/25840、WO 99/25855和WO 99/25853,将其全部通过引用以其整体结合在此。简言之,可以在转移盒中包含本公开的多核苷酸,所述转移盒侧接两个不相同的重组位点。将该转移盒引入植物中,该植物已经将靶位点稳定地掺入其基因组中,该靶位点侧翼为与转移盒的位点相对应的两个不相同的重组位点。提供适当的重组酶,并且将转移盒整合到靶位点。因此,目的多核苷酸整合在植物基因组中的特定染色体位置。
已经转化的细胞可以按照常规方法生长为植物。参见例如,McCormick等人,(1986)Plant Cell Reports[植物细胞报告]5:81-84。然后可以培育这些植株,并用相同的经转化的株系或者不同的株系进行授粉,并鉴定出具有所希望的表型特征的表达的所得后代。可以生长两代或两代以上以确保希望的表型特征的表达稳定保持并且遗传,然后收获种子以确保希望的表型特征已经实现表达。以此方式,本公开提供了其基因组中稳定掺入了核苷酸构建体(例如,包含SEQ ID NO:1-13之一的表达盒)的转化种子(也称为“转基因种子”)。
有各种各样的方法用于从植物组织再生植物。特定的再生方法将取决于起始植物组织和待再生的特定植物种类。来自单一植物原生质体转化体或来自各种转化的外植体的植物的再生、发育和培养是本领域所熟知的(Weissbach和Weissbach(编辑),(1988)在Methods for Plant Molecular Biology[植物分子生物学方法]中,学术出版社有限公司,圣地牙哥,加利福尼亚州(Academic Press,Inc.,San Diego,Calif.))。这种再生和生长过程通常包括如下步骤:选择经转化的细胞,通过胚性发育的通常阶段、通过生根苗阶段培养那些个体化细胞。以同样的方式再生转基因胚和种子。然后将所得的转基因生根芽苗种植在合适的植物生长培养基(如土壤)中。优选地,再生植物自花授粉以提供纯合的转基因植物。或者,将得自再生植物的花粉与农学上重要的品系的产生种子的植物进行杂交。相反地,将来自这些重要品系的植物的花粉用于给再生植物授粉。使用本领域技术人员熟知的方法培养含有所希望的多核苷酸的各实施例的转基因植物。
这些实施例提供了用于筛选化合物的组合物,所述化合物调节植物内的表达。载体、细胞和植物可用于SEQ ID NO:1-13的双生病毒调节元件序列的激动剂和拮抗剂的候选分子。例如,可以将报道基因与双生病毒调节元件序列可操作连接并作为转基因在植物中表达。添加待检验的化合物并测量报道基因的表达以确定其对启动子活性的影响。
在一个实施例中,可以使用CRISPR/Cas9系统通过基因组编辑来将双生病毒调节元件序列SEQ ID NO:1-13编辑或插入到植物中。
CRISPR基因座(规律间隔成簇短回文重复序列)(又称SPIDR--间隔区散在同向重复序列)构成最近描述的DNA基因座的家族。CRISPR基因座由部分回文的短而高度保守的DNA重复序列(通常为24bp至40bp,重复从1至140次,也称为CRISPR重复序列)组成。重复序列(通常具有物种特异性)由恒定长度的可变序列(通常为20至58,依赖于CRISPR基因座(WO2007/025097,2007年3月1日公开))间隔。
Cas基因涉及通常与侧翼CRISPR基因座偶合、相关或相近或相邻的基因。术语“Cas基因”、“CRISPR相关的(Cas)基因”在本文中可互换地使用。(Haft等人(2005)Computational Biology[计算生物学],PLoS Comput Biol[科学公共图书馆计算生物学]1(6):e60.doi:10.1371/journal.pcbi.0010060)。如其中所述,除了四个先前已知的基因家族之外,还描述了41个CRISPR相关的(Cas)基因家族。它表明CRISPR系统属于不同类别,具有不同的重复模式、基因的组和种类范围。在给定的CRISPR基因座处的Cas基因的数目可以在物种之间变化。
Cas内切核酸酶涉及由Cas基因编码的Cas蛋白质,其中所述Cas蛋白质能够将双链断裂引入DNA靶序列中。Cas内切核酸酶由指导多核苷酸指导以识别并任选地在特定靶位点向细胞基因组中引入双链断裂(U.S.2015/0082478)。指导多核苷酸/Cas内切核酸酶系统包括能够将双链断裂引入DNA靶序列的Cas内切核酸酶和指导多核苷酸的复合物。Cas内切核酸酶在基因组靶位点附近解开DNA双链体,并且如果正确的前间区序列邻近基序(PAM)大致定向在靶序列的3’端,则当通过指导RNA识别靶序列时,切割两条DNA链。Cas内切核酸酶可以通过本领域已知的任何方法(例如但不限于瞬时引入方法、转染和/或局部应用)直接引入细胞。
如在此所用,术语“指导RNA”涉及两个RNA分子,即包含可变靶向结构域的crRNA(CRISPR RNA)和tracrRNA的合成性融合。在一个实施例中,该指导RNA包含12至30个核苷酸序列的可变靶向结构域和可以与Cas内切核酸酶相互作用的RNA片段。
如本文所用,术语“指导多核苷酸”涉及可以与Cas内切核酸酶形成复合物的多核苷酸序列,并且使得Cas内切核酸酶能够识别并任选地切割DNA靶位点(U.S.2015/0082478)。指导多核苷酸可以是单分子或双分子。指导多核苷酸序列可以是RNA序列、DNA序列或其组合(RNA-DNA组合序列)。任选地,指导多核苷酸可以包含至少一种核苷酸、磷酸二酯键或连接修饰,例如但不限于锁核酸(LNA)、5-甲基dC、2,6-二氨基嘌呤、2′-氟代A、2′-氟代U、2′-O-甲基RNA、硫代磷酸酯键、与胆固醇分子的连接、与聚乙二醇分子的连接、与间隔子18(六乙二醇链)分子的连接、或导致环化的5′至3′共价连接。仅包含核糖核酸的指导多核苷酸也被称为“指导RNA”。
术语“可变靶向结构域”或“VT结构域”在此可互换地使用,并且包括与双链DNA靶位点的一个链(核苷酸序列)互补的核苷酸序列。第一核苷酸序列结构域(VT结构域)与靶序列之间的互补%可以为至少50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%。可变靶向结构域可以是至少12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30个核苷酸长度。在一些实施例中,可变靶向结构域包含12至30个核苷酸的连续延伸。可变靶向结构域可以由DNA序列、RNA序列、修饰的DNA序列、修饰的RNA序列或其任何组合构成。
术语指导多核苷酸的“Cas内切核酸酶识别结构域”或“CER结构域”在此可互换地使用,并且包括与Cas内切核酸酶多肽相互作用的核苷酸序列(例如指导多核苷酸的第二核苷酸序列结构域)。CER结构域可以由DNA序列、RNA序列、修饰的DNA序列、修饰的RNA序列(参见例如在此所述的修饰)或其任何组合构成。
连接单指导多核苷酸的cr核苷酸和tracr核苷酸的核苷酸序列可以包含RNA序列、DNA序列或RNA-DNA组合序列。在一个实施例中,连接单指导多核苷酸的cr核苷酸和tracr核苷酸的核苷酸序列可以是至少3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或100个核苷酸的长度。在另一个实施例中,连接单指导多核苷酸的cr核苷酸和tracr核苷酸的核苷酸序列可以包含四核苷酸环序列,例如但不限于GAAA四核苷酸环序列。
本说明书中提到的所有出版物、专利和专利申请指示了本公开所属领域技术人员的水平。将所有出版物、专利和专利申请通过引用结合在此,其程度就像明确且单独地指出每一个单独的出版物、专利或专利申请通过引用结合一样。
对本公开的不同所示实施例的上述描述并不旨在是详尽的或者限制范围于所公开的精确形式。虽然为了说明目的而在此描述了具体实施例和实例,但是在本公开范围内,如相关领域的技术人员将认识到的,不同的等效修饰是可能的。本文提供的教导可以应用于除了上述实例之外的其他目的。根据上述教导,许多修改和变化是可能的,因此它们在所附权利要求书的范围内。
可以根据上述详细描述进行这些改变和其他改变。通常,在以下权利要求书中,所使用的术语不应被解释为将范围限制于说明书和权利要求书中公开的具体实施例。
就使用的数字(例如量、温度、浓度等)而言,已努力确保其准确性,但仍应允许有一些实验误差和偏差。除非另外指明,份数是重量份,分子量是平均分子量,温度是摄氏度,并且压力是或接近大气压。
实验
实例1:双生病毒调节元件序列
双生病毒调节元件序列(SEQ ID NO:1-13)是通过在GenBank Genomes中检索已测序并归属于双生病毒家族的病毒基因组获得的。对豆黄矮病毒(BYDV)、甜菜轻度卷顶病毒(BMTV)、东非木薯花叶(喀麦隆)病毒(EACMCV)、蜀葵皱叶病毒(HLCV)、辣根卷顶病毒(HCTV)、大翼豆属(Macroptilium)黄花叶佛罗里达病毒(MYMFV)、甘蔗条纹(埃及)病毒(SSEV)、甘蔗条纹病毒(SSV)、番茄卷曲矮化病毒(南非)(TCSVSA)和小麦矮病毒(WDWV)基因组的分析揭示了基因间隔区,其靶向用于对控制植物细胞中基因表达的调控元件的功能分析。选择来自每个序列的一个序列以在植物中被合成并测试。所述序列如SEQ ID NO:1-13所示。整个序列被称为全长(FL)调节元件(BYDV FL、BMTV FL、EACMCV FL、HLCV FL、HCTVFL、MYMFV FL、SSEV FL、SSV FL、TCSVSA FL和WDWV FL)。
实例2:BYDV FL调节元件的表达分析
双生病毒调节元件可操作地连接至ADH1内含子1(ADH1内含子1)和β-葡糖醛酸酶(GUS)基因以理解植物中由每种双生病毒调节元件所指导的表达模式。将ADH1内含子1包括在内的目的是提高表达,因为已显示在谷类植物细胞中,存在一些5′近端内含子可增强转基因的表达(参见Callis等人(1987)Genes and Development[基因与发育]1:1183-1200;Kyozuka等人(1990)Maydica[美迪卡杂志]35:353-357)。为了分析每种调节元件,通过组织化学染色组织而重新产生了十个事件以获得GUS活性。在V5-V6期测定叶和根材料,并且在R1-R2期测定茎、雄花穗和花粉。由植株上的围绕叶(collared leaves)数目确定玉米发育期间的V期或营养生长期。因此,V5期的植株有5片完全围绕的叶子。一旦植株开花,R期或生殖期就确定了。通过外壳外部出现花丝而记下R1期,而R2是当花丝开始变干时。
表2突出了玉米植物中的双生病毒调节元件定向表达。所有元件都在多于一种组织中定向表达;然而,表达水平通常低于Ubi-1对照。来自玉蜀黍的Ubi-1启动子和内含子与用于分析中的比较的GUS基因可操作地连接。这种充分表征的调节组合驱动在玉米的大多数组织中的强表达。在这些研究中,在所有组织中和对于双生病毒调节元件所描述的整个发育阶段,表达都很强烈。
表2:玉米植物中的双生病毒启动子表达模式
Figure BDA0001731550970000481
Figure BDA0001731550970000491
+=在组织化学染色的组织中观察到表达
-=低表达或未检测到表达
使用双生病毒调节元件的子集构建第二组表达载体,其中每个元件与来自花椰菜花叶病毒35S启动子的3个拷贝的转录增强子、玉米醇脱氢酶基因1的第一内含子(ADH1内含子1)和杀昆虫基因(IG1)可操作地连接。该元件亚组包括BYDV FL、HLCV FL、MYMFV FL、SSVFL、TCSVSA FL和WDWV FL。在第三表达载体中,将双生病毒调节元件的同一子集与来自紫茉莉属花叶病毒(MMV)启动子的2或3个拷贝的转录增强子、玉米醇脱氢酶基因1的第一内含子(ADH1内含子1)和IG1杀昆虫基因可操作地连接。增强子的目的是增加由双生病毒调节元件指导的表达并确定一种增强子是否比其他增强子表现更好。使用与IG1基因可操作地连接的来自玉蜀黍的Ubi-l启动子和内含子进行比较。
使用农杆菌方案(详述于实例3中)创建在每个载体超过10个事件中的稳定转化的玉米植物,以允许表征每个双生病毒调节元件构建体的表达。植物在温室条件下生长至V5-V6期,并取样叶片材料用于酶联免疫吸附测定(ELISA)和植物对昆虫的功效测定(表3和表4)。昆虫摄食性叶片材料提供对表达的快速评估,因为需要足够的蛋白质水平以保护样品免于昆虫侵害。表达不充分将导致样品被摄食和毁损。
当确定茎和花粉表达时,允许植物生长至R1-R2期(表3)。在发育的穗上评估昆虫摄食,并且一旦植物和穗达到成熟时确定籽粒表达。
结果表明,添加增强子将双生病毒调节元件的性能提高到与Ubi-1及其内含子在基因表达和植物功效方面更相似的水平(表3和表4)。唯一的例外是表达水平保持较低的花粉和籽粒。该2xMMV增强子通常比(3x)35S增强子表现更好。
表3:双生病毒调节元件指导的IG1在玉米植物中的表达。
Figure BDA0001731550970000501
Figure BDA0001731550970000511
表达数据以Ubi-1表达的百分比表示:n.d.表示没有数据可用。
表4:玉米中的增强子/启动子表达和功效比较
Figure BDA0001731550970000512
Figure BDA0001731550970000521
由0-5等级表示的数据,其中0表示非常低的表达或功效,并且5表示高表达或植物对抗昆虫摄食的功效。
实例3:农杆菌介导的玉米转化和转基因植物的再生
为了用本公开的调节元件序列进行农杆菌介导的玉米转化,采用了Zhao提出的方法(参见美国专利号5,981,840和PCT专利公开WO 98/32326)。简而言之,从玉米中分离未成熟的胚,并且在特定条件下将胚与农杆菌悬浮液接触,借此该细菌能够将本公开的调节元件序列转移到至少一个未成熟的胚的至少一个细胞中(步骤1:侵染步骤)。在该步骤中,将未成熟的胚浸泡在农杆菌悬液中,引发接种。使这些胚与农杆菌共培养一段时间(步骤2:共培养步骤)。在侵染步骤后,可以在固体培养基上培养未成熟的胚。在该共培养期之后,进行任选的“静置”步骤。在该静置步骤中,将这些胚在已知抑制农杆菌生长的至少一种抗生素的存在下孵育,而不添加植物转化子的选择剂(步骤3:静置步骤)。接着,在含有选择剂的培养基上培养经接种的胚,并且回收生长的经转化的愈伤组织(步骤4:选择步骤)。在转移到温室之前,从愈伤组织中再生小植株(步骤5:再生步骤)。
序列表
<110> 先锋良种国际有限公司(Pioneer Hi-Bred International, Inc.)
E.I. 内穆尔杜邦公司(E.I. du Pont De Nemours and Company)
<120> 植物调节元件及其使用方法
<130> 5307WOPCT
<160> 14
<170> PatentIn 3.5版
<210> 1
<211> 187
<212> DNA
<213> 紫茉莉属花叶病毒
<400> 1
ccactaaaac attgctttgt caaaagctaa aaaagatgat gcccgacagc cacttgtgtg 60
aagcatgaga agccggtccc tccactaaga aaattagtga agcatcttcc agtggtccct 120
ccactcacag ctcaatcagt gagcaacagg acgaaggaaa tgacgtaagc catgacgtct 180
aatccca 187
<210> 2
<211> 384
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 2
ccactaaaac attgctttgt caaaagctaa aaaagatgat gcccgacagc cacttgtgtg 60
aagcatgaga agccggtccc tccactaaga aaattagtga agcatcttcc agtggtccct 120
ccactcacag ctcaatcagt gagcaacagg acgaaggaaa tgacgtaagc catgacgtct 180
aatcccactc gatcgaccca ctaaaacatt gctttgtcaa aagctaaaaa agatgatgcc 240
cgacagccac ttgtgtgaag catgagaagc cggtccctcc actaagaaaa ttagtgaagc 300
atcttccagt ggtccctcca ctcacagctc aatcagtgag caacaggacg aaggaaatga 360
cgtaagccat gacgtctaat ccca 384
<210> 3
<211> 573
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 3
ccactaaaac attgctttgt caaaagctaa aaaagatgat gcccgacagc cacttgtgtg 60
aagcatgaga agccggtccc tccactaaga aaattagtga agcatcttcc agtggtccct 120
ccactcacag ctcaatcagt gagcaacagg acgaaggaaa tgacgtaagc catgacgtct 180
aatcccactc gagccactaa aacattgctt tgtcaaaagc taaaaaagat gatgcccgac 240
agccacttgt gtgaagcatg agaagccggt ccctccacta agaaaattag tgaagcatct 300
tccagtggtc cctccactca cagctcaatc agtgagcaac aggacgaagg aaatgacgta 360
agccatgacg tctaatccca gtcgacccac taaaacattg ctttgtcaaa agctaaaaaa 420
gatgatgccc gacagccact tgtgtgaagc atgagaagcc ggtccctcca ctaagaaaat 480
tagtgaagca tcttccagtg gtccctccac tcacagctca atcagtgagc aacaggacga 540
aggaaatgac gtaagccatg acgtctaatc cca 573
<210> 4
<211> 259
<212> DNA
<213> 豆黄矮病毒
<400> 4
tgtgaacacc tttaacccta gtgggcggga acttttctac tttaaatctg gaccgctcgt 60
gctaaagcac tcgcgataag gtggggccac gccggtaata ttaaaattcg gcgtgggccc 120
cccttgtcgc aagacttcgt ctttaagtaa atgacgtcat tttccactaa ctacttaaat 180
taccaaaatg cccttgcctc catgcctcca cgccggttat aagatagagt ttgaggcaac 240
ccctcggagt cacaacaac 259
<210> 5
<211> 310
<212> DNA
<213> 甜菜轻度卷顶病毒
<400> 5
gtagaaataa attcgaaact tacacagcaa gttttgaata gtaacaattc ctttacttta 60
caaaagtaaa aatatttgtc ggccacaact tttgactagt caaaacttat aagagaagga 120
aacttcctat gtaagtttcc aagtaccgac aacttataat gcgattacac gtgtcacgtt 180
tcaaatggga gggaaaaatt ttcggggcca tccggtaata ttattgcgga tggcccctgg 240
tggtatataa gggctcccat agcaccccat tcatacaagt ttacgagagc ccccaatagg 300
aatagtaacc 310
<210> 6
<211> 346
<212> DNA
<213> 东非木薯花叶(喀麦隆)病毒
<400> 6
ctaacgggat tccacatttt gacgcgcttc actacttcgt gacgaagtat ttaaagtcaa 60
aactcaatat ctagcattca aggcgcaact attattggcc gacaaacatg cgtgcgcggg 120
gaccactttc ttttgcggac gcggactatc atggggccca cctgcttttt tcgggcgcgg 180
ccatccggta atattaatcg gatggccgcc aatattcgca attcaaattt tgaatggaag 240
tctacctatt tacacatatg ccattggggg acatcatata tattgccccc cattccaccg 300
ttcccctgga gttttgagtg tcccccgata caaaacgaca gccaat 346
<210> 7
<211> 251
<212> DNA
<213> 蜀葵皱叶病毒
<400> 7
tttcaaattt caaattataa tgcgtacagc gcgcgttttg attggacagc aacgcgcgac 60
atgttcacgt ggcggggacc actttttttt ttcgcgccca ccggtaatat tagaacggtg 120
ggcgctatgg gggttcaaaa ttattgggat ttttaccaaa atgccatttg gtgtacaact 180
atatattgta ccccattaca ccgattgcag gcaccaaatg aaatccaagt caatcggtgt 240
acattgacca a 251
<210> 8
<211> 287
<212> DNA
<213> 辣根卷顶病毒
<400> 8
tttgtacata tataaatata tgtacaaata ccgtatttat ttaaaaggat aaagttaaac 60
ttgccgacca agtttcctag tggggtctac tttactttac tttataaaac cggtcgccgc 120
cacttttgac cagccaacaa ttttaagaca cgtggtagca tcgcggccat ccggtaatat 180
tagaacggat ggccgctatt ggccttaaga ggttttagta taaatgagac tccagaactc 240
cacgaatatg acaggattaa acctaaaacc tggagtccca gttcaaa 287
<210> 9
<211> 298
<212> DNA
<213> 大翼豆属黄花叶佛罗里达病毒
<400> 9
ggaaatttgg caacttggtg accaagttgc gacaaattaa atagacaatg cacgaacaaa 60
ttgattggtc agtcaaaaat ccttatcttt aatttaaatt aaagcgtcac gtgggtgtgt 120
acggaaagtg ggggggcggg gcgcggccat ccggtaatat tatttcggat ggccgccacg 180
tgtgcgaacg agattgaggg ttctattgag ggttctagta tttatagtac ccctttacac 240
caattgatag agcaagtttg agagagctca ttcggggtac actctcatat tttccaaa 298
<210> 10
<211> 249
<212> DNA
<213> 甘蔗条纹(埃及)病毒
<400> 10
cgatccaaag cgccttacta catacaggct ttaacgaaag acatagggcc ccaaagcggg 60
accgctcggc ctggtgggcc tcgcatgaga gagcgcggta atattatcgg tttgcgctct 120
ctcattgcgg cccaggaaaa atcctggccc ggcccaacta accttctata taagacggga 180
ggtcggattt cgattcgcaa acctgtagga gagttagttg agactcagaa tcagacctct 240
cgcccagcc 249
<210> 11
<211> 257
<212> DNA
<213> 甘蔗条纹病毒
<400> 11
tgcgatccaa agccggcgtt tcaaagcagc cggcaataaa gaacaaaacg cacccagaac 60
cgggacccgt cggcctggtg ggcctcgcat gaaaaagcgc tgtaatatta ttggtttgcg 120
ctttttcatt gcggcccaag aaaaaattcg gcccagccca tttagcactc ctataagagg 180
gcagggggag tgcgtgattc taaatcgcaa acctgtagga ggttggttga ggctccaaat 240
cagacactgc ccaaaga 257
<210> 12
<211> 256
<212> DNA
<213> 番茄卷曲矮化病毒(南非)
<400> 12
aagacaaaat agcagataac taagcgataa ggcgacattc tgattggtcg acataaaata 60
gtgcgtgggg accacttttt tttgggggca cggccatccg gtaatattaa tcggatggcc 120
gctttgggag tttgaatttt gaaataccaa ttaatttcac acaaattaca attgtgccat 180
tcagtaccca ctatatattg ggtaccgata taccaggaga atgcaatttg agagtcaatc 240
ggtacccatt gaccaa 256
<210> 13
<211> 378
<212> DNA
<213> 小麦矮病毒
<400> 13
ctaaggcatg gcacagattt ccaagtcaaa agtgtgataa atcaacatct tccacgaaag 60
tgatcagaaa agatgtggtc caaaagcctc cgcgcactca cgaaaagccg agtgcgcgtc 120
gggggccacc acgcggggta atattataac ccgcgtggag gccccccgac cacacaccga 180
acagggccca cacgatacgc tacgctcccg tgggaacaca agggccctgt tctcccgcca 240
aaacctgccc tatataaagc attggacaca ttgcatttgc agtgtgcaga attcacacct 300
ccacgcaggg tagagcatag agttttctgg cacaccccgt tttttcgcta aggacctgcc 360
ggacttctgt tcactacc 378
<210> 14
<211> 1710
<212> DNA
<213> 高粱(Sorghum bicolor)
<400> 14
ttttaagtat gaccaatttt taagtataaa cccctcacga ttggttattt ttttaagtat 60
aaccaatttt taagtataaa cccctcacca atttttaagt ataaacctag cgactaataa 120
acacaacttc ttgccaaagt gtgagcatca ccattggatc tgcgcccctc acgaacagtc 180
ttcgccgggg taaaattctc caaattaaag tcatcttgat gtccttgatc acctgtccat 240
aaggcccaat cccagctcca cgtatacttc tgataagatt gacatagtca cttgcatgcc 300
agtgtggaac tctggatgcc taggtcagag gctagtgact ggccttcccg gcatgctagc 360
atgtagcatg ccaaggatct ggctgctcca ggtttgttat gcctgacatc accataggga 420
tgagagcaag tataataata ggctgtaagc tttaaatgct caggtggaga aaaaaaggag 480
aggagaggag agagaaaagt gggctataag cttatagctg tgttagacat aagaatcaga 540
aacttcgtat gagagacagg tgagctatat attaataaca aagagctaac tattatatga 600
gtgaaccgag agaaggctgt aaaaaaactt acacaatcaa cgatcgacat tattattaac 660
cttgctctgt cttgcgagac ctctttgaca aagctacatc aatgccggcc aagtgccttg 720
ggatttggga atggcttctt tcctcccttc ctcggttgtc ccccaaggcc taggcttgcc 780
acgctgtatt cagtcgcagc cgcctttact tttgcccttt gtggaagttt tgtaataaat 840
ggtctgattc tatcttcgga tagatgaagc cggatgtttc atccattatc taaaaaaaag 900
ttggttgctt tgctgagcta agaaagtgta atccagagtg ctcgtaacgt attaatgtac 960
ataactatta tctaatataa atcttctttt gtcgcaaaaa aaggtcggcc catcagaaca 1020
aatgatcaat gtaaggccca aaatttgtgt ctcaaatgtc atttacgttt ccaagctaaa 1080
caaaaacaca ggattcatat aattttgctg gtggcttagg cttcgtccaa tagtgcttag 1140
tttaatttgt atatacctgc accatggtat tcgtctggcc ttggatcttg cgcatcaatt 1200
gcctatggac gatgatcgca gccacgccac attcattttt aatcgccatt tgcttgacac 1260
ccaatgcctc tgcaccactt gcgcacgcta cgcaccgtct gatacgccaa gatcccgagc 1320
taaaataaca cccaatcatc agatgaaaac aagcgcgagt gcgagccagc ccatggcagc 1380
gatcttggcc atttgcggag ccaactgaaa gccgtgcaca aaatattcga caccgtataa 1440
gggaaaacac tagttatacg aggtgggcaa taatccagat ctcggactct tcctaacccg 1500
gttcacatgc atagcatata tgatggccgg ccggggttca catgaacgcc atcccgtgcc 1560
ctagtgcact gatttcttaa tcccgggtct caactataaa tacccccttg gtgacaccgc 1620
gatcaaagca tcgcaaacaa gcctagctaa gagctctcta actacattag atagagtgat 1680
ctcgagaggt aactggcttg tgatcgagca 1710

Claims (18)

1.一种重组多核苷酸,其是SEQ ID NO: 7的多核苷酸。
2.如权利要求1所述的重组多核苷酸,其中所述重组多核苷酸连接于选自SEQ ID NO:1、2和3的多核苷酸序列。
3.一种DNA构建体,其包含异源可转录多核苷酸分子和调节元件多核苷酸,所述异源可转录多核苷酸分子与所述调节元件多核苷酸可操作地连接,其中所述调节元件多核苷酸是SEQ ID NO: 7的多核苷酸。
4.如权利要求3所述的DNA构建体,其进一步包含选自SEQ ID NO: 1、2和3的多核苷酸序列。
5.如权利要求3所述的DNA构建体,其中所述异源可转录多核苷酸分子是农学目的基因。
6.如权利要求5所述的DNA构建体,其中所述异源可转录多核苷酸分子是能够在植物中提供除草剂抗性的基因。
7.如权利要求5所述的DNA构建体,其中所述异源可转录多核苷酸分子是能够在植物中提供植物有害生物防治的基因。
8.一种生产细胞的方法,包括用如权利要求1或2所述的重组多核苷酸稳定转化异源细胞。
9.一种生产转基因植物或植物细胞的方法,包括用如权利要求3-7中任一项所述的DNA构建体稳定转化植物或植物细胞。
10.如权利要求9所述的方法,其中所述转基因植物为双子叶植物。
11.如权利要求9所述的方法,其中所述转基因植物为单子叶植物。
12.一种生产种子的方法,包括从如权利要求9所述的方法生产的转基因植物获得种子,其中所述种子包含所述DNA构建体。
13.一种用于在植物中表达多核苷酸的方法,所述方法包括将重组多核苷酸引入植物细胞,所述重组多核苷酸包含能够增加异源多核苷酸的表达的调节元件,其中所述调节元件由选自下组的核苷酸序列组成:
(a) SEQ ID NO: 7的核苷酸序列;和
(b) 与 (a) 互补的核苷酸序列。
14.如权利要求13所述的方法,其中所述异源多核苷酸编码参与器官发育、干细胞发育、细胞生长刺激、器官发生、体细胞胚胎发生启动和顶端分生组织发育的基因产物。
15.如权利要求13所述的方法,其中所述异源多核苷酸是所述植物的内源基因。
16.如权利要求13所述的方法,其中所述异源多核苷酸编码赋予耐旱性、耐寒性、除草剂耐受性、病原体抗性或昆虫抗性的基因产物。
17.如权利要求13所述的方法,其中所述植物是双子叶植物。
18.如权利要求13所述的方法,其中所述植物是单子叶植物。
CN201680079050.0A 2015-11-30 2016-11-22 植物调节元件及其使用方法 Active CN108473999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310010223.5A CN115786368A (zh) 2015-11-30 2016-11-22 植物调节元件及其使用方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562260819P 2015-11-30 2015-11-30
US62/260819 2015-11-30
PCT/US2016/063329 WO2017095698A1 (en) 2015-11-30 2016-11-22 Plant regulatory elements and methods of use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310010223.5A Division CN115786368A (zh) 2015-11-30 2016-11-22 植物调节元件及其使用方法

Publications (2)

Publication Number Publication Date
CN108473999A CN108473999A (zh) 2018-08-31
CN108473999B true CN108473999B (zh) 2022-12-23

Family

ID=57518009

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680079050.0A Active CN108473999B (zh) 2015-11-30 2016-11-22 植物调节元件及其使用方法
CN202310010223.5A Pending CN115786368A (zh) 2015-11-30 2016-11-22 植物调节元件及其使用方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310010223.5A Pending CN115786368A (zh) 2015-11-30 2016-11-22 植物调节元件及其使用方法

Country Status (7)

Country Link
US (2) US10995339B2 (zh)
EP (1) EP3384031A1 (zh)
CN (2) CN108473999B (zh)
AR (1) AR106857A1 (zh)
BR (1) BR112018011174A2 (zh)
CA (1) CA3004913A1 (zh)
WO (1) WO2017095698A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017095698A1 (en) * 2015-11-30 2017-06-08 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428187A (zh) * 2009-04-20 2012-04-25 孟山都技术公司 植物中的多重病毒抗性
CN103201389A (zh) * 2010-08-30 2013-07-10 陶氏益农公司 甘蔗杆状病毒(scbv)增强子及其在植物功能基因组中的用途
CN103282501A (zh) * 2010-11-04 2013-09-04 麦迪卡格公司 植物表达系统
CN103403170A (zh) * 2011-01-17 2013-11-20 菲利普莫里斯生产公司 植物中的蛋白质表达
CN103502455A (zh) * 2011-01-17 2014-01-08 菲利普莫里斯生产公司 用于在植物中核酸表达的载体
CN103740715A (zh) * 2013-12-25 2014-04-23 北京大北农科技集团股份有限公司 嵌合启动子及其用途

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5316931A (en) 1988-02-26 1994-05-31 Biosource Genetics Corp. Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
US5879918A (en) 1989-05-12 1999-03-09 Pioneer Hi-Bred International, Inc. Pretreatment of microprojectiles prior to using in a particle gun
US5240855A (en) 1989-05-12 1993-08-31 Pioneer Hi-Bred International, Inc. Particle gun
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
US5932782A (en) 1990-11-14 1999-08-03 Pioneer Hi-Bred International, Inc. Plant transformation method using agrobacterium species adhered to microprojectiles
TW261517B (zh) 1991-11-29 1995-11-01 Mitsubishi Shozi Kk
US5324646A (en) 1992-01-06 1994-06-28 Pioneer Hi-Bred International, Inc. Methods of regeneration of Medicago sativa and expressing foreign DNA in same
HUT70467A (en) 1992-07-27 1995-10-30 Pioneer Hi Bred Int An improved method of agrobactenium-mediated transformation of cultvred soyhean cells
IL108241A (en) 1992-12-30 2000-08-13 Biosource Genetics Corp Plant expression system comprising a defective tobamovirus replicon integrated into the plant chromosome and a helper virus
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5736369A (en) 1994-07-29 1998-04-07 Pioneer Hi-Bred International, Inc. Method for producing transgenic cereal plants
US6072050A (en) * 1996-06-11 2000-06-06 Pioneer Hi-Bred International, Inc. Synthetic promoters
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US6392121B1 (en) 1998-10-07 2002-05-21 Boyce Thompson Institute For Plant Research Gemini virus vectors for gene expression in plants
WO2000028058A2 (en) 1998-11-09 2000-05-18 Pioneer Hi-Bred International, Inc. Transcriptional activator lec1 nucleic acids, polypeptides and their uses
US6420547B1 (en) 1999-06-03 2002-07-16 University Of Kentucky Research Foundation Use of the full length transcript (FLt) from mirabilis mosaic caulimovirus to express chimeric genes in plants
EP2944695B1 (en) * 1999-12-16 2017-02-15 Monsanto Technology LLC Novel plant expression constructs
US7572950B2 (en) 2002-07-04 2009-08-11 Sungene Gmbh & Co. Kgaa Methods for obtaining pathogen resistance in plants
ATE368121T1 (de) * 2003-07-22 2007-08-15 Sungene Gmbh Expressionskassetten zur bidirektionalen transgenen expression von nukleinsäuren in pflanzen
US7151206B2 (en) * 2003-11-18 2006-12-19 Temasek Life Sciences Laboratory Arabidopsis argos, a novel gene involved in organ development
US20060021087A1 (en) 2004-04-09 2006-01-26 Baum James A Compositions and methods for control of insect infestations in plants
DK2341149T3 (en) 2005-08-26 2017-02-27 Dupont Nutrition Biosci Aps Use of CRISPR-associated genes (Cas)
CA2622660C (en) 2005-09-16 2017-11-07 Devgen Nv Transgenic plant-based methods for plant pests using rnai
US8809625B2 (en) 2008-01-17 2014-08-19 Pioneer Hi-Bred International, Inc. Compositions and methods for the suppression of target polynucleotides from Lygus
EP2379723A1 (en) * 2008-12-17 2011-10-26 BASF Plant Science GmbH Bidirectional promoter from z. mais
WO2014164775A1 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions to improve the spread of chemical signals in plants
BR112016003561B8 (pt) 2013-08-22 2022-11-01 Du Pont Método para a produção de uma modificação genética, método para a introdução de um polinucleotídeo de interesse no genoma de uma planta, método para a edição de um segundo gene em um genoma de planta e método para gerar uma planta de milho resistente ao glifosato
US10000766B2 (en) * 2015-07-17 2018-06-19 National Chung Hsing University Recombinant construct, recombinant microorganism, recombinant plant cell and method of providing plant with resistance against DNA virus and RNA virus
WO2017095698A1 (en) * 2015-11-30 2017-06-08 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
CN116334123A (zh) * 2016-06-24 2023-06-27 先锋国际良种公司 植物调节元件及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428187A (zh) * 2009-04-20 2012-04-25 孟山都技术公司 植物中的多重病毒抗性
CN103201389A (zh) * 2010-08-30 2013-07-10 陶氏益农公司 甘蔗杆状病毒(scbv)增强子及其在植物功能基因组中的用途
CN103282501A (zh) * 2010-11-04 2013-09-04 麦迪卡格公司 植物表达系统
CN103403170A (zh) * 2011-01-17 2013-11-20 菲利普莫里斯生产公司 植物中的蛋白质表达
CN103502455A (zh) * 2011-01-17 2014-01-08 菲利普莫里斯生产公司 用于在植物中核酸表达的载体
CN103740715A (zh) * 2013-12-25 2014-04-23 北京大北农科技集团股份有限公司 嵌合启动子及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A DNA replicon system for rapid high-level production of virus-like particles in plants";Zhong Huang et al.;《Biotechnol Bioeng》;20090701;第103卷(第4期);第1-16页 *
"Hollyhock leaf crumple virus-[Cairo] isolate HLCrV hollyhock segment A, complete genome,GenBank: AY036009.1";Idris,A.M. et al.;《GenBank》;20030307;第1-2页 *

Also Published As

Publication number Publication date
EP3384031A1 (en) 2018-10-10
WO2017095698A1 (en) 2017-06-08
US10995339B2 (en) 2021-05-04
CN115786368A (zh) 2023-03-14
CN108473999A (zh) 2018-08-31
US20210230618A1 (en) 2021-07-29
BR112018011174A2 (pt) 2018-11-21
US20180346924A1 (en) 2018-12-06
AR106857A1 (es) 2018-02-21
CA3004913A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6871252B2 (ja) 組織優先的プロモーターおよびその使用方法
US20200270622A1 (en) Tissue-preferred promoters and methods of use
US8466342B2 (en) Early endosperm promoter and methods of use
CN104093843B (zh) 胚珠体细胞特异性启动子及使用方法
CA2695811C (en) A plant regulatory region that directs transgene expression in the maternal and supporting tissue of maize ovules and pollinated kernels
US20150259696A1 (en) Guard cell promoters and uses thereof
CN109642237B (zh) 植物调节元件及其使用方法
US20210230618A1 (en) Plant regulatory elements and methods of use thereof
US20170218384A1 (en) Ubiquitin promoters and introns and methods of use
US11702668B2 (en) Plant regulatory elements and methods of use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant