CN108467263A - 一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法 - Google Patents

一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法 Download PDF

Info

Publication number
CN108467263A
CN108467263A CN201810225662.7A CN201810225662A CN108467263A CN 108467263 A CN108467263 A CN 108467263A CN 201810225662 A CN201810225662 A CN 201810225662A CN 108467263 A CN108467263 A CN 108467263A
Authority
CN
China
Prior art keywords
electric field
sodium titanate
bismuth
earth
titanate base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810225662.7A
Other languages
English (en)
Other versions
CN108467263B (zh
Inventor
李伟
郝继功
杜鹃
付鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaocheng University
Original Assignee
Liaocheng University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaocheng University filed Critical Liaocheng University
Priority to CN201810225662.7A priority Critical patent/CN108467263B/zh
Publication of CN108467263A publication Critical patent/CN108467263A/zh
Application granted granted Critical
Publication of CN108467263B publication Critical patent/CN108467263B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法,所述钛酸铋钠基陶瓷的化学通式为(1‑x‑y‑z)Bi0.5Na0.5TiO3x(BaTiO3/Bi0.5K0.5TiO3)‑y(SrTiO3/Na0.5K0.5NbO3)‑zM,其中,M为Sm、Pr、Er、Nd、Ho、Tb、Dy或Eu;x=0~30%,y=0~30%,z=0.1~2%。该钛酸铋钠基陶瓷通过极化电场同时调节压电性能和发光性能,可获得最高压电系数并耦合发光猝灭,在微机电、光电集成、传感器等领域具有广泛的应用前景,为研究钙钛矿材料中力‑电‑热性能耦合作用提供实验基础。

Description

一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电 性能和发光性能的电场调节方法
技术领域
本发明属于无铅压电材料和光电材料交叉领域,具体涉及一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法。
背景技术
压电铁电材料在信息的检测、转换、处理、显示和存储等方面具有广泛的应用,是重要的高技术功能材料。研究发现,钛酸铋钠基陶瓷在准同型相界附近获得了极大的压电性能d33或电致应变性能。该压电性能的获得一般是由于多相晶体结构共存或者极性纳米微区的作用。
发光材料是一种在红外激光激发下能够发射出可见光的材料,在防伪、红外探测、三位立体显示、短波长全固态激光器、生物标记等领域均有广泛的应用。由于特殊的电子层结构,稀土元素具有一般元素望尘莫及的光谱性质,稀土发光几乎覆盖了整个固体发光的的范畴。所以在各种稀土材料的发展中,稀土发光材料尤其引人注目。稀土发光材料是指以稀土作为发光中心或者敏化剂的发光材料。稀土发光材料具有许多特点:发光谱线窄,色纯度高,色彩鲜艳;光吸收能力强,转化效率高;发射波长分布区域宽;荧光寿命从纳秒可以跨越到毫秒;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光等的作用。随着科学技术的不断进步,各种电子器件在不断趋于功能化、小型化和智能化。近几十年,人们不仅在多功能材料中集成和改善原有的性能,还可以开发、设计所需的新颖性能,多功能材料得到了科学界的极大关注。多功能材料的研究工作不仅仅希望能够改变基体材料的性能,还期望能够拓展新的功能以及各功能之间的耦合。目前,已经研发出各种各样的多功能材料体系。在这些材料系统中,铁电发光多功能材料是通过稀土掺杂在保持或增强铁电性的基础上使铁电体具备发光性能。目前,铁电发光多功能氧化物由于具有光电子器件应用的前景,受到了广泛的关注。
因此,作为一类具有高压电性能和高发光性能的无铅材料,如何通过极化电场调节发光性能,是极具研究意义和应用价值的方法。据所查到的相关专利和文献中,未见稀土氧化物掺杂的钛酸铋钠基陶瓷的极化条件光致发光性能作用的相关研究。本发明是一种具有简单高效研究压电性能和发光性能耦合作用的新方法,工艺简单,性能稳定,在微机电、光电集成、光电传感器等领域具有广泛的应用前景。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法,所述钛酸铋钠基陶瓷的化学通式为(1-x-y-z)Bi0.5Na0.5TiO3-x(BaTiO3/Bi0.5K0.5TiO3)-y(SrTiO3/Na0.5K0.5NbO3)-zM,其中,M为Sm、Pr、Er、Nd、Ho、Tb、Dy或Eu;x=0~30%,y=0~30%,z=0.1~2%。该钛酸铋钠基陶瓷通过极化电场同时调节压电性能和发光性能,可获得最高压电系数并耦合发光猝灭,在微机电、光电集成、传感器等领域具有广泛的应用前景,为研究钙钛矿材料中力-电-热性能耦合作用提供实验基础。
为实现上述目的及其他相关目的,本发明第一方面提供一种稀土掺杂的钛酸铋钠基陶瓷,所述钛酸铋钠基陶瓷的化学通式为(1-x-y-z)Bi0.5Na0.5TiO3-x(BaTiO3/Bi0.5K0.5TiO3)-y(SrTiO3/Na0.5K0.5NbO3)-zM,其中,M为Sm、Pr、Er、Nd、Tb、Ho、Dy或Eu;x=0~30%,y=0~30%,z=0.1~2%。
x可为0~8%、8~18%、18~20%或20~30%。
y可为0~2%或2~30%。
z可为0.1~0.5%或0.5~2%。
上述化学通式中,元素右下标数字及字母均代表各对应元素的摩尔比例关系。
本发明第二方面提供上述稀土掺杂的钛酸铋钠基陶瓷的制备方法,包括如下步骤:
1)按上述任一项所述的稀土掺杂的钛酸铋钠基陶瓷化学通式中元素的化学计量比称取原料:含Bi化合物、含Na化合物、含Ti化合物、含Ba化合物、含K化合物、含Nb化合物、含Sr化合物和含M的化合物;
2)将步骤1)中称取的原料以溶剂为介质球磨,获得浆料;
3)将步骤2)得到的浆料进行烘干、预烧,得到钛酸铋钠基陶瓷粉体;
4)将步骤3)得到的钛酸铋钠基陶瓷粉体添加粘结剂造粒,压制成型,排粘,烧结,即得到所述钛酸铋钠基陶瓷。
优选地,含M化合物为Sm2O3、Pr6O11、Er2O3、Nd2O3、Tb2O3、HO2O3、Dy2O3或Eu2O3
优选地,含Bi化合物为Bi2O3
优选地,含Na化合物为NaCO3
优选地,含Ti化合物为TiO2
优选地,含K化合物为K2CO3
优选地,含Nb化合物为Nb2O5
优选地,含Ba化合物为BaCO3
优选地,含Sr化合物为SrCO3
优选地,步骤2)中,还包括如下技术特征中的至少一项:
1)球磨时间为4~6h,如4~5h或5~6h;
2)所述溶剂选自无水乙醇或水。
优选地,步骤3)中,还包括如下技术特征中的至少一项:
1)烘干条件为:在80~100℃下保温烘干8~12h,如烘干温度为80~90℃或90~100℃;
2)预烧条件为:预烧温度为800~1000℃,如800~900℃或900~1000℃,预烧时间为4~8h,如4~6h或6~8h。
优选地,步骤4)中,还包括如下技术特征中的至少一项:
1)粘结剂的用量为所述钛酸铋钠基陶瓷粉体的5~8wt%,如5~7wt%或7~8wt%;
2)所述压制成型的相对压强为100~200Mpa,如100~150Mpa或150~200Mpa;
3)烧结条件为:在空气中于1000~1200℃烧结2~6h,如烧结温度为1000~1100℃或1100~1200℃,烧结时间为2~4h或4~6h。
本发明第三方面提供一种同时调节压电性能和发光性能的电场调节方法,包括如下步骤:
1)将上述钛酸铋钠基陶瓷制备成片状,在其上下表面涂覆电极;
2)将步骤1)得到的陶瓷进行电场极化。
优选地,步骤1)中,电极为银电极或ITO电极,更优选为银电极。
优选地,步骤2)中,还包括如下技术特征中的至少一项:
1)电场强度为10~50kV/cm,如10~30kV/cm或30~50kV/cm;
2)加场速度为1~4kV/cm/min,如1~2kV/cm/min或2~4kV/cm/min;
3)极化时间为10~40分钟,如10~20分钟或20~40分钟;
4)电场为直流电场;
5)在硅油溶剂中加载电场;
6)在陶瓷圆片轴线Z方向加载极化电场。
将电场极化后的陶瓷在准静态d33测试仪上测试压电常数(在室温下进行测试);将测试完压电常数的陶瓷的上下表面涂覆的电极抹掉并抛光,使陶瓷厚度为0.2-0.5mm,利用荧光光谱仪测试样品光致发光特性,其中,抛光为砂纸或金刚砂物理抛光法,优选金刚砂,抛光后的陶瓷用水和乙醇清洗,同一批样品厚度一致,光致发光特性在室温条件下测试,激发光的波长由掺杂的稀土而定。
本发明提供一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法,所述钛酸铋钠基陶瓷的化学通式为(1-x-y-z)Bi0.5Na0.5TiO3-x(BaTiO3/Bi0.5K0.5TiO3)-y(SrTiO3/Na0.5K0.5NbO3)-zM,其中,M为Sm、Pr、Er、Nd、Tb、Ho、Dy或Eu;x=0~30%,y=0~30%,z=0.1~2%。该钛酸铋钠基陶瓷通过极化电场同时调节压电性能和发光性能,利用简单方法研究压电性能和发光性能之间的耦合作用,可获得最高压电系数并耦合发光猝灭即同时获得最高压电性能和发光猝灭性能,在微机电、光电集成、传感器等领域具有广泛的应用前景,为研究钙钛矿材料中力-电-热性能耦合作用提供实验基础。
附图说明
图1是实施例一未极化和极化样品的XRD谱图。
图2是实施例一未极化和极化样品在波长450nm光激发下的发光图谱。
图3是实施例二未极化和极化样品在波长465nm光激发下的发光图谱。
图4是实施例三未极化和极化样品在波长451nm光激发下的发光图谱。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
须知,下列实施例中未具体注明的工艺设备或装置均采用本领域内的常规设备或装置;所有压力值和范围都是指相对压力,使用的原料也均为本领域内的常规使用的原料。
此外应理解,本发明中提到的一个或多个方法步骤并不排斥在所述组合步骤前后还可以存在其他方法步骤或在这些明确提到的步骤之间还可以插入其他方法步骤,除非另有说明;还应理解,本发明中提到的一个或多个设备/装置之间的组合连接关系并不排斥在所述组合设备/装置前后还可以存在其他设备/装置或在这些明确提到的两个设备/装置之间还可以插入其他设备/装置,除非另有说明。而且,除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的便利工具,而非为限制各方法步骤的排列次序或限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容的情况下,当亦视为本发明可实施的范畴。
实施例1
化学通式为(1-x-y-z)Bi0.5Na0.5TiO3-x(BaTiO3/Bi0.5K0.5TiO3)-y(SrTiO3/Na0.5K0.5NbO3)-zM,其中,M为Pr;x=8%,y=0%,z=0.5%,0.915Bi0.5Na0.5TiO3–0.08BaTiO3–0.005Pr;极化电场为50kV/cm,加场速度为4kV/cm/min,极化时间为40分钟。
稀土掺杂的钛酸铋钠基陶瓷的制备:
1)按稀土掺杂的钛酸铋钠基陶瓷化学通式中元素的化学计量比称取原料:Bi2O3、NaCO3、TiO2、BaCO3和Pr6O11
2)将步骤1)中称取的原料以溶剂为介质球磨,球磨时间为4h,所述溶剂选自无水乙醇,获得浆料;
3)将步骤2)得到的浆料进行烘干、预烧,烘干条件为:在80℃下保温烘干12h,预烧条件为:预烧温度为800℃,预烧时间为8h,得到该陶瓷粉体;
4)将步骤3)得到的钛酸铋钠基陶瓷粉体添加粘结剂造粒,压制成型,排粘,烧结,粘结剂的用量为所述钛酸铋钠基陶瓷粉体的5wt%,所述压制成型的相对压强为100Mpa,烧结条件为:在空气中于1200℃烧结2h,即得到所述钛酸铋钠基陶瓷。
电场调节方法:
1)将上述制得的稀土掺杂的钛酸铋钠基陶瓷制备成圆形片,在其上下表面涂覆电极,电极为银电极;
2)将步骤1)得到的陶瓷在陶瓷圆片轴线Z方向进行电场极化,在硅油溶剂中加载电场,电场为直流电场,电场强度为50kV/cm,加场速度为4kV/cm/min,极化时间为40分钟。
极化后测试样品的压电常数为200pC/N。
将极化后的陶瓷电极抹掉并使用金刚砂物理抛光法进行抛光,抛光后样品厚度0.3mm,抛光后的样品分别用去离子水和乙醇超声清洗10分钟。
对洁净样品表面进行XRD结构分析,未极化样品为材料为赝立方结构,极化后样品呈现四方相和斜方相共存结构。
将洁净未极化样品表面测试荧光,在室温条件下测试,激发光的波长为450nm,将样品在409nm波长的激发光激发下测试上转换发光发射波波长为545,615和655nm,强度分别为800,7500,1200。
将洁净极化样品表面测试荧光,在室温条件下测试,激发光的波长为450nm,将样品在450nm波长的激发光激发下测试上转换发光发射波波长为615nm,强度为500,其余波长的发光强度为0,发光强度值显著降低。
图1给出了所得未极化样品和极化样品的XRD图谱。
图2给出了所得未极化样品和极化样品的光致发光图谱。
实施例2
化学通式为(1-x-y-z)Bi0.5Na0.5TiO3-x(BaTiO3/Bi0.5K0.5TiO3)-y(SrTiO3/Na0.5K0.5NbO3)-zM,其中,M为Eu;x=20%,y=0%,z=0.5%,0.799Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3–0.001Eu;极化电场为30kV/cm,加场速度为2kV/cm/min,极化时间为20分钟。
稀土掺杂的钛酸铋钠基陶瓷的制备:
1)按稀土掺杂的钛酸铋钠基陶瓷化学通式中元素的化学计量比称取原料:Bi2O3、NaCO3、TiO2、K2CO3和Eu2O3
2)将步骤1)中称取的原料以溶剂为介质球磨,球磨时间为6h,所述溶剂选自水,获得浆料;
3)将步骤2)得到的浆料进行烘干、预烧,烘干条件为:在100℃下保温烘干8h,预烧条件为:预烧温度为1000℃,预烧时间为4h,得到钛酸铋钠基陶瓷粉体;
4)将步骤3)得到的钛酸铋钠基陶瓷粉体添加粘结剂造粒,压制成型,排粘,烧结,粘结剂的用量为所述钛酸铋钠基陶瓷粉体的8wt%,所述压制成型的相对压强为200Mpa,烧结条件为:在空气中于1000℃烧结6h,即得到所述钛酸铋钠基陶瓷。
电场调节方法:
1)将上述制得的稀土掺杂的钛酸铋钠基陶瓷制备成圆形片,在其上下表面涂覆电极,电极为银电极;
2)将步骤1)得到的陶瓷在陶瓷圆片轴线Z方向进行电场极化,在硅油溶剂中加载电场,电场为直流电场,电场强度为30kV/cm,加场速度为2kV/cm/min,极化时间为20分钟。
将极化后的样品测试压电性能,其压电常数为160pC/N.
将极化后的陶瓷电极抹掉并使用金刚砂物理抛光法进行抛光,抛光后样品厚度0.3mm,抛光后的样品分别用去离子水和乙醇超声清洗10分钟。
将洁净未极化样品表面测试荧光,在室温条件下测试,激发光的波长为465nm,将样品在465nm波长的激发光激发下测试上转换发光发射波波长为616nm,强度分别为6500。
将洁净极化样品表面测试荧光,在室温条件下测试,激发光的波长为465nm,将样品在465nm波长的激发光激发下测试上转换发光发射波波长为616nm,强度为137,发光强度值显著降低。
图3给出了所得未极化样品和极化样品的光致发光图谱。
实施例3
化学通式为(1-x-y-z)Bi0.5Na0.5TiO3-x(BaTiO3/Bi0.5K0.5TiO3)-y(SrTiO3/Na0.5K0.5NbO3)-zM,其中,M为Ho;x=18%,y=2%,z=2%;0.78Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3-0.02Na0.5K0.5NbO3-0.02Ho;极化电场为10kV/cm,加场速度为1kV/cm/min,极化时间为10分钟。
稀土掺杂的钛酸铋钠基陶瓷的制备:
1)按稀土掺杂的钛酸铋钠基陶瓷化学通式中元素的化学计量比称取原料:Bi2O3、NaCO3、TiO2、K2CO3、Nb2O5和Ho2O3
2)将步骤1)中称取的原料以溶剂为介质球磨,球磨时间为5h,所述溶剂选自无水乙醇,获得浆料;
3)将步骤2)得到的浆料进行烘干、预烧,烘干条件为:在90℃下保温烘干8h,预烧条件为:预烧温度为900℃,预烧时间为6h,得到钛酸铋钠基陶瓷粉体;
4)将步骤3)得到的钛酸铋钠基陶瓷粉体添加粘结剂造粒,压制成型,排粘,烧结,粘结剂的用量为所述钛酸铋钠基陶瓷粉体的7wt%,所述压制成型的相对压强为150Mpa,烧结条件为:在空气中于1100℃烧结4h,即得到所述钛酸铋钠基陶瓷。
电场调节方法:
1)将上述制得的稀土掺杂的钛酸铋钠基陶瓷制备成圆形片,在其上下表面涂覆电极,电极为金电极;
2)将步骤1)得到的陶瓷在陶瓷圆片轴线Z方向进行电场极化,在硅油溶剂中加载电场,电场为直流电场,电场强度为10kV/cm,加场速度为1kV/cm/min,极化时间为10分钟。
将极化后的样品测试压电性能,其压电常数为70pC/N.
将极化后的陶瓷电极抹掉并使用金刚砂物理抛光法进行抛光,抛光后样品厚度0.3mm,抛光后的样品分别用去离子水和乙醇超声清洗10分钟。
将洁净未极化样品表面测试荧光,在室温条件下测试,激发光的波长为451nm,将样品在451nm波长的激发光激发下测试上转换发光发射波波长为500nm,强度分别为20000。
将洁净极化样品表面测试荧光,在室温条件下测试,激发光的波长为451nm,将样品在451nm波长的激发光激发下测试上转换发光发射波波长为616nm,强度为15000,发光强度值降低。
图4给出了所得未极化和极化后样品的光致发光图谱。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

1.一种稀土掺杂的钛酸铋钠基陶瓷,其特征在于,所述钛酸铋钠基陶瓷的化学通式为(1-x-y-z)Bi0.5Na0.5TiO3-x(BaTiO3/Bi0.5K0.5TiO3)-y(SrTiO3/Na0.5K0.5NbO3)-zM,其中,M为Sm、Pr、Er、Nd、Ho、Tb、Dy或Eu;x=0~30%,y=0~30%,z=0.1~2%。
2.一种如权利要求1所述的稀土掺杂的钛酸铋钠基陶瓷的制备方法,其特征在于,包括如下步骤:
1)按权利要求1所述的稀土掺杂的钛酸铋钠基陶瓷化学通式中元素的化学计量比称取原料:含Bi化合物、含Na化合物、含Ti化合物、含Ba化合物、含K化合物、含Nb化合物、含Sr化合物和含M的化合物;
2)将步骤1)中称取的原料以溶剂为介质球磨,获得浆料;
3)将步骤2)得到的浆料进行烘干、预烧,得到钛酸铋钠基陶瓷粉体;
4)将步骤3)得到的钛酸铋钠基陶瓷粉体添加粘结剂造粒,压制成型,排粘,烧结,即得到所述钛酸铋钠基陶瓷。
3.如权利要求2所述的制备方法,其特征在于,步骤2)中,还包括如下技术特征中的至少一项:
1)球磨时间为4~6h;
2)所述溶剂选自无水乙醇或水。
4.如权利要求2所述的制备方法,其特征在于,步骤3)中,还包括如下技术特征中的至少一项:
1)烘干条件为:在80~100℃下保温烘干8~12h;
2)预烧条件为:预烧温度为800~1000℃,预烧时间为4~8h。
5.如权利要求2所述的制备方法,其特征在于,步骤4)中,还包括如下技术特征中的至少一项:
1)粘结剂的用量为所述钛酸铋钠基陶瓷粉体的5~8wt%;
2)所述压制成型的相对压强为100~200Mpa;
3)烧结条件为:在空气中于1000~1200℃烧结2~6h。
6.一种同时调节压电性能和发光性能的电场调节方法,其特征在于,包括如下步骤:
1)将权利要求1所述的稀土掺杂的钛酸铋钠基陶瓷制备成片状,在其上下表面涂覆电极;
2)将步骤1)得到的陶瓷进行电场极化。
7.如权利要求6所述的电场调节方法,其特征在于,步骤1)中,电极为银电极或ITO电极。
8.如权利要求6所述的电场调节方法,其特征在于,步骤2)中,还包括如下技术特征中的至少一项:
1)电场强度为10~50kV/cm;
2)加场速度为1~4kV/cm/min;
3)极化时间为10~40分钟;
4)电场为直流电场;
5)在硅油溶剂中加载电场;
6)在陶瓷圆片轴线Z方向加载极化电场。
CN201810225662.7A 2018-03-19 2018-03-19 一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法 Active CN108467263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810225662.7A CN108467263B (zh) 2018-03-19 2018-03-19 一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810225662.7A CN108467263B (zh) 2018-03-19 2018-03-19 一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法

Publications (2)

Publication Number Publication Date
CN108467263A true CN108467263A (zh) 2018-08-31
CN108467263B CN108467263B (zh) 2021-07-13

Family

ID=63265588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810225662.7A Active CN108467263B (zh) 2018-03-19 2018-03-19 一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法

Country Status (1)

Country Link
CN (1) CN108467263B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018518A (zh) * 2019-12-17 2020-04-17 上海交通大学 致密强荧光高压电性能的nbt-kbt-bt基多功能陶瓷材料及制备方法
CN112430084A (zh) * 2020-12-03 2021-03-02 西南大学 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN113173786A (zh) * 2021-05-14 2021-07-27 桂林电子科技大学 一种透明荧光铁电陶瓷材料及其制备方法和应用
CN113511893A (zh) * 2021-03-24 2021-10-19 广西大学 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN113755967A (zh) * 2021-09-10 2021-12-07 湖南省美程陶瓷科技有限公司 一种聚偏氟乙烯基柔性压电材料及其制备方法
CN116219539A (zh) * 2023-01-10 2023-06-06 中国矿业大学 一种铁电发光外延异质结构及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058505A (zh) * 2007-06-01 2007-10-24 清华大学 一种提高钛酸铋钠基无铅压电陶瓷性能的方法
CN102180670A (zh) * 2011-02-24 2011-09-14 西北工业大学 铌酸钾钠锂-钛酸铋钠钾无铅压电陶瓷及其制备方法
CN102633503A (zh) * 2012-03-23 2012-08-15 上海师范大学 一种具有高电致应变的钛酸铋钠基无铅压电材料及其制备方法
CN104446452A (zh) * 2014-12-12 2015-03-25 湖北大学 一种无铅中温介电稳定型电子陶瓷材料及其制备方法
CN104628379A (zh) * 2013-11-06 2015-05-20 同济大学 高度取向的无铅压电织构陶瓷材料及其制备方法和应用
CN104944943A (zh) * 2015-05-27 2015-09-30 聊城大学 一种具有发光特性的bnt基无铅电致伸缩材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058505A (zh) * 2007-06-01 2007-10-24 清华大学 一种提高钛酸铋钠基无铅压电陶瓷性能的方法
CN102180670A (zh) * 2011-02-24 2011-09-14 西北工业大学 铌酸钾钠锂-钛酸铋钠钾无铅压电陶瓷及其制备方法
CN102633503A (zh) * 2012-03-23 2012-08-15 上海师范大学 一种具有高电致应变的钛酸铋钠基无铅压电材料及其制备方法
CN104628379A (zh) * 2013-11-06 2015-05-20 同济大学 高度取向的无铅压电织构陶瓷材料及其制备方法和应用
CN104446452A (zh) * 2014-12-12 2015-03-25 湖北大学 一种无铅中温介电稳定型电子陶瓷材料及其制备方法
CN104944943A (zh) * 2015-05-27 2015-09-30 聊城大学 一种具有发光特性的bnt基无铅电致伸缩材料及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中国材料研究学会组织编写: "《中国战略性新兴产业 新材料 功能陶瓷材料与器件》", 31 December 2017 *
曲远方主编: "《现代陶瓷材料及技术》", 31 May 2008, 华东理工大学出版社 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018518A (zh) * 2019-12-17 2020-04-17 上海交通大学 致密强荧光高压电性能的nbt-kbt-bt基多功能陶瓷材料及制备方法
CN112430084A (zh) * 2020-12-03 2021-03-02 西南大学 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN112430084B (zh) * 2020-12-03 2022-07-08 西南大学 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN113511893A (zh) * 2021-03-24 2021-10-19 广西大学 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN113173786A (zh) * 2021-05-14 2021-07-27 桂林电子科技大学 一种透明荧光铁电陶瓷材料及其制备方法和应用
CN113173786B (zh) * 2021-05-14 2022-03-15 桂林电子科技大学 一种透明荧光铁电陶瓷材料及其制备方法和应用
CN113755967A (zh) * 2021-09-10 2021-12-07 湖南省美程陶瓷科技有限公司 一种聚偏氟乙烯基柔性压电材料及其制备方法
CN113755967B (zh) * 2021-09-10 2023-05-23 湖南省美程陶瓷科技有限公司 一种聚偏氟乙烯基柔性压电材料及其制备方法
CN116219539A (zh) * 2023-01-10 2023-06-06 中国矿业大学 一种铁电发光外延异质结构及其制备方法

Also Published As

Publication number Publication date
CN108467263B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN108467263A (zh) 一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法
Sun et al. (K, Na) NbO 3 ferroelectrics: a new class of solid-state photochromic materials with reversible luminescence switching behavior
Bokolia et al. Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics
Dang et al. Highly efficient cyan-green emission in self-activated Rb3RV2O8 (R= Y, Lu) vanadate phosphors for full-spectrum white light-emitting diodes (LEDs)
CN103265954B (zh) 一种铌酸钾钠基氧化物上转换发光材料及制备方法
CN102276248B (zh) 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
Jiang et al. Photoluminescence, structural, and electrical properties of erbium‐doped Na0. 5Bi4. 5Ti4O15 ferroelectric ceramics
Ganguly et al. Characterization of A-site deficient samarium doped barium titanate
CN103787658B (zh) 无铅压电铌酸钾钠基光-电多功能材料及制备方法
Du et al. Photoluminescence and piezoelectric properties of Pr-doped NBT–xBZT ceramics: Sensitive to structure transition
Nag Bhargavi et al. Luminescence studies of perovskite structured titanates: A review
Peng et al. Upconversion luminescence, ferroelectrics and piezoelectrics of Er Doped SrBi4Ti4O15
Xia et al. Enhanced piezoelectric performance and orange-red emission of Sm3+ doped (Na1/2Bi1/2) TiO3 based lead-free ceramics
Du et al. Photoluminescence and electrical performance of smart material: Pr-doped (1− x)(Na0. 5Bi0. 5) TiO3–xCaTiO3 ceramics
Ma et al. Photoluminescence and optical temperature sensing in Sm3+-doped Ba0. 85Ca0. 15Ti0. 90Zr0. 10O3 lead-free ceramics
Hao et al. Fatigue-resistant, temperature-insensitive strain behavior and strong red photoluminescence in Pr-modified 0.92 (Bi0. 5Na0. 5) TiO3–0.08 (Ba0. 90Ca0. 10)(Ti0. 92Sn0. 08) O3 lead-free ceramics
CN108585852B (zh) 一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用
CN104897300B (zh) 非接触利用荧光测量铁电体居里温度的方法
CN109384465A (zh) 一种钐掺杂铌酸钾钠透明陶瓷的制备方法
CN108285341A (zh) 一种稀土掺杂的钛酸钡基陶瓷及其制备方法和同时调节压电性能和发光性能的电场调节方法
Wu et al. Electric-field-treatment-induced enhancement of photoluminescence in Er3+-doped (Ba0. 95Sr0. 05)(Zr0. 1Ti0. 9) O3 piezoelectric ceramic
CN107032782A (zh) 陶瓷材料、压电驱动器和用于制备该陶瓷材料的方法
Jiang et al. Photoluminescence and electrical properties of Eu 3+-doped Na 0.5 Bi 4.5 Ti 4 O 15-based ferroelectrics under blue light excitation
CN106938929A (zh) 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法
Huang et al. Structural phase transition, electrical and photoluminescent properties of Pr3+-doped (1-x) Na0. 5Bi0. 5TiO3-xSrTiO3 lead-free ferroelectric thin films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant