CN108464010A - 表面安装式扬声器的多路径声壁耦合 - Google Patents

表面安装式扬声器的多路径声壁耦合 Download PDF

Info

Publication number
CN108464010A
CN108464010A CN201780006479.1A CN201780006479A CN108464010A CN 108464010 A CN108464010 A CN 108464010A CN 201780006479 A CN201780006479 A CN 201780006479A CN 108464010 A CN108464010 A CN 108464010A
Authority
CN
China
Prior art keywords
energy
sound
loud speaker
energy waves
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780006479.1A
Other languages
English (en)
Other versions
CN108464010B (zh
Inventor
小保罗.W.皮斯
D.罗杰斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman International Industries Inc
Crown Audio Inc
Original Assignee
Crown Audio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crown Audio Inc filed Critical Crown Audio Inc
Publication of CN108464010A publication Critical patent/CN108464010A/zh
Application granted granted Critical
Publication of CN108464010B publication Critical patent/CN108464010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2853Enclosures comprising vibrating or resonating arrangements using an acoustic labyrinth or a transmission line
    • H04R1/2857Enclosures comprising vibrating or resonating arrangements using an acoustic labyrinth or a transmission line for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • H04R9/063Loudspeakers using a plurality of acoustic drivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/405Non-uniform arrays of transducers or a plurality of uniform arrays with different transducer spacing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

提供了一种表面安装式扬声器设计,其通过使用波导、驱动器负载板和外壳端口中的一个或多个将来自低频(LF)驱动器的LF能量分解到多条路径来减轻直接LF能量与反射的LF能量之间的干扰,从而扩散反射的能量并使频率响应误差最小化。本公开的一个或多个实施方案提供了一种具有多个声出口的扬声器,所述声出口被策略性地设计和定位以按有利滞后时间在目标角度生成例如三个主要波前到达,即2个源和1个反射,从而减轻传统扬声器设计中出现的消除陷波和频率误差。

Description

表面安装式扬声器的多路径声壁耦合
相关申请案的交叉引用
本申请要求2016年1月14日提交的美国临时申请序列号62/278,952和2016年1月14日提交的美国临时申请序列号62/278,959的权益,所述申请的公开内容通过引用全部由此并入本文中。
技术领域
本公开涉及表面安装式扬声器的多路径声壁耦合。
背景技术
声源向其周围辐射能量。如果这个源是经设计的扬声器,则其辐射能量会成形为一个包络以为观众呈现均匀的能量。扬声器以这种方式控制其辐射能量的能力在较低频率下减小,在较低频率下,波长大于扬声器本身,并且声能沿所有方向均等地辐射。在这种情况下,扬声器被认为是全向的。
表面安装式扬声器生成两种不同的声能到达,一种直接来自换能器,而另一种从其安装的表面反射。反射能量与直接能量的干扰主要是由于形成显著的频率响应误差而有破坏性。这些误差的频率直接与收听者处的两次能量到达之间的时间差有关。
发明内容
本公开的一个或多个实施方案针对一种扬声器,其包括扬声器外壳和安置在扬声器外壳中的低频(LF)驱动器。扬声器外壳可以适于表面安装,并且包括具有面向目标方向的至少一个前声出口的前表面和具有适于面向壁表面的至少一个后声出口的后表面。低频(LF)驱动器可以适于发射至少离开前声出口和后声出口的LF声能。离开前声出口并直接沿目标方向辐射的LF声能可以形成第一LF能量波前。离开前声出口并反射离开壁表面的LF声能可以形成滞后于第一LF能量波前的第二LF能量波前。离开后声出口并直接沿目标方向辐射的LF声能与离开后声出口并反射离开壁表面的LF声能相结合可以形成第三LF能量波前,所述第三LF能量波前在第一LF能量波前和第二LF能量波前之间到达。
根据一个或多个实施方案,第一LF能量波前可以具有0.80的量值。第二LF能量波前可以具有0.50的量值并且比第一LF能量波前滞后3.70毫秒。第三LF能量波前可以具有1.65的量值并且比第一LF能量波前滞后1.35毫秒。
扬声器外壳还可以包括具有侧声出口的至少一个侧表面。离开侧声出口并沿目标方向辐射的LF声能可以形成第一LF能量波前的部分,而离开侧声出口并反射离开壁表面的LF声能可以形成第二LF能量波前的部分,第二LF能量波前滞后于第一LF能量波前。具有侧声出口的至少一个侧表面可以包括两个侧表面,每个侧表面均具有侧声出口。
扬声器外壳还可以包括具有底部声出口的底部表面。离开底部声出口并直接沿目标方向辐射的LF声能与离开底部声出口并反射离开壁表面的LF声能相结合可以形成第三LF能量波前的部分,第三LF能量波前在第一LF能量波前和第二LF能量波前之间到达。
扬声器还可以包括LF波导,其耦合到LF驱动器从而限定用于LF声能的第一辐射路径,其中至少一个前声出口包括LF波导。至少一个前声出口可以包括位于LF波导上方的在扬声器外壳中的前开口。LF波导可以具有邻近LF驱动器定位的近端开口并且远离LF驱动器延伸到远端开口以限定第一辐射路径。近端开口可以具有小于辐射表面开口区域的近端开口区域,以限定围绕LF波导并从前开口出来的用于LF声能的第二辐射路径。扬声器还可以包括负载板,其直接位于辐射表面的底部部分的前面并邻近LF波导以将LF声能的一部分沿着第三辐射路径偏转到后声出口。
本公开的一个或多个额外的实施方案可以针对一种包括扬声器外壳、LF驱动器、LF波导和负载板的扬声器。扬声器外壳可以包括具有前声出口的前表面、具有侧声出口的至少一个侧表面、具有至少一个后声出口的后表面以及具有底部声出口的底部表面。LF驱动器可以安置在扬声器外壳中并且具有适于发射LF声能的辐射表面和由辐射表面的外圆周限定的辐射表面开口。LF波导可以限定用于LF声能的第一辐射路径。LF波导可以具有邻近LF驱动器定位的近端开口并且远离LF驱动器延伸到远端开口以限定第一辐射路径。近端开口可以具有小于辐射表面开口区域的近端开口区域,以限定围绕LF波导并从前声出口和侧声出口出来的用于LF声能的第二辐射路径。负载板可以直接位于辐射表面的底部部分的前面并邻近LF波导,以将LF声能的一部分沿着第三辐射路径偏转到后声出口和底部声出口。
扬声器的目标轴线可以从水平面向下大约30°。替代地,扬声器的目标轴线可以从水平面向下30°与60°之间。
扬声器还可以包括安置在扬声器外壳中的至少一个高频(HF)驱动器。至少一个HF驱动器可以包括耦合到第一HF波导的第一HF驱动器和耦合到第二HF波导的第二HF驱动器。LF波导、第一HF波导和第二HF波导可以由三重波导体形成。第一HF驱动器可以安置在LF驱动器的辐射表面的前面并且至少部分地阻挡由辐射表面发射的LF声能。
本公开的一个或多个额外的实施方案可以针对一种用于辐射声音的方法。所述方法可以包括提供扬声器外壳,所述扬声器外壳包括具有面向目标方向的至少一个前声出口的前表面和具有适于面向壁表面的至少一个后声出口的后表面。所述方法还可以包括提供低频(LF)驱动器,所述低频(LF)驱动器安置在扬声器外壳中并且适于发射至少离开前声出口和后声出口的LF声能。所述方法还可以包括:从离开前声出口并直接沿目标方向辐射的LF声能生成第一LF能量波前;从离开前声出口并反射离开壁表面的LF声能生成滞后于第一LF能量波前的第二LF能量波前;以及从离开后声出口并直接沿目标方向辐射的LF声能与离开后声出口并反射离开壁表面的LF声能相结合生成第三LF能量波前,第三LF能量波前在第一LF能量波前和第二LF能量波前之间到达。
根据一个或多个实施方案,第一LF能量波前可以具有0.80的量值。第二LF能量波前可以具有0.50的量值并且比第一LF能量波前滞后3.70毫秒。第三LF能量波前可以具有1.65的量值并且比第一LF能量波前滞后1.35毫秒。
提供扬声器外壳还可以包括提供扬声器外壳,所述扬声器外壳包括具有侧声出口的至少一个侧表面。生成第一LF能量波前可以包括从离开前声出口和侧声出口并直接沿目标方向辐射的LF声能生成第一LF能量波前。生成滞后于第一LF能量波前的第二LF能量波前可以包括从离开前声出口和侧声出口并反射离开壁表面的LF声能生成第二LF能量波前。
此外,提供扬声器外壳还可以包括提供包括具有底部声出口的底部表面的扬声器外壳。此外,生成在第一LF能量波前和第二LF能量波前之间到达的第三LF能量波前可以包括从离开后声出口和底部声出口并直接沿目标方向辐射的LF声能与离开后声出口和底部声出口并反射离开壁表面的LF声能相结合生成第三LF能量波前。
附图说明
图1是在室内环境中的表面安装式扬声器的俯视图,其示出了其中扬声器声辐射图是全向的频率范围内的特性行为;
图2是示出由基本单源/单壁耦合扬声器配置的3.7毫秒滞后时间反射波所致的频率响应的示例性曲线图;
图3是示出根据本公开的一个或多个实施方案的由各自具有均等的低频(LF)能量量值的四个源(及其四个对应反射)的设计所致的频率响应的曲线图;
图4是示出根据本公开的一个或多个实施方案的由具有两个源和两个反射的设计所致的频率响应的曲线图;
图5是示出根据本公开的一个或多个实施方案的由具有两个源和一个反射的设计所致的频率响应的曲线图;
图6是根据本公开的一个或多个实施方案的扬声器的侧视截面图;
图7是根据本公开的一个或多个实施方案的在图6中示出的扬声器的分解图;
图8是根据本公开的一个或多个实施方案的示出了其中扬声器声辐射图是全向的频率范围内的扬声器的特性行为的LF波前到达的解释性侧视图;
图9是根据本公开的一个或多个实施方案的描绘用于辐射声音的方法的简化的示例性流程图;并且
图10是根据本公开的一个或多个实施方案的在图6和图7中描绘的扬声器的实际200Hz辐射气球。
具体实施方式
根据要求,本文中公开了本发明的详细实施方案;然而,应理解,所公开的实施方案仅示例性说明本发明,本发明可以各种形式和替代形式体现。附图不一定按比例绘制;一些特征可能会被放大或最小化以示出特定部件的细节。因此,本文中公开的具体的结构和功能细节不应被解释为是限制性的,而是仅仅作为教导本领域技术人员以不同方式采用本发明的代表性基础。
有很多情况需要将扬声器表面安装在壁上。为了清楚起见,表面安装式扬声器并不是指“壁内”扬声器,其需要切入壁中使得扬声器有效地成为壁的一部分。相反,表面安装式扬声器指的是壁上扬声器,其是独立式的并使用某种安装形式将它们固定到壁(或其他)表面。扬声器的辐射开口与壁本身之间的距离成为关键尺寸。在其中扬声器辐射是全向的频率范围内,壁的声学相互作用成为扬声器特性行为的基本部分。
图1是室内环境中的表面安装式扬声器100的俯视图。图1示出了在其中扬声器声辐射图是全向的频率范围内的典型表面安装式扬声器特性行为。如图所示,使用安装件104将扬声器安装到表面102,诸如壁。该示例中的扬声器包括背向壁表面102并且在观众的目标方向上的前表面106、面向壁表面102的后表面108以及两个侧表面110。该示例中的扬声器还包括在前表面中的辐射开口112。
通常并且在任何给定的时间快照中,从扬声器100辐射的一半的全向能量通常朝向观众引导,而另一半朝向壁表面102辐射。由于大多数吸收材料在低频下无效,因此典型的壁构造形成用于朝向壁表面102辐射的低频(LF)能量的声学反射器。所得的能量包含两个波前,即直接(或主)波前114和反射波前116。箭头118描绘了包含在直接波前114中的LF声能的辐射路径。箭头120描绘了扬声器的周边(例如,前表面106和侧表面110)周围的在反射波前116中包含的LF声能的辐射路径。直接波前114和反射波前116在量值上几乎相等。然而,在反射波前116与直接波前114之间存在时间滞后(t滞后)(即,反射波前116在时间上滞后于直接波前114),如图1所示。所述滞后直接与从扬声器100的辐射开口112在扬声器周边周围到壁表面102和返回的传播时间声音的速度相关。反射波的性质是扬声器和壁表面102的声学特性的函数。
对于例如专业影院环绕声扬声器产品类别中的大多数传统壁挂式扬声器,直接波前与反射波前之间的滞后时间通常在1至5毫秒的范围内。实际的滞后时间取决于安装件的大小和扬声器的大小。对于较小类别的表面安装式扬声器,滞后时间可能较短。1-5毫秒的滞后对应于14-68英寸的路径长度增量(即,直接波前和反射波前之间的距离)。在此时间范围内或附近,由于某些频率被消除而其他频率被强化,所得的声音体验可能会受到负面影响。在消除频率的情况下,电子均衡不能解决问题。
图2是示出由如关于图1所描述的基本单源/单壁耦合扬声器配置的3.7毫秒滞后时间反射波所致的频率响应200的示例性曲线图。为了本说明书的目的,术语“源”是指任何辐射声音的扬声器元件。源可以是声出口(即辐射开口)或单独的辐射元件(称为驱动器)。图2示出了接近150Hz和400Hz的消除频率。存在接近300Hz的能量高峰。在这个模拟中,主波前在没有反射能量下理想情况下是0dB的平坦线。因此,反射的能量产生消除和高峰两者。作为参考,所有模拟都有意在500Hz以上“平坦”以简化讨论。
与所涉及的波长相比,当滞后时间相对较小时,会从反射能量受益。当是这种情况时,由于观众现在接收所有的全向能量,因此扬声器的有效输出几乎翻倍。对于60Hz以下的那些频率,这从图2中的频率响应曲线明显。本公开的一个或多个实施方案利用该性质通过将LF声能分解成多个到达来解决消除问题。代替单一源,根据本公开的扬声器设计可以在扬声器外壳上的重要位置使用多个源。本公开的扬声器设计生成一系列波前(直接波前和反射波前两者),其中在它们之间的滞后时间被策略性地选择以减轻任何可辨别的消除。
可以用几种不同的方式来执行用于实现具有足以解决频率消除的相对较少滞后时间的一系列直接波前和反射波前的扬声器设计。根据一个或多个实施方案,可以采用来自单个驱动器的重定向能量的使用。根据一个或多个替代实施方案,可以采用多个驱动器。两种设计可以借助具有最大设计灵活性的多个驱动器实现方式来实现类似的结果。
为实现良好的性能,能量到达滞后时间和它们各自的能量量值不能是任意的。通过与扩散数论的数学相似性,只有某些组合实际上平滑了响应并避免严重的消除和高峰。计算机优化器程序可以用来提供良好的结果。图3-5中示出了使用优化器程序和实际产品创建的几个模拟。所提出的三种模拟解决方案是基于不同的设计变量,并且各自提供不同的结果。每个频率响应图上都会示出每个源或反射的对应的量值和滞后时间。所有模拟都基于与上述讨论中模型相同的外壳大小和形状。在每种情况下,给新源(及其相关联的壁反射)添加优化量值和滞后时间来减轻消除陷波。因此,在每种解决方案中都保持主要的LF声能及其3.7毫秒的反射。
图3是示出由具有四个源(及其四个对应反射)的设计所致的频率响应300的曲线图,每个源具有相同的LF能量量值。该解决方案具有理想的性质,即相干求和与非相干求和之间仅有6dB的差,这是最好的情况。当求和能量之间的波长在1/4波长内时,发生相干求和(例如,在这种情况下,所有情况都低于大约75Hz)。当求和能量的波长大于1/4波长时,发生非相干求和(例如,在这种情况下,所有情况都高于大约100Hz)。用所需精度水平来执行具有四个源和反射的设计可能非常困难,但并非不可能。图4和图5中模拟的解决方案本质上可能更简单,并假定认为实用和有效的两个源,即主要源和次要源。
图4示出了第二种解决方案,其示出了由具有两个源和两个反射的设计所致的频率响应400。如果一个源位于扬声器的前表面上而第二个源位于扬声器的后表面上,则所示的滞后时间是可实现的。该解决方案在相干求和与非相干求和之间具有9dB的差,这在某些设计中可能很有用。
图5示出了第三种解决方案,其示出了由具有两个源和一个反射的设计所致的频率响应500。在一个源位于扬声器的前表面上而一个源位于扬声器的后表面上的情况下,该解决方案是可实现的。在这种情况下,后方源的安装距离和位置使得直接能量及其反射是不可区分的(例如,<100微秒的滞后时间)。如果能量是真正相干的,则直接能量和反射能量的求和将自然是2倍的因数,其与所示的量值相符。整体响应非常平滑,且相干求和与非相干求和之间的7dB的差非常好。
图6和图7示出了采用图5中模拟的解决方案的示例性扬声器600的细节。特别地,图6是扬声器600的侧视截面图,而图7是图6中所示的扬声器600的分解图。根据一个或多个实施方案,扬声器600可以是专业影院环绕声扬声器。然而,其他扬声器类别可以采用本文描述的各种设计技术并且实现类似的结果。专业电影院环绕声的典型特征是,扬声器可以用安装件604表面安装到壁表面602(例如,剧院壁),安装件604将扬声器固持在离壁4-8英寸之间。扬声器600可以是包括扬声器外壳606、LF驱动器608和至少一个高频(HF)驱动器610的双向扬声器。如图所示,至少一个HF驱动器610可以包括第一HF驱动器610a和第二HF驱动器610b,此两者均适于发射HF声能。然而,根据本公开的双向扬声器设计可以仅使用单个HF驱动器来采用。
LF驱动器608可以包括适于发射LF声能的辐射表面612,有时称为锥体或隔膜。辐射表面612响应于电音频信号而像活塞一样移动以泵送空气并生成声波。辐射表面612的外圆周614可以限定具有辐射表面开口区域的辐射表面开口616。
LF驱动器608和两个HF驱动器610可以具有对应的波导以辅助引导声能。第一HF驱动器610a可以物理地耦合到第一HF波导618a,而第二HF驱动器610b可以物理地耦合到第二HF波导618b。根据本公开的一个或多个实施方案,扬声器设计可以采用比传统低频波导更小的LF波导620。LF波导620限定用于LF声能的第一辐射路径622。LF波导620可以包括邻近LF驱动器608定位(耦合到驱动器)的近端开口624,所述近端开口可以比LF驱动器608的辐射表面612小得多。LF波导620的近端开口624可以限定近端开口区域。因此,近端开口区域可以小于辐射面开口区域。由于近端开口区域可以小于辐射表面开口区域,因此这限定了围绕LF波导620的外表面628的用于LF声能的至少第二辐射路径626。
LF波导620可以远离LF驱动器608延伸到远端开口630(耦合到自由空气)从而限定穿过其中的第一辐射路径622。如本领域普通技术人员所理解,远端开口630可以限定远端开口区域并且被确定大小为适合于波导设计实践,并且支持方向性标准。例如,远端开口区域可以大于近端开口区域。通常,远端开口630越大,对方向性的控制就越多。
LF波导620可以浮动在LF驱动器608的前面。浮动波导不物理连接到其对应的驱动器,而是与LF驱动器分离。如图6所示,LF波导620的近端开口624可以与LF驱动器608间隔开一定距离,以限定LF驱动器608和LF波导620之间的气隙632。气隙632可以至少部分地存在,因为LF波导620的近端开口区域可以小于LF驱动器608的辐射表面开口区域。由于辐射表面612响应于电音频信号而移动,因此LF驱动器608与LF波导620之间的距离以及对应地气隙632的大小可以变化。
通过允许LF波导620浮动可以提供用于在不使用压缩腔并且不强制所有频率进入LF波导620的情况下经由第一辐射路径622从LF驱动器608的辐射表面612直接有效提取较高频率到LF波导620(被设计成支持这些频率)中的手段。因此,对于LF波导620不是最佳的频率可以被允许不同的辐射路径,诸如第二辐射路径626。为实现良好的性能可能需要几条路径。这些额外的辐射路径可以使用多个声学元件来创建并且主要形成为解决不同的频率区域。
三个波导(LF波导620和两个HF波导618)可以由三重波导体634形成。扬声器600可以包括两个内腔,即前腔636和后腔638。后腔638可以将LF驱动器608容纳在通风箱设计中。前腔636可以通过直接封闭在LF驱动器608的前面及LF和HF波导的后面的空间而形成。根据一个或多个实施方案,前腔636可以包括用于LF声能的多达七(7)条出口路径。主要声出口可以是LF波导620自身,其可以是经由第一辐射路径622的分频频率的关键出口。扬声器600中的其他声出口可以包括:前声出口640,其由位于LF驱动器608正上方的扬声器外壳606的前表面644中的前开口642限定;底部声出口646,其位于扬声器外壳606的底部表面648处;两个侧声出口650,其由扬声器外壳606的侧表面654中的细长开口652限定(也参见图7);以及两个后声出口656,其位于扬声器外壳606的后表面658中。
在一些实施方案中,LF波导620可以是位于扬声器外壳606的前表面644中的唯一声出口,并且因此也可以被称为前声出口。在任一情况下,安置在前表面644中的前声出口640可以面向目标方向,诸如观众的方向。扬声器外壳606的后表面658中的后声出口656可以适于面向壁表面602。
如前所述,LF波导620的近端开口624可以小于LF驱动器608的辐射表面开口616。使LF波导620浮动可以经由第一辐射路径622仅强制来自LF驱动器608的LF声能的一部分进入LF波导620。相反,LF声能可以在经由第一辐射路径622的LF波导620与经由至少第二辐射路径626的上面讨论的其他声出口之间划分。
恰好低于LF波导620的有效操作的频率区域可能难以在设计中保持。这些波长可能足够小以受前腔636中的障碍物的很大影响,并且也可能难以与LF波导能量对准。对于恰好低于LF波导620的有效操作的这些频率,三个声出口可能是主要的。它们可以包括邻近LF波导620的前声出口640和位于扬声器600的侧表面654上的两个侧声出口650(图7)。前声出口640可以提供非常直接的辐射路径,用于辐射表面612的上边缘上的LF声能。该出口满足由LF驱动器608产生的所有频率的1/4波长要求。细长侧声出口650可以非常专用于来自辐射表面612的左边缘部分和右边缘部分的LF声能的一小部分。因此,第二辐射路径626可以进一步由LF声能限定,所述LF声能围绕LF波导620的外表面628辐射并离开邻近LF波导620的前声出口640和/或离开侧声出口650。
根据一个或多个实施方案,扬声器600可以包括安置在辐射表面612的一部分(例如底部部分662)前面的负载板660。因此,负载板660可以安置成邻近LF波导620的近端开口624。以这种方式,与第一HF驱动器610a一起,负载板660可以阻挡由LF驱动器608发射的LF声能的一部分。负载板660可以完成几个重要的功能。例如,负载板660可以提供用于波导618、620和LF驱动器608之间的声学处理的安全着陆,这对于抑制陷获在前腔636中的分频能量至关重要。负载板660还可以防止LF声能直接对三重波导体634的后表面664加压。通过使来自LF驱动器608的辐射表面612的底部部分662的LF声能偏转,负载板660可以提供从前腔636出来并且到达后声出口656和/或底部声出口646的第三辐射路径666。所述设计可以允许后腔通风口辐射到前腔636中。替代地,后腔通风口可直接辐射到自由空气中。图6和图7具体地示出了用于扬声器设计中的LF能量的重定向机构(例如,负载板660、三重波导体634和前腔外壳)的细节。
用于扬声器产品(例如,专业影院环绕声)的一个或多个应用使得扬声器600下方的声能可能是最重要的(朝向观众),并且因此扬声器的目标轴线可以从水平面向下大约30°。在此取向上,且特别是向下在30°和60°之间的角度处,扬声器出口滞后时间与上述图5中模拟的解决方案类似。
图8是LF能量波前到达的解释性侧视图,其示出了其中扬声器声辐射图是全向的频率范围内的扬声器600的特性行为。离开LF波导620、前声出口640和侧声出口650的LF声能可以在时间上足够接近(例如,在100微秒内)以充当形成第一LF能量波前870的一个到达A。再参考图5,第一LF能量波前的量值可以是大约0.80。来自离开LF波导620、前声出口640和侧声出口650的LF声能的壁表面602的对应反射同样可以充当形成第二LF能量波前872的第二统一到达B,第二LF能量波前872比第一LF能量波前870滞后第一滞后时间(t1)。如图5中所示,第二LF能量波前872的量值可以是大约0.50并且第一滞后时间t1可以是大约3.70毫秒。离开后声出口656和底部声出口646的LF声能及其对应的壁表面反射可以全部在时间上足够接近以同样充当形成第三LF能量波前874的一个到达C,第三LF能量波前874比第一LF能量波前870滞后第二滞后时间(t2)。第三LF能量波前874可以在第一LF能量波前870和第二LF能量波前872之间到达(即,t2<t1)。如图5所示,第三LF能量波前874的量值可以是大约1.65并且第二滞后时间t2可以为大约1.35毫秒。离开后声出口656和底部声出口646的直接和反射的LF声能由于其靠近壁表面602而充当一个统一的到达。因此,可以按有利滞后时间在目标角度处存在三个主要的LF能量波前到达,即2个源(A和C)及1个反射(B),从而减轻传统表面安装式扬声器设计中出现的任何消除陷波。
图9是描绘了根据本公开的一个或多个实施方案的用于辐射声音的方法的简化的示例性流程图。所述方法可以包括:提供包括具有多个声出口的扬声器外壳606的扬声器600,如步骤905处所提供。主要声出口可以是LF波导620。扬声器600中的其他声出口可以包括:前声出口640,其位于扬声器外壳606的前表面644中;底部声出口646,其位于扬声器外壳606的底部表面648处;两个侧声出口650,其位于扬声器外壳606的侧表面654中;以及至少一个后声出口656,其位于扬声器外壳606的后表面658中。前表面644可以具有面向目标方向的至少一个前声出口,其可以包括LF波导620,并且后表面658可以具有适于面对壁表面602的至少一个后声出口。
所述方法还可以包括提供LF驱动器608,所述LF驱动器安置在扬声器外壳606中并且适于发射LF声能,所述LF声能离开前声出口640、侧声出口650、后声出口656和底部声出口646中的一个或多个,如步骤910处所提供。根据一个或多个实施方案,所述方法还可以包括提供耦合到LF驱动器608的LF波导620,如步骤915处所提供。如上所述,LF波导620可以不物理连接到LF驱动器608,使得只有一部分LF声能经由LF波导离开扬声器外壳。所述方法还可以包括提供安置在扬声器外壳606中以用于发射HF声能的至少一个HF驱动器610,如步骤920所提供。
在步骤925处,可以将电音频信号施加到LF驱动器608和HF驱动器610,从而使它们分别产生LF和HF声能。在步骤930处,可以从至少离开前声出口640并直接沿目标方向辐射的LF声能生成第一LF能量波前870。第一LF能量波前870还可以包括离开侧声出口650并直接沿目标方向辐射的LF声能。在步骤935处,可以从离开前声出口640并反射离开壁表面602的LF声能生成滞后于第一LF能量波前870的第二LF能量波前872。第二LF能量波前872还可以包括离开侧声出口650并反射离开壁表面602的LF声能。在步骤940处,可以从离开后声出口656并直接沿目标方向辐射的LF声能与离开后声出口656并反射离开壁表面602的LF声能相结合地生成在第一LF能量波前870和第二LF能量波前872之间到达的第三LF能量波前874。第三LF能量波前874还可以包括离开底部声出口646并直接沿目标方向辐射的LF声能与离开底部声出口646并反射离开壁表面602的LF声能相结合。
图10是图6和图7中描绘的扬声器的实际200Hz辐射气球1000。扬声器600内的两个源布置的进一步证据是图10中所示的扬声器的辐射图。一个全向源无法实现图案的向下倾斜。辐射图是呈现两个波前的源组合的结果,所述两个波前在向下的角度上汇总在一起。应注意,辐射气球是在没有壁相互作用但却指示存在两个源的情况下测量的。
虽然上文描述了示例性实施方案,但并不意味着这些实施方案描述本发明的所有可能形式。而是,本说明书中所使用的词语为描述性而非限制性词语,并且应理解,可在不脱离本发明的精神和范围的情况下做出各种改变。另外,可以组合各种实施的实施方案的特征以形成本发明的另外的实施方案。

Claims (20)

1.一种扬声器,其包括:
扬声器外壳,其适于表面安装并且包括具有面向目标方向的至少一个前声出口的前表面和具有适于面向壁表面的至少一个后声出口的后表面;以及
低频(LF)驱动器,其安置在所述扬声器外壳中并且适于发射至少离开所述前声出口和所述后声出口的LF声能,离开所述前声出口并直接沿所述目标方向辐射的所述LF声能形成第一LF能量波前,离开所述前声出口并反射离开所述壁表面的所述LF声能形成滞后于所述第一LF能量波前的第二LF能量波前,离开所述后声出口并直接沿所述目标方向辐射的所述LF声能与离开所述后声出口并反射离开所述壁表面的所述LF声能相结合形成在所述第一LF能量波前和所述第二LF能量波前之间到达的第三LF能量波前。
2.根据权利要求1所述的扬声器,其中所述第一LF能量波前具有0.80的量值,所述第二LF能量波前具有0.50的量值并且滞后于所述第一LF能量波前3.70毫秒,并且所述第三LF能量波前具有1.65的量值并且滞后于所述第一LF能量波前1.35毫秒。
3.根据权利要求1所述的扬声器,其中所述扬声器外壳还包括具有侧声出口的至少一个侧表面,离开所述侧声出口并且沿所述目标方向辐射的所述LF声能形成所述第一LF能量波前的部分,离开所述侧声出口并反射离开所述壁表面的所述LF声能形成滞后于所述第一LF能量波前的所述第二LF能量波前的部分。
4.根据权利要求1所述的扬声器,其中所述扬声器外壳还包括具有底部声出口的底部表面,离开所述底部声出口并直接沿所述目标方向辐射的所述LF声能与离开所述底部声出口并反射离开所述壁表面的所述LF声能相结合形成在所述第一LF能量波前和所述第二LF能量波前之间到达的所述第三LF能量波前的部分。
5.根据权利要求1所述的扬声器,其还包括:
LF波导,其耦合到所述LF驱动器从而限定用于所述LF声能的第一辐射路径,其中所述至少一个前声出口包括所述LF波导。
6.根据权利要求5所述的扬声器,其中所述至少一个前声出口包括位于所述LF波导上方的在所述扬声器外壳中的前开口。
7.根据权利要求6所述的扬声器,所述LF波导具有邻近所述LF驱动器定位的近端开口并且远离所述LF驱动器延伸到远端开口以限定通过其中的所述第一辐射路径,所述近端开口具有小于辐射表面开口区域的近端开口区域,以限定围绕所述LF波导并从所述前开口出来的用于所述LF声能的第二辐射路径。
8.根据权利要求7所述的扬声器,其还包括:
负载板,其直接位于所述辐射表面的底部部分的前面并邻近所述LF波导以将所述LF声能的一部分沿着第三辐射路径偏转到所述后声出口。
9.一种扬声器,其包括:
扬声器外壳,其包括具有前声出口的前表面、具有侧声出口的至少一个侧表面、具有至少一个后声出口的后表面以及具有底部声出口的底部表面;
低频(LF)驱动器,其安置在所述扬声器外壳中并且具有适于发射LF声能的辐射表面和由所述辐射表面的外圆周限定的辐射表面开口;
LF波导,其限定用于所述LF声能的第一辐射路径,所述LF波导具有邻近所述LF驱动器定位的近端开口并且远离所述LF驱动器延伸到远端开口以限定通过其中的所述第一辐射路径,所述近端开口具有小于辐射表面开口区域的近端开口区域,以限定围绕所述LF波导并从所述前声出口和所述侧声出口出来的用于所述LF声能的第二辐射路径;以及
负载板,其直接位于所述辐射表面的底部部分的前面并邻近所述LF波导以将所述LF声能的一部分沿着第三辐射路径偏转到所述后声出口和所述底部声出口。
10.根据权利要求9所述的扬声器,其中所述扬声器的目标轴线是从水平面向下大约30°。
11.根据权利要求9所述的扬声器,其中所述扬声器的目标轴线是从水平面向下30°与60°之间。
12.根据权利要求9所述的扬声器,其还包括安置在所述扬声器外壳中的至少一个高频(HF)驱动器。
13.根据权利要求12所述的扬声器,其中所述至少一个HF驱动器包括耦合到第一HF波导的第一HF驱动器和耦合到第二HF波导的第二HF驱动器。
14.根据权利要求13所述的扬声器,其中所述LF波导、所述第一HF波导和所述第二HF波导由三重波导体形成。
15.一种用于辐射声音的方法,其包括:
提供扬声器外壳,所述扬声器外壳包括具有面向目标方向的至少一个前声出口的前表面和具有适于面向壁表面的至少一个后声出口的后表面;
提供低频(LF)驱动器,所述低频(LF)驱动器安置在所述扬声器外壳中并且适于发射至少离开所述前声出口和所述后声出口的LF声能;
从离开所述前声出口并直接沿所述目标方向辐射的所述LF声能生成第一LF能量波前;
从离开所述前声出口并反射离开所述壁表面的所述LF声能生成滞后于所述第一LF能量波前的第二LF能量波前;以及
从离开所述后声出口并直接沿所述目标方向辐射的所述LF声能与离开所述后声出口并反射离开所述壁表面的所述LF声能相结合生成第三LF能量波前,所述第三LF能量波前在所述第一LF能量波前和所述第二LF能量波前之间到达。
16.根据权利要求15所述的方法,其中所述第一LF能量波前具有0.80的量值,所述第二LF能量波前具有0.50的量值且比所述第一LF能量波前滞后3.70毫秒,并且所述第三LF能量波前具有1.65的量值且比所述第一LF能量波前滞后1.35毫秒。
17.根据权利要求15所述的方法,其中提供扬声器外壳还包括:提供包括具有侧声出口的至少一个侧表面的所述扬声器外壳。
18.根据权利要求17所述的方法,其中生成第一LF能量波前包括从离开所述前声出口和所述侧声出口并直接沿所述目标方向辐射的所述LF声能生成所述第一LF能量波前。
19.根据权利要求17所述的方法,其中生成滞后于所述第一LF能量波前的第二LF能量波前包括从离开所述前声出口和所述侧声出口并反射离开所述壁表面的所述LF声能生成所述第二LF能量波前。
20.根据权利要求15所述的方法,其中提供扬声器外壳还包括:提供包括具有底部声出口的底部表面的所述扬声器外壳;以及
其中生成在所述第一LF能量波前和所述第二LF能量波前之间到达的第三LF能量波前包括从离开所述后声出口和所述底部声出口并直接沿所述目标方向辐射的所述LF声能与离开所述后声出口和所述底部声出口并反射离开所述壁表面的所述LF声能相结合生成所述第三LF能量波前。
CN201780006479.1A 2016-01-14 2017-01-16 表面安装式扬声器的多路径声壁耦合 Active CN108464010B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662278952P 2016-01-14 2016-01-14
US201662278959P 2016-01-14 2016-01-14
US62/278,959 2016-01-14
US62/278,952 2016-01-14
PCT/US2017/013649 WO2017124067A1 (en) 2016-01-14 2017-01-16 Multiple path acoustic wall coupling for surface mounted speakers

Publications (2)

Publication Number Publication Date
CN108464010A true CN108464010A (zh) 2018-08-28
CN108464010B CN108464010B (zh) 2020-04-14

Family

ID=59311507

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780006479.1A Active CN108464010B (zh) 2016-01-14 2017-01-16 表面安装式扬声器的多路径声壁耦合
CN201780006489.5A Active CN108464012B (zh) 2016-01-14 2017-01-16 具有浮动波导的双向扬声器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780006489.5A Active CN108464012B (zh) 2016-01-14 2017-01-16 具有浮动波导的双向扬声器

Country Status (4)

Country Link
US (3) US10638216B2 (zh)
CN (2) CN108464010B (zh)
DE (2) DE112017000380T5 (zh)
WO (2) WO2017124068A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10356512B1 (en) * 2018-01-12 2019-07-16 Harman International Industries, Incorporated Unified wavefront full-range waveguide for a loudspeaker
US10869128B2 (en) 2018-08-07 2020-12-15 Pangissimo Llc Modular speaker system
WO2020055522A1 (en) * 2018-09-13 2020-03-19 Endow Audio, LLC Audio loudspeaker and related method
US11234063B2 (en) * 2019-04-09 2022-01-25 Bose Corporation Low profile loudspeakers
WO2020225993A1 (ja) * 2019-05-09 2020-11-12 ソニー株式会社 スピーカ装置、スピーカ、及び構造体
USD938933S1 (en) * 2020-02-11 2021-12-21 RCF S.p.A. Loudspeaker
US20230082496A1 (en) * 2021-09-14 2023-03-16 Panduit Corp. High performance loudspeaker assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235688A (zh) * 1996-08-30 1999-11-17 梅迪亚菲利影音技术公司 锥式反射器/耦合器扬声器系统和方法
CN1765148A (zh) * 2003-03-25 2006-04-26 Toa株式会社 扬声器系统用声波导向结构及喇叭扬声器
US20090310808A1 (en) * 2008-06-17 2009-12-17 Harman International Industries, Incorporated Waveguide
US20100254558A1 (en) * 2009-03-20 2010-10-07 Meyer John D Loudspeaker with passive low frequency directional control
JP2012049663A (ja) * 2010-08-25 2012-03-08 Panasonic Electric Works Co Ltd 天井スピーカ装置
US20120140971A1 (en) * 2009-09-08 2012-06-07 Clements Philip R Inverse Horn Loudspeakers
CN204145714U (zh) * 2014-08-20 2015-02-04 丁剑波 一种双扬声器对称推挽式超低音箱
CN204652635U (zh) * 2015-06-10 2015-09-16 王莎莎 一种复合式音箱装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122315A (en) * 1977-06-13 1978-10-24 Pemcor, Inc. Compact, multiple-element speaker system
US7010138B1 (en) * 1996-09-03 2006-03-07 New Transducers Limited Loudspeakers
US5844176A (en) * 1996-09-19 1998-12-01 Clark; Steven Speaker enclosure having parallel porting channels for mid-range and bass speakers
IL142430A0 (en) 1998-11-06 2002-03-10 New Transducers Ltd Loudspeakers comprising a phase uncorrelated diffuse sound source
US7136498B1 (en) 1999-12-16 2006-11-14 Koninklijke Philips Electronics N.V. Loudspeaker having a dual chamber acoustical enclosure with two external vents and one internal vent
US6578660B2 (en) * 2000-06-21 2003-06-17 Ronald K. Taylor Speaker enclosure venturi expander
US7433483B2 (en) * 2001-02-09 2008-10-07 Thx Ltd. Narrow profile speaker configurations and systems
US7046816B2 (en) * 2001-09-18 2006-05-16 Vandersteen Richard J Coincident source stereo speaker
US8718310B2 (en) 2001-10-19 2014-05-06 Qsc Holdings, Inc. Multiple aperture speaker assembly
US6981570B2 (en) * 2002-05-09 2006-01-03 Dalbec Richard H Loudspeaker system with common low and high frequency horn mounting
ITBS20020063A1 (it) 2002-07-09 2004-01-09 Outline Di Noselli G & S N C Guida d'onda a singola e multipla riflessione
US6766027B2 (en) * 2002-08-29 2004-07-20 Dana Innovations Elliptical flushmount speaker
US20040125969A1 (en) 2002-12-26 2004-07-01 Kieltyka William J. Tri axial speaker system
JP2005006053A (ja) 2003-06-12 2005-01-06 Tadashi Masuda 低音用スピーカー装置及び該低音用スピーカー装置を備えたマルチウェイスピーカー装置
FR2875367B1 (fr) * 2004-09-13 2006-12-15 Acoustics Sa L Systeme de sonorisation directivite reglable
US7920712B2 (en) 2005-06-10 2011-04-05 Loud Technologies Inc. Coaxial mid-frequency and high-frequency loudspeaker
US7835537B2 (en) * 2005-10-13 2010-11-16 Cheney Brian E Loudspeaker including slotted waveguide for enhanced directivity and associated methods
US7513332B2 (en) 2007-09-12 2009-04-07 Moore Dana A Convertible folded horn enclosure with improved compactness
US8280091B2 (en) 2008-06-11 2012-10-02 Harman International Industries, Incorporated Dual compression drivers and phasing plugs for compression drivers
US8634586B2 (en) 2009-06-26 2014-01-21 Polk Audio, Inc. Ceiling-mounted loudspeaker enclosure
FR2955444B1 (fr) 2010-01-15 2012-08-03 Phl Audio Systeme de haut-parleur coaxial a chambre de compression
DE102010021879A1 (de) 2010-05-28 2011-12-01 Frank Held Lautsprechervorrichtung mit umlaufender, trichterförmiger Schallaustrittsöffnung
US8995697B2 (en) 2010-06-16 2015-03-31 Definitive Technology, Llc Bipolar speaker with improved clarity
US9226061B2 (en) * 2013-08-28 2015-12-29 Daniel T. Lilley, Jr. Speaker assembly
SG2013094784A (en) * 2013-12-20 2015-07-30 Dream Audiolab Pte Ltd Improved omnidirectional speaker with soundwave deflectors
WO2015105809A1 (en) 2014-01-10 2015-07-16 Dolby Laboratories Licensing Corporation Reflected sound rendering using downward firing drivers
US9894433B2 (en) 2014-06-16 2018-02-13 PK Event Services Inc. Audio wave guide
US10757506B2 (en) * 2014-08-28 2020-08-25 Nanyang Technological University Amplifier circuit for a parametric transducer and a related audio device
US9392358B2 (en) 2014-10-28 2016-07-12 Robert Bosch Gmbh Waveguide for shaping sound waves
CN104837090B (zh) 2015-05-11 2018-04-27 顾康 一种音箱
US9955260B2 (en) 2016-05-25 2018-04-24 Harman International Industries, Incorporated Asymmetrical passive group delay beamforming
US10397692B2 (en) 2017-03-08 2019-08-27 Thomas A. Janes Multi-driver array audio speaker system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235688A (zh) * 1996-08-30 1999-11-17 梅迪亚菲利影音技术公司 锥式反射器/耦合器扬声器系统和方法
CN1765148A (zh) * 2003-03-25 2006-04-26 Toa株式会社 扬声器系统用声波导向结构及喇叭扬声器
US20090310808A1 (en) * 2008-06-17 2009-12-17 Harman International Industries, Incorporated Waveguide
US20100254558A1 (en) * 2009-03-20 2010-10-07 Meyer John D Loudspeaker with passive low frequency directional control
US20120140971A1 (en) * 2009-09-08 2012-06-07 Clements Philip R Inverse Horn Loudspeakers
JP2012049663A (ja) * 2010-08-25 2012-03-08 Panasonic Electric Works Co Ltd 天井スピーカ装置
CN204145714U (zh) * 2014-08-20 2015-02-04 丁剑波 一种双扬声器对称推挽式超低音箱
CN204652635U (zh) * 2015-06-10 2015-09-16 王莎莎 一种复合式音箱装置

Also Published As

Publication number Publication date
US10638216B2 (en) 2020-04-28
US11336992B2 (en) 2022-05-17
WO2017124067A1 (en) 2017-07-20
WO2017124068A1 (en) 2017-07-20
CN108464010B (zh) 2020-04-14
CN108464012A (zh) 2018-08-28
US20190020937A1 (en) 2019-01-17
CN108464012B (zh) 2020-04-07
DE112017000380T5 (de) 2018-09-27
US20190037303A1 (en) 2019-01-31
US20200236459A1 (en) 2020-07-23
US10440465B2 (en) 2019-10-08
DE112017000373T5 (de) 2018-09-27

Similar Documents

Publication Publication Date Title
CN108464010A (zh) 表面安装式扬声器的多路径声壁耦合
EP3162084B1 (en) A compact wideband bass and midrange horn-loaded speaker system
US4410063A (en) Loudspeaker system
AU2003208210B2 (en) Loudspeaker with shaped sound field
US4348549A (en) Loudspeaker system
CN1237732C (zh) 采用参量音响系统产生虚拟扬声器的系统和方法
JP5676783B2 (ja) 音響ホーンゲイン管理
CN108702561A (zh) 耳机
JPH04505241A (ja) 拡声器及びそのホーン
CN1235688A (zh) 锥式反射器/耦合器扬声器系统和方法
KR20180059423A (ko) 사운드바
US4850452A (en) Loudspeaker structure
CN107079208A (zh) 具有波导的扩音装置
US9754578B2 (en) Loudspeaker horn and cabinet
US9538282B2 (en) Acoustically transparent waveguide
WO1996011558A1 (en) Omnidirectional sound source
WO1999056512A1 (en) Apparatus for the redistribution of acoustic energy
US8887861B2 (en) Manipulated vortex waveguide loudspeaker alignment
WO2001087025A1 (en) Apparatus for the redistribution of acoustic energy
PT3063950T (pt) Sistema de som com diretividade ajustável melhorada
CN207835763U (zh) 一种带有高音号角的音响体
CN210327953U (zh) 一种双高音宽指向性号角
KR102080880B1 (ko) 저음 주파수 가변 기술이 적용된 슬림형 스피커
WO2022221582A1 (en) Narrow aperture waveguide loudspeaker for use with flat panel display devices
KR100320054B1 (ko) 원뿔형반사기/결합기스피커시스템및방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant