CN108462534A - 一种用于可见光通信的信号反转视觉追踪方法及其系统 - Google Patents

一种用于可见光通信的信号反转视觉追踪方法及其系统 Download PDF

Info

Publication number
CN108462534A
CN108462534A CN201810184129.0A CN201810184129A CN108462534A CN 108462534 A CN108462534 A CN 108462534A CN 201810184129 A CN201810184129 A CN 201810184129A CN 108462534 A CN108462534 A CN 108462534A
Authority
CN
China
Prior art keywords
signal
led array
error correction
information
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810184129.0A
Other languages
English (en)
Other versions
CN108462534B (zh
Inventor
吴玉香
黄谋潇
关伟鹏
陈艺荣
方良韬
谢灿宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810184129.0A priority Critical patent/CN108462534B/zh
Publication of CN108462534A publication Critical patent/CN108462534A/zh
Application granted granted Critical
Publication of CN108462534B publication Critical patent/CN108462534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/524Pulse modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20064Wavelet transform [DWT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种用于可见光通信的信号反转视觉追踪方法及其系统,由LED阵列、分级编码器、纠错编码器组成的发射机和由高速相机、图像处理单元、分级解码器、纠错解码器组成的接收机。其中,分级编码器用二维快速Haar小波逆变换有限化输入信号;LED阵列改变脉冲宽度调节亮度作为发射信号;高速相机同步接收发射信号;图像处理单元用于LED阵列识别、追踪、位置估计和亮度提取,用M序列来检测识别、用信号反转方法追踪;分级解码器用二维快速Haar小波变换归一化亮度。本发明分别用LED和高速相机作为发射机和接收机,运用信号反转视觉追踪方法,在运动状态下准确追踪LED,解决了运动模糊,提高了可见光数据传输率。

Description

一种用于可见光通信的信号反转视觉追踪方法及其系统
技术领域
本发明涉及可见光通信技术领域和计算机视觉领域,具体涉及一种用于可见光通信的信号反转视觉追踪方法及其系统。
背景技术
近年来,被誉为“绿色照明”的半导体照明技术迅速发展。与传统的白炽灯等照明光源相比,LED具有低功耗、寿命长、尺寸小、绿色环保等优点。与此同时,LED更具有调制性能好、响应灵敏度高等优势。可将信号以人眼无法识别的高频加载到LED上进行传输,且LED发出的光频段不需要许可授权,可以实现低成本高宽带且传输速率高的无线通讯,进而催生出一门能够实现照明与通信一体化的技术——可见光通信技术。
随着LED在照明、显示上替代传统光源,使得这些设施在原有基础上具备了传输信息的功能。另外,由于图像传感器在可见光通信领域的应用,使得接收端除了能够接收到数据外还能够准确判断发射端与接收端的相对位置,这就为可见光通信应用于室内导航、机器人或车辆之间的精确控制、准确的位置测量等提供了可能。
可见光通信技术在智能家居、智能汽车、智能办公室、绿色信息通信技术、个性化医疗服务、无线电频率识别、无线局域网、安全系统、无钥匙大门、智能机器人等领域有广阔的应用前景。应用可分为室内应用和室外应用两大类。其中室外应用中可用于智能交通系统,包括车辆与车辆之间、车辆与路灯等基础设施之间信息的传递。前者可以传递路况、刹车等信息进而有效避免交通事故,后者可将车辆车速、车牌等相关信息传递到交通检测系统中,实现对车辆信息的采集工作。
因此,寻求一种高效的用于可见光通信的视觉追踪方法和系统就变得极为必要,以便准确地定位目标、检测识别目标、有效抑制LED灯的闪烁并提高数据传输率。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种用于可见光通信的信号反转视觉追踪方法及其系统。
根据公开的实施例,本发明的第一方面公开了一种用于可见光通信的信号反转视觉追踪方法,所述的信号反转视觉追踪方法包括下列步骤:
S1、将输入信息通过纠错编码器进行纠错编码后生成矩阵信息,然后分级编码器对生成的矩阵信息进行二维快速Haar小波逆变换并实现脉冲宽度调制,然后LED阵列将通过改变产生的非负脉冲宽度生成亮度的矩阵信息作为发射信号进行发射;
S2、接收机的高速相机通过光通道接收发射信号,图像处理单元对接收到的信号进行解码处理,实现对LED阵列的搜索、检测、追踪、位置估计,提取并归一化亮度矩阵信息,然后分级解码器将归一化的亮度矩阵信息进行二维快速Haar小波变换实现解码,最后纠错解码器进行纠错解码后得到还原的输入信息。
进一步地,所述的步骤S1过程如下:
S11、纠错编码器使用Turbo码对输入信息进行纠错编码后生成矩阵信息;
S12、分级编码器将生成的矩阵信息进行二维快速Haar小波逆变换,使其结果变为L种亮度模式以便进行脉冲宽度调制,其中L为大于1的正整数;
S13、通过改变LED阵列中每一个LED灯的照明周期即进行脉冲宽度调制,其中,LED阵列中每一个LED灯表达L种亮度模式;
S14、每一个LED灯不同的亮度信息组合得到规格为N×N的矩阵,其中N为大于1的正整数,作为发射信号发送给接收机。
进一步地,所述的步骤S2过程如下:
S21、接收机的高速相机通过光通道同步接收发射机发出的发射信号;
S22、图像处理单元上有CMOS图像传感器并且每个像素都输出一个与接收到的光强度对应的光电流;
S23、使用M序列来进行LED阵列检测识别,使用信号反转方法追踪LED阵列,通过接收到的图像信息估计LED位置,提取并归一化亮度矩阵信息;
S24、通过分级解码器将归一化的亮度矩阵信息进行二维快速Haar小波变换;
S25、通过纠错解码器使用Turbo码进行纠错解码。
进一步地,L取值为5,N取值为16。
根据公开的实施例,本发明的第二方面公开了一种用于可见光通信的信号反转视觉追踪系统,包括发射机和接收机,所述的发射机包括顺序连接的纠错编码器、分级编码器和LED阵列,所述的接收机包括顺序连接的高速相机、图像处理单元、分级解码器和纠错解码器,
其中,所述的纠错编码器将输入信息进行纠错编码后生成矩阵信息,所述的分级编码器将生成的矩阵信息进行二维快速Haar小波逆变换,使其结果变为L种亮度模式并进行脉冲宽度调制,其中L为大于1的正整数,所述的LED阵列根据脉冲宽度调制得到的矩阵信息产生发射信号传递给接收机;
其中,所述的高速相机同步接收发射信号;所述的图像处理单元用于LED阵列识别、追踪、位置估计和亮度提取,用M序列来检测识别、用信号反转方法追踪;所述的分级解码器用二维快速Haar小波变换归一化亮度的矩阵信息;所述的纠错解码器进行纠错编码得到还原的输入信息。
进一步地,所述的纠错编码器和所述的纠错解码器采用Turbo码作为发射机和接收机的纠错方案。
进一步地,通过改变每一个LED灯的照明周期即进行脉冲宽度调制,每一个LED灯表达L种亮度模式,每一个LED灯不同的亮度信息组合得到规格为N×N的矩阵。
进一步地,所述的LED阵列为N2个LED灯组成的N×N的矩阵。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明使用了分级编码方案,极大地利用了信道特性,使低优先级数据也能被检测到。
(2)本发明使用M序列实现LED阵列检测,提出对每一个信号做倒置得到反转信号,并通过向反转信号添加信号获得模式上的LED灯以追踪LED阵列的方法和系统,有效地抑制了LED灯的闪烁并提高了数据传输率。
附图说明
图1是本发明中公开的用于可见光通信的信号反转视觉追踪方法的流程示意图;
图2是本发明中LED阵列脉宽与亮度关系示意图;
图3是本发明中数据包格式示意图;
图4是本发明中信号反转示意图;
图5是本发明中公开的用于可见光通信的信号反转视觉追踪系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本实施例公开了一种适用于可见光通信的信号反转视觉追踪方法,如图1所示,具体包括下列步骤:
S1、将输入信息通过纠错编码器进行纠错编码后生成矩阵信息,然后分级编码器对生成的矩阵信息进行二维快速Haar小波逆变换并实现脉冲宽度调制,然后LED阵列将通过改变产生的非负脉冲宽度生成亮度的矩阵信息作为发射信号进行发射;
S2、接收机的高速相机通过光通道接收发射信号,图像处理单元对接收到的信号进行解码处理,实现对LED阵列的搜索、检测、追踪、位置估计,提取并归一化亮度矩阵信息,然后分级解码器将归一化的亮度矩阵信息进行二维快速Haar小波变换实现解码,最后纠错解码器进行纠错解码后得到还原的输入信息。
其中,步骤S1的过程如下:
S11、纠错编码器使用Turbo码作为输入信息的纠错方案。
S12、用发射机中的分级编码器将步骤S11中生成的矩阵信息进行二维快速Haar小波逆变换,使其结果变为有限的五种亮度模式以便进行脉冲宽度调制。
S13、通过改变每一个LED灯的照明周期即进行脉冲宽度调制,每一个LED灯可表达五种亮度模式。
S14、每一个LED灯不同的亮度信息组合得到规格为16×16的矩阵,作为发射信号发送给接收机。
其中,步骤S2的过程如下:
S21、接收机上的高速相机通过光通道同步接收发射机发出的发射信号。
S22、图像处理单元上有CMOS图像传感器并且每个像素都输出一个与接收到的光强度对应的光电流。
S23、使用M序列来进行LED阵列检测识别;使用信号反转方法追踪LED阵列;通过接收到的图像信息估计LED位置;提取并归一化亮度矩阵信息。
S24、将归一化的亮度矩阵信息进行二维快速Haar小波变换。
S25、纠错解码器使用Turbo码作为接收机端的纠错方案。
实施例二
本实施例公开了一种适用于可见光通信的信号反转视觉追踪系统,如图2所示,由256个LED灯组成的规格为16×16的LED阵列、分级编码器、纠错编码器组成的发射机和由高速相机、图像处理单元、分级解码器、纠错解码器组成的接收机组成系统;所述的分级编码器对输入的矩阵数据应用二维快速Haar小波逆变换,根据优先级将矩阵分为三个块:高优先级、中优先级、低优先级,从而得到变换后的矩阵范围的有限的五种亮度信息模式,分配高优先级数据至低空间频率成分和低优先级至高空间频率成分,使得能够通过脉冲宽度调节表达五种特定的亮度信息;所述的解码编码器对通过光通道接收到的图像进行解调,包括:检测估计图像中LED灯位置、提取并归一化接收到的亮度矩阵信息、对归一化的亮度矩阵信息进行二维快速Haar小波变换,通过解调使亮度级信息再一次转换成空间频率信息,然后进行阈值检测。
分级编码器对输入的矩阵数据应用二维快速Haar小波逆变换,根据优先级将矩阵分为三个块:高优先级、中优先级、低优先级,从而得到变换后的矩阵范围的有限的五种亮度信息模式,由于LED之间的差异和图像中像素点间隙的影响,可通过进行脉冲宽度调制来表达不同模式的亮度信息。
通过改变每一个LED灯的照明周期即进行脉冲宽度调制,每一个LED灯可表达五种亮度模式;
每一个LED灯不同的亮度信息组合得到规格为16×16的矩阵,使所述的由256个LED灯组成的规格为16×16的LED阵列发出发射信号并通过光通道发送给接收机。
高速相机通过光通道采集图像信息。
图像处理单元搜寻并检测数据标头中的LED阵列并剪出相邻的LED阵列区域,使接收机在数据部分追踪LED阵列;使用从多项式生成的15位M序列并将生成的数据分配给二维图像实现检测LED阵列;对每一个信号做倒置得到反转信号,并通过向反转信号添加信号获得模式上的LED灯以追踪LED阵列。
解码编码器对接收到的图像进行解调,包括:检测估计图像中LED灯位置、提取并归一化接收到的亮度矩阵信息、对归一化的亮度矩阵信息进行二维快速Haar小波变换,通过解调,使亮度级信息再一次转换成了空间频率信息,然后进行阈值检测。
实施例三
如图1所示,一种用于可见光通信的信号反转视觉追踪系统,包括:由256个LED灯组成的规格为16×16的LED阵列、分级编码器、纠错编码器组成的发射机和由高速相机、图像处理单元、分级解码器、纠错解码器组成的接收机。
LED阵列中LED灯产生脉宽为T非负脉冲,T为持续时间,通过改变脉宽T,LED可表达不同的亮度信息。使数据率为1/T,则LED阵列的位率为256/T,每一个LED灯发送不同位,组成矩阵而作为发射信号;接收机上的高速相机通过光通道接收发射信号,图像处理单元对接收到的信号进行解码处理,实现对LED阵列的检测和追踪。
如图2所示,用分级编码器对输入的矩阵数据应用二维快速Haar小波逆变换,根据优先级将矩阵分为三个块:高优先级、中优先级、低优先级,从而得到变换后的矩阵范围的有限的五种亮度信息模式,由于LED之间的差异和图像中像素点间隙的影响,可通过进行脉冲宽度调制来表达不同模式的亮度信息。
通过改变每一个LED灯的照明周期即进行脉冲宽度调制,每一个LED灯可表达五种亮度模式;每一个LED灯不同的亮度信息组合得到规格为16×16的矩阵,作为发射信号通过光通道发送给接收机;对通过光通道接收到的图像进行解调,包括:检测估计图像中LED灯位置、提取并归一化接收到的亮度矩阵信息、对归一化的亮度矩阵信息进行二维快速Haar小波变换,通过解调,使亮度级信息再一次转换成了空间频率信息,然后进行阈值检测。
如图3所示,搜寻并检测数据标头中的LED阵列并剪出相邻的LED阵列区域,使接收机在数据部分追踪LED阵列。
如图4所示,检测和追踪LED阵列方法包括:由于M序列是一种伪随机序列且具有良好的自相关特性,故使用从多项式生成的15位M序列并将生成的数据分配给二维图像实现检测LED阵列;反转信号是原信号的倒置,对每一个信号做倒置得到反转信号,并通过向反转信号添加信号获得模式上的LED灯以追踪LED阵列,可有效抑制LED的闪烁并提高数据率。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种用于可见光通信的信号反转视觉追踪方法,其特征在于,所述的信号反转视觉追踪方法包括下列步骤:
S1、将输入信息通过纠错编码器进行纠错编码后生成矩阵信息,然后分级编码器对生成的矩阵信息进行二维快速Haar小波逆变换并实现脉冲宽度调制,然后LED阵列将通过改变产生的非负脉冲宽度生成亮度的矩阵信息作为发射信号进行发射;
S2、接收机的高速相机通过光通道接收发射信号,图像处理单元对接收到的信号进行解码处理,实现对LED阵列的搜索、检测、追踪、位置估计,提取并归一化亮度矩阵信息,然后分级解码器将归一化的亮度矩阵信息进行二维快速Haar小波变换实现解码,最后纠错解码器进行纠错解码后得到还原的输入信息。
2.根据权利要求1所述的一种用于可见光通信的信号反转视觉追踪方法,其特征在于,所述的步骤S1过程如下:
S11、纠错编码器使用Turbo码对输入信息进行纠错编码后生成矩阵信息;
S12、分级编码器将生成的矩阵信息进行二维快速Haar小波逆变换,使其结果变为L种亮度模式以便进行脉冲宽度调制,其中L为大于1的正整数;
S13、通过改变LED阵列中每一个LED灯的照明周期即进行脉冲宽度调制,其中,LED阵列中每一个LED灯表达L种亮度模式;
S14、每一个LED灯不同的亮度信息组合得到规格为N×N的矩阵,其中N为大于1的正整数,作为发射信号发送给接收机。
3.根据权利要求1所述的一种用于可见光通信的信号反转视觉追踪方法,其特征在于,所述的步骤S2过程如下:
S21、接收机的高速相机通过光通道同步接收发射机发出的发射信号;
S22、图像处理单元上有CMOS图像传感器并且每个像素都输出一个与接收到的光强度对应的光电流;
S23、使用M序列来进行LED阵列检测识别,使用信号反转方法追踪LED阵列,通过接收到的图像信息估计LED位置,提取并归一化亮度矩阵信息;
S24、通过分级解码器将归一化的亮度矩阵信息进行二维快速Haar小波变换;
S25、通过纠错解码器使用Turbo码进行纠错解码。
4.根据权利要求2所述的一种用于可见光通信的信号反转视觉追踪方法,其特征在于,L取值为5,N取值为16。
5.一种用于可见光通信的信号反转视觉追踪系统,包括发射机和接收机,其特征在于,所述的发射机包括顺序连接的纠错编码器、分级编码器和LED阵列,所述的接收机包括顺序连接的高速相机、图像处理单元、分级解码器和纠错解码器,
其中,所述的纠错编码器将输入信息进行纠错编码后生成矩阵信息,所述的分级编码器将生成的矩阵信息进行二维快速Haar小波逆变换,使其结果变为L种亮度模式并进行脉冲宽度调制,其中L为大于1的正整数,所述的LED阵列根据脉冲宽度调制得到的矩阵信息产生发射信号传递给接收机;
其中,所述的高速相机同步接收发射信号;所述的图像处理单元用于LED阵列识别、追踪、位置估计和亮度提取,用M序列来检测识别、用信号反转方法追踪;所述的分级解码器用二维快速Haar小波变换归一化亮度的矩阵信息;所述的纠错解码器进行纠错编码得到还原的输入信息。
6.根据权利要求5所述的一种用于可见光通信的信号反转视觉追踪系统,其特征在于,所述的纠错编码器和所述的纠错解码器采用Turbo码作为发射机和接收机的纠错方案。
7.根据权利要求5所述的一种用于可见光通信的信号反转视觉追踪系统,其特征在于,通过改变每一个LED灯的照明周期即进行脉冲宽度调制,每一个LED灯表达L种亮度模式,每一个LED灯不同的亮度信息组合得到规格为N×N的矩阵。
8.根据权利要求7所述的一种用于可见光通信的信号反转视觉追踪系统,其特征在于,所述的LED阵列为N2个LED灯组成的N×N的矩阵。
CN201810184129.0A 2018-03-07 2018-03-07 一种用于可见光通信的信号反转视觉追踪方法及其系统 Active CN108462534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810184129.0A CN108462534B (zh) 2018-03-07 2018-03-07 一种用于可见光通信的信号反转视觉追踪方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810184129.0A CN108462534B (zh) 2018-03-07 2018-03-07 一种用于可见光通信的信号反转视觉追踪方法及其系统

Publications (2)

Publication Number Publication Date
CN108462534A true CN108462534A (zh) 2018-08-28
CN108462534B CN108462534B (zh) 2023-04-25

Family

ID=63217656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810184129.0A Active CN108462534B (zh) 2018-03-07 2018-03-07 一种用于可见光通信的信号反转视觉追踪方法及其系统

Country Status (1)

Country Link
CN (1) CN108462534B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077516A1 (zh) * 2018-10-16 2020-04-23 华北电力大学扬中智能电气研究中心 一种led阵列信号检测方法及装置
CN111193541A (zh) * 2018-11-15 2020-05-22 财团法人工业技术研究院 水下无线通信装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082860A2 (de) * 2009-12-15 2011-07-14 Siemens Aktiengesellschaft Verfahren und vorrichtung zur optischen übertragung von daten
CN104620519A (zh) * 2012-09-10 2015-05-13 皇家飞利浦有限公司 光检测系统和方法
CN106788724A (zh) * 2016-12-09 2017-05-31 暨南大学 一种基于极化码的可见光通信系统及其实现方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082860A2 (de) * 2009-12-15 2011-07-14 Siemens Aktiengesellschaft Verfahren und vorrichtung zur optischen übertragung von daten
CN104620519A (zh) * 2012-09-10 2015-05-13 皇家飞利浦有限公司 光检测系统和方法
CN106788724A (zh) * 2016-12-09 2017-05-31 暨南大学 一种基于极化码的可见光通信系统及其实现方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张冬娟等人: "基于机器视觉的条码信息在线检测系统研究" *
曾沐冬: "视觉MIMO光通信调制方法的比较研究" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077516A1 (zh) * 2018-10-16 2020-04-23 华北电力大学扬中智能电气研究中心 一种led阵列信号检测方法及装置
CN111193541A (zh) * 2018-11-15 2020-05-22 财团法人工业技术研究院 水下无线通信装置及方法

Also Published As

Publication number Publication date
CN108462534B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
Fang et al. High-speed indoor navigation system based on visible light and mobile phone
CN107421506B (zh) 一种基于室内可见光通信的视觉追踪定位系统和方法
Ji et al. Vehicular visible light communications with LED taillight and rolling shutter camera
CN108572348A (zh) 一种室内可见光视觉定位方法及其硬件系统
CN111610484B (zh) 一种基于occ的自动驾驶车辆跟踪定位方法
CN107864013B (zh) 面向无人驾驶车辆的自适应成像定位导航系统及方法
CN107483114B (zh) 多路指示灯数据并行传输系统及方法
Pham et al. Deep learning for optical vehicular communication
Hasan et al. Optical camera communication in vehicular applications: A review
CN108462534A (zh) 一种用于可见光通信的信号反转视觉追踪方法及其系统
Sun et al. An LED detection and recognition method based on deep learning in vehicle optical camera communication
CN208015731U (zh) 一种用于可见光通信的信号反转视觉追踪系统
CN107370538B (zh) 无线数据传输方法、相机和系统
Wang et al. Smart visual beacons with asynchronous optical communications using event cameras
He et al. A deep learning-assisted visible light positioning scheme for vehicles with image sensor
Teli et al. Selective capture based high-speed optical vehicular signaling system
Marcu et al. Flicker free optical camera communication for cameras capturing 30 frames per second
Vitek et al. Influence of camera setting on vehicle-to-vehicle vlc employing undersampled phase shift on-off keying
Tang et al. Sequential maximum likelihood decoding incorporating reliability determination for image sensor communication
CN108736972A (zh) 基于its-vlc的led视觉检测与跟踪方法及其系统
CN109004981B (zh) 一种基于模糊效应的视觉可见光通信检测方法
Kordavani et al. Experimental investigation of an adaptive v2v optical camera communications system
CN212627915U (zh) 一种cmos摄像头可见光通信的数据保密传输装置
Iwasaki et al. Basic experiments on paralle wireless optical communication for ITS
CN108449138A (zh) 一种用于可见光通信的m序列视觉检测方法及其系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant