CN108447954B - 低发散角的超辐射发光二极管结构 - Google Patents

低发散角的超辐射发光二极管结构 Download PDF

Info

Publication number
CN108447954B
CN108447954B CN201810211539.XA CN201810211539A CN108447954B CN 108447954 B CN108447954 B CN 108447954B CN 201810211539 A CN201810211539 A CN 201810211539A CN 108447954 B CN108447954 B CN 108447954B
Authority
CN
China
Prior art keywords
layer
waveguide
quantum well
substrate
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810211539.XA
Other languages
English (en)
Other versions
CN108447954A (zh
Inventor
郭文涛
谭满清
熊迪
赵亚利
曹营春
万丽丽
刘珩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201810211539.XA priority Critical patent/CN108447954B/zh
Publication of CN108447954A publication Critical patent/CN108447954A/zh
Application granted granted Critical
Publication of CN108447954B publication Critical patent/CN108447954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种低发散角的超辐射发光二极管结构,包括:一衬底;一缓冲层,其制作在衬底上;一无源波导芯层,其制作在缓冲层上;一空间层,其制作在无源波导芯层上;一应变量子阱结构,其制作在空间层上;一缓冲层,其制作在应变量子阱结构上;一电流阻挡层,其制作在应变量子阱结构上;一欧姆接触层,其制作在电流阻挡层的上面,形成基片;两个镀膜,其位于基片两端。本发明可以进一步降低器件的光限制因子,增大器件的等效横向光斑尺寸,降低器件的串联电阻和热阻,提高器件的电光转换效率,减少器件产生的废热,从而有效抑制器件热饱和。

Description

低发散角的超辐射发光二极管结构
技术领域
本发明属于半导体光电子器件领域,特别是指一种低发散角的超辐射发光二极管结构,超辐射发光二极管是光纤陀螺的核心器件,在惯性导航领域具有重要应用。
背景技术
随着光纤陀螺技术的不断发展,对超辐射发光二极管模块提出了更高的要求。在同等工作电流下,如何进一步提高超辐射发光二极管模块的输出功率成为制约光纤陀螺技术发展的技术瓶颈。传统结构的超辐射发光二极管输出光斑为椭圆光斑,其远场垂直发散角大于水平发散角,从而造成管芯与光纤的耦合效率很低,已成为影响模块尾纤输出功率的核心因素。由于超辐射发光二极管输出光场为椭圆光斑,其与圆形的单模光纤芯径不匹配,从而造成耦合效率仅有30%左右,且对准容差很小。如何降低超辐射发光二极管的远场垂直发散角,使输出光斑由椭圆光斑转换为近似圆形光斑,实现超辐射发光二极管光斑与单模光纤的匹配,提高耦合效率,是提高超辐射发光二极管模块输出功率的关键。
发明内容
本发明的目的在于,提出了一种低发散角的超辐射发光二极管结构,该超辐射发光二极管结构的应变量子阱结构中的波导采用弯曲波导吸收区结构,有源区采用应变量子阱结构,并在有源区下面生长一层无源波导芯层。采用这种弯曲波导吸收区结构,相比于传统的斜波导超辐射发光二极管结构,能够进一步减小腔面反射率,其出光腔面反射率能达到0.001%以下,更好的抑制受激辐射,提高放大自发辐射效率,提高光谱质量。采用应变量子阱结构能够提高器件的电光转换效率,在同等电流下,实现更高功率的输出。在有源区下面生长一层无源波导芯层,中间用n-InP空间层隔开,形成非对称双波导结构,这种结构能够将有源区产生的光扩展到非对称波导层,下波导层由于增加了无源波导芯层,其厚度远大于上波导层,这样设计有两个好处,一方面是增加垂直方向的出光面,使出光面的光斑更接近圆形光斑,降低远场垂直发散角,提高超辐射发光二极管和光纤的耦合效率,提高其偏调容差,降低耦合封装工艺难度;另一方面,增加N型波导层的厚度,能够使得器件的光场中心偏离有源区中心,从而进一步降低器件的光限制因子,增大器件的等效横向光斑尺寸,降低器件的串联电阻和热阻,提高器件的电光转换效率,减少器件产生的废热,从而有效抑制器件热饱和。
本发明的提供一种低发散角的超辐射发光二极管结构,包括:
一衬底;
一缓冲层,其制作在衬底上;
一无源波导芯层,其制作在缓冲层上;
一空间层,其制作在无源波导芯层上;
一应变量子阱结构,其制作在空间层上;
一缓冲层,其制作在应变量子阱结构上;
一电流阻挡层,其制作在应变量子阱结构上;
一欧姆接触层,其制作在电流阻挡层的上面,形成基片;
两个镀膜,其位于基片两端。
从上述技术方案可以看出,本发明具有以下有益效果:
(1)波导结构采用弯曲波导吸收区结构,出光腔面反射率低于0.001%,抑制受激辐射,实现超辐射光输出;
(2)在有源区下面生长一层无源波导芯层,中间用n-InP空间层隔开,形成非对称双波导结构,该结构能够降低远场垂直发散角,降低器件的串联电阻和热阻,提高器件的电光转换效率。
附图说明
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明,其中:
图1是超辐射发光二极管结构示意图;
图2是超辐射发光二极管位于热沉上的示意图;
图3是超辐射发光二极管出射光与水平方向夹角的示意图。
具体实施方式
请参阅图1-图3所示,本发明提供一种低发散角的超辐射发光二极管结构,包括:
一衬底1,所述衬底1的材料为n-InP;
一缓冲层2,其制作在衬底1上,缓冲层2的材料为n-InP,该缓冲层2的厚度为0.3-0.7μm;
一无源波导芯层3,其制作在缓冲层2上,所述无源波导芯层3的材料为n-InGaAsP,厚度为45-55nm;
InGaAsP无源波导层厚度减小时,超辐射发光二极管的出射光在水平方向上的远场发散角没有明显的变化,但是垂直方向上的远场发散角明显减小,使光斑形貌逐步趋近于圆形光斑,实现与单模光纤的模场匹配,提高耦合效率;
一空间层4,其制作在无源波导芯层3上,空间层4的材料为n-InP,厚度为0.3-0.7μm;
其中无源波导芯层3与空间层4形成非对称双波导结构,可以将有源区产生的光扩展到非对称波导层,这种结构能够将有源区产生的光扩展到非对称波导层,降低远场垂直发散角,提高超辐射发光二极管和光纤的耦合效率,提高耦合偏调容差,降低耦合封装工艺难度;
非对称双波导结构的优点是不同带隙波长的材料在一次外延生长中即可完成,而且不同材料的应变和厚度可以分别优化,即可以对有源和无源波导芯层的带隙和尺寸分别进行优化。优化上下波导芯层的组分和尺寸、空间层的厚度,可使上下波导芯层的耦合损耗同时减小;
一应变量子阱结构5,其制作在空间层4上,所述应变量子阱结构5为不掺杂的InGaAsP/InP应变量子阱结构,包括厚度为90nm的InP上下波导层、厚度为15nm的InP上下限制层和厚度为8nm的InGaAsP量子阱层,所述的上下波导层均采用折射率线性缓变的波导结构,能够解决缓冲层和上下波导层的晶格失配问题;
其中应变量子阱结构5中的上下限制层为张应变结构,量子阱层为压应变结构,通过上下限制层的应变补偿,能够弥补晶格缺陷,提高器件的低阈值电流密度和高温特性,并能够提高电光转换效率;
一缓冲层6,其制作在应变量子阱结构5上,所述缓冲层6的材料为p-InP,厚度为0.8μm;
一电流阻挡层7,其制作在应变量子阱结构5上,电流阻挡层7的材料为n-InP,厚度为0.9μm;欧姆接触层8的材料为p-InP;
一欧姆接触层8,其制作在电流阻挡层7的上面,形成基片;
两个镀膜9,其位于基片两端,所述基片两端的镀膜9为增透膜,增透膜采用Ta2O5和SiO2高低折射率的膜系材料制备,增透膜的反射率为0.1%-3%之间。采用反应磁控溅射镀膜技术,在传统溅射的基础上增加了离子源,该技术能够将氩气离子化,用氩离子轰击薄膜表面,能够进一步提高薄膜的致密性和可靠性。氩离子的流量和离子源的能量都需要精确控制,流量过高或者能量过大均会影响薄膜的质量;
其中,应变量子阱结构5中的上波导层采用弯曲波导结构,包括直波导部分和弯曲波导部分,该结构结合镀膜9,能够将出射光所在的腔面反射率由0.1%-3%减小至0.001%以下,消除剩余反射率引起的法布里-珀罗谐振腔反馈,更低的腔面反射率有利于抑制谐振腔的受激辐射,提高超辐射发光二极管的放大自发辐射效率,提高超辐射光的光束质量;
其中,应变量子阱结构5中的下波导层、无源波导芯层3和空间层4一起构成了超辐射光传输的波导结构,其厚度远大于上波导层,这样设计有两个好处:一方面是增加垂直方向的出光面,使出光面的光斑更接近圆形光斑,降低远场垂直发散角,提高超辐射发光二极管和光纤的耦合效率,提高其偏调容差,降低耦合封装工艺难度;另一方面,增加N型波导层的厚度,能够使得器件的光场中心偏离有源区中心,从而进一步降低器件的光限制因子,增大器件的等效横向光斑尺寸,降低器件的串联电阻和热阻,提高器件的电光转换效率,减少器件产生的废热,从而有效抑制器件热饱和;
其中超辐射发光二极管的出射光与水平方向的夹角为10°-20°之间;
其中超辐射发光二极管的腔长为800μm-1200μm,包括直波导长度为600μm-700μm,弯曲波导长度为300μm-400μm,弯曲波导的曲率半径为3000μm-4000μm。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种低发散角的超辐射发光二极管结构,包括:
一衬底;
一第一缓冲层,其制作在衬底上;
一无源波导芯层,其制作在第一缓冲层上;
一空间层,其制作在无源波导芯层上;
一应变量子阱结构,其制作在空间层上,所述应变量子阱结构为不掺杂的InGaAsP/InP应变量子阱结构,包括厚度为90nm的InP上下波导层、厚度为15nm的InP上下限制层和厚度为8nm的InGaAsP量子阱层,所述的上下波导层均采用折射率线性缓变的波导结构,能够解决缓冲层和上下波导层的晶格失配问题;
一第二缓冲层,其制作在应变量子阱结构上;
一电流阻挡层,其制作在应变量子阱结构上;
一欧姆接触层,其制作在电流阻挡层的上面,形成基片;
两个镀膜,其位于基片两端。
2.根据权利要求1所述的低发散角的超辐射发光二极管结构,其中衬底的材料为n-InP;第一缓冲层的材料为n-InP,该第一缓冲层的厚度为0.3-0.7μm。
3.根据权利要求1所述的低发散角的超辐射发光二极管结构,其中无源波导芯层的材料为n-InGaAsP,厚度为45-55nm;空间层的材料为n-InP,厚度为0.3-0.7μm。
4.根据权利要求1所述的低发散角的超辐射发光二极管结构,其中第二缓冲层的材料为p-InP,厚度为0.8μm;电流阻挡层的材料为n-InP,厚度为0.9μm;欧姆接触层的材料为p-InP。
5.根据权利要求1所述的低发散角的超辐射发光二极管结构,其中无源波导芯层与空间层形成非对称双波导结构,能够将有源区产生的光扩展到非对称波导层。
6.根据权利要求1所述的低发散角的超辐射发光二极管结构,其中应变量子阱结构中的上下限制层为张应变结构,量子阱层为压应变结构,通过上下限制层的应变补偿,能够弥补晶格缺陷,提高器件的低阈值电流密度和高温特性,并能够提高电光转换效率。
7.根据权利要求1所述的低发散角的超辐射发光二极管结构,其中基片两端的镀膜为增透膜,增透膜采用Ta2O5和SiO2高低折射率的膜系材料制备,增透膜的反射率能够从0.1%-3%减小至0.001%以下。
8.根据权利要求1所述的低发散角的超辐射发光二极管结构,其中超辐射发光二极管的出射光与水平方向的夹角为10°-20°之间。
9.根据权利要求1所述的低发散角的超辐射发光二极管结构,其中超辐射发光二极管的腔长为800μm-1200μm,包括直波导长度为600μm-700μm,弯曲波导长度为300μm-400μm,弯曲波导的曲率半径为3000μm-4000μm。
CN201810211539.XA 2018-03-14 2018-03-14 低发散角的超辐射发光二极管结构 Active CN108447954B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810211539.XA CN108447954B (zh) 2018-03-14 2018-03-14 低发散角的超辐射发光二极管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810211539.XA CN108447954B (zh) 2018-03-14 2018-03-14 低发散角的超辐射发光二极管结构

Publications (2)

Publication Number Publication Date
CN108447954A CN108447954A (zh) 2018-08-24
CN108447954B true CN108447954B (zh) 2020-03-17

Family

ID=63195166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810211539.XA Active CN108447954B (zh) 2018-03-14 2018-03-14 低发散角的超辐射发光二极管结构

Country Status (1)

Country Link
CN (1) CN108447954B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563376A (zh) * 2020-12-11 2021-03-26 西安立芯光电科技有限公司 一种二极管外延结构
CN117117635B (zh) * 2023-08-24 2024-07-26 武汉敏芯半导体股份有限公司 一种半导体光放大器及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349337C (zh) * 2004-09-30 2007-11-14 中国科学院半导体研究所 双波导技术制作半导体激光器和模斑转换器的方法
CN100461472C (zh) * 2005-04-04 2009-02-11 中国科学院半导体研究所 宽光谱、大功率的半导体超辐射发光二极管及制作方法
CN102117868B (zh) * 2010-11-24 2012-06-27 中国科学院半导体研究所 一种低波纹系数半导体超辐射发光二极管的制备方法

Also Published As

Publication number Publication date
CN108447954A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
WO2016206570A1 (zh) 一种短腔长的分布反馈激光器
CN103219650B (zh) 低发散角近衍射极限输出啁啾光子晶体边发射激光器阵列
CN103346475B (zh) 单片集成耦合腔窄线宽半导体激光器
CN206820249U (zh) 一种抗反射的电吸收调制半导体激光器芯片
CN105428983A (zh) 基于黑磷光饱和吸收体的被动锁模激光器
CN105720479A (zh) 一种具有光束扩散结构的高速半导体激光器
CN108447954B (zh) 低发散角的超辐射发光二极管结构
CN104081598A (zh) 半导体光元件、集成型半导体光元件、以及半导体光元件模块
CN103078250B (zh) 基于非对称相移光栅的窄线宽dfb半导体激光器
WO2022074838A1 (ja) 導波路型受光素子
CN103326243A (zh) 基横模低水平发散角一维啁啾光子晶体边发射激光器阵列
JP2024015531A (ja) 半導体受光素子
CN105490164A (zh) 一种分布反馈激光器
JP2000066046A (ja) 光伝送装置
CN103996972A (zh) 一种同时调制波长和发散角的光子晶体边发射激光器
TWI710186B (zh) 分散式回饋雷射的結構與製法
CN113328339B (zh) 一种高功率分布反馈激光器
CN113794104B (zh) 光子晶体激光器
Tanaka et al. Uncooled, polarization-insensitive AlGaInAs MQW-SOA module operable up to 75 C with constant current
CN211456210U (zh) 一种vcsel芯片
CN1383218A (zh) 偏振可控光电子器件的制备方法
Qiu et al. Improved 808-nm High-Power Laser Performance With Single-Mode Operation (Vertical Direction) in Large Optical Cavity Waveguide
JP5918706B2 (ja) 長波長帯面発光レーザ
CN117954958B (zh) 一种激光芯片和激光器
JP2011216534A (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant