CN108445393B - A kind of permanent magnet synchronous motor fault detection method and system - Google Patents
A kind of permanent magnet synchronous motor fault detection method and system Download PDFInfo
- Publication number
- CN108445393B CN108445393B CN201810411549.8A CN201810411549A CN108445393B CN 108445393 B CN108445393 B CN 108445393B CN 201810411549 A CN201810411549 A CN 201810411549A CN 108445393 B CN108445393 B CN 108445393B
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- magnet synchronous
- synchronous motor
- series
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明公开了一种永磁同步电机故障检测方法和系统,公开的方法包括以下步骤:步骤S100:采集永磁同步电机的正常及带故障的热变化过程的N个一系列时序原始图像数据,j=1,j≤N;步骤S200:将第j次原始图像数据分割出永磁同步电机表面温度较高的像素区域;步骤S300:将第j次经过图像处理的图像数据进行特征提取;步骤S400:根据第j次提取特征确定电机状态类别;步骤S500:判断j>N是否成立,若不成立,j=j+1,返回步骤S200,反之进入步骤S600;步骤S600:通过N次热变化过程提取特征及其对应的电机状态类别,建立电机故障诊断支持向量机模型;步骤S700:用训练好的模型对现场采集特征进行故障判别。可在无需直接接触电机的情况下,全自动地、准确地判断连续工作制下电机故障。
The invention discloses a permanent magnet synchronous motor fault detection method and system. The disclosed method includes the following steps: Step S100: collecting N series of time-series original image data of the normal and faulty thermal change process of the permanent magnet synchronous motor, j=1, j≤N; Step S200: Segment the jth raw image data into pixel areas with higher surface temperature of the permanent magnet synchronous motor; Step S300: Perform feature extraction on the jth image processed image data; Step S400: Determine the state category of the motor according to the feature extracted for the jth time; Step S500: Determine whether j>N is true, if not, j=j+1, return to step S200, otherwise enter step S600; step S600: pass N times of thermal change process Extract features and their corresponding motor state categories, and establish a support vector machine model for motor fault diagnosis; Step S700: use the trained model to perform fault discrimination on the field collected features. Without direct contact with the motor, it can automatically and accurately judge the fault of the motor under continuous duty.
Description
技术领域technical field
本发明涉及一种永磁同步电机技术领域,尤其涉及一种永磁同步电机故障检测方法和系统。The invention relates to the technical field of permanent magnet synchronous motors, in particular to a fault detection method and system for permanent magnet synchronous motors.
背景技术Background technique
近年来,随着现代科学技术的快速发展,电磁材料特别是稀土电磁材料性能及工艺逐渐得以提高和改善,再加上电力电子与电力传动技术、自动控制技术的高速发展,永磁同步电机的性能越来越好。再者,永磁同步电动机具有质量轻、结构较简单、体积小、特性好、功率密度大等优点,很多科研机构、企业都在努力积极开展永磁同步电机的研发工作,其应用领域将不断扩大。但通常电机的工况恶劣、振动严重、工作环境温度较高等原因使得电机很容易发生故障,因此永磁同步电机电机故障诊断也是一个重要的研究领域。In recent years, with the rapid development of modern science and technology, the performance and process of electromagnetic materials, especially rare earth electromagnetic materials, have been gradually improved and improved. Coupled with the rapid development of power electronics, power transmission technology, and automatic control technology, the permanent magnet synchronous motor Performance just keeps getting better and better. Furthermore, permanent magnet synchronous motors have the advantages of light weight, simple structure, small size, good characteristics, and high power density. Many scientific research institutions and enterprises are actively developing permanent magnet synchronous motors, and their application fields will continue to expand. However, usually the motor is prone to failure due to poor working conditions, severe vibration, and high temperature in the working environment. Therefore, the fault diagnosis of permanent magnet synchronous motors is also an important research field.
在电机故障诊断过程中,电机常见故障的特征最明显地表现在振动信号的频率上和定子的电流上,尽管通过频率和电流的故障检测已经达到一定的可靠性,但是这两种方法需要花费高昂的检测设备和大量的时间,同时检测时会打断生产。并且由于目前大都是通过人工经验累积进行判别,主观因素居多容易造成误判,缺少一种全自动科学的诊断判别方法。In the process of motor fault diagnosis, the characteristics of common motor faults are most obviously manifested in the frequency of the vibration signal and the current of the stator. Although the fault detection through the frequency and current has achieved a certain reliability, these two methods require high cost Advanced testing equipment and a lot of time, while testing will interrupt production. And because most of the judgments are made through the accumulation of manual experience at present, most of the subjective factors are likely to cause misjudgment, and there is a lack of a fully automatic scientific diagnosis and judgment method.
因此,如何能够无需直接接触电机的情况下,全自动地、准确地判断连续工作制下的永磁同步电机故障,为本领域技术人员亟需解决的问题。Therefore, how to fully automatically and accurately judge the failure of the permanent magnet synchronous motor under continuous duty without directly contacting the motor is an urgent problem to be solved by those skilled in the art.
发明内容Contents of the invention
本发明的目的是提供一种永磁同步电机故障检测方法和系统,其能够无需直接接触电机的情况下,全自动地、准确地判断连续工作制下的永磁同步电机故障。The purpose of the present invention is to provide a permanent magnet synchronous motor fault detection method and system, which can fully automatically and accurately judge the permanent magnet synchronous motor fault under continuous duty without directly contacting the motor.
为解决上述技术问题,本发明提供一种永磁同步电机故障检测方法,所述方法包括以下步骤:In order to solve the above technical problems, the present invention provides a permanent magnet synchronous motor fault detection method, the method includes the following steps:
步骤S100:采集永磁同步电机的正常及带故障的热变化过程的N个一系列时序原始图像数据,j=1,j≤N;Step S100: collecting N series of time-series original image data of the normal and faulty thermal change process of the permanent magnet synchronous motor, j=1, j≤N;
步骤S200:将第j次的热变化过程的一系列时序原始图像数据采用图像处理技术分割出永磁同步电机表面温度较高的像素区域;Step S200: Segment a series of time-series original image data of the j-th thermal change process into pixel areas with higher surface temperature of the permanent magnet synchronous motor by image processing technology;
步骤S300:将经过图像处理的第j次的热变化过程的一系列时序图像数据进行特征提取,其中包括温度变化曲线特征、帧间方差振动特征和电机表面温度较高的像素区直方图相关特征;Step S300: Perform feature extraction on a series of time-series image data of the j-th thermal change process after image processing, including temperature change curve features, inter-frame variance vibration features, and histogram-related features of pixel areas with higher surface temperatures of the motor ;
步骤S400:根据第j次的热变化过程提取的特征确定电机状态类别;Step S400: Determine the motor state category according to the features extracted from the jth thermal change process;
步骤S500:判断j>N是否成立,若不成立,j=j+1,返回步骤S200,若成立进入步骤S600;Step S500: Determine whether j>N is true, if not, j=j+1, return to step S200, if true, enter step S600;
步骤S600:通过N次电机的热变化过程提取的特征及其对应的电机状态类别,建立永磁同步电机故障诊断支持向量机模型;Step S600: establishing a permanent magnet synchronous motor fault diagnosis support vector machine model through the features extracted from the thermal change process of the motor for N times and the corresponding motor state category;
步骤S700:用训练好的模型对现场的永磁同步电机进行故障判别。Step S700: Use the trained model to perform fault discrimination on the field permanent magnet synchronous motor.
优选地,步骤S100中使用红外热像仪采集原始图像数据,且原始图像数据为灰度图像数据。Preferably, in step S100, an infrared camera is used to collect original image data, and the original image data is grayscale image data.
优选地,步骤S100中所述热变化过程的一系列时序原始图像数据具体是指一般从冷态开始,对永磁同步电机施加额定阶跃负载后永磁同步电机温度上升到建立新的热平衡时的一系列时序原始图像,红外热像仪设定成预设时间间隔采集永磁同步电机热变化过程的一系列时序原始图像数据。Preferably, the series of time-series original image data of the thermal change process described in step S100 specifically refers to when the temperature of the permanent magnet synchronous motor rises to establish a new thermal balance after a rated step load is applied to the permanent magnet synchronous motor generally starting from a cold state A series of time-series original images, the infrared thermal imager is set to collect a series of time-series original image data of the thermal change process of the permanent magnet synchronous motor at preset time intervals.
优选地,在所述步骤200中具体为:Preferably, in the step 200, it is specifically:
步骤S210:将红外热像仪采集到第j次的热变化过程的一系列时序原始灰度图像转换为真实的温度图像;Step S210: converting a series of time-series original grayscale images collected by the infrared thermal imager to the jth thermal change process into real temperature images;
步骤S220:将第j次的热变化过程的一系列时序温度图像进行高斯核滤波处理;Step S220: Perform Gaussian kernel filtering on a series of time-series temperature images of the jth thermal change process;
步骤S230:在经过滤波处理的第j次的热变化过程的一系列时序温度图像中随机抽取热稳态时间段的一帧图像,计算该抽取帧图像分割的阈值,将该抽取帧图像中低于阈值的像素赋值为0,其它像素值保持不变;Step S230: Randomly extract a frame of image in the thermal steady-state time period from a series of time-series temperature images of the jth thermal change process after the filtering process, calculate the threshold for segmenting the extracted frame image, and extract the low-level image in the extracted frame image The pixel at the threshold is assigned a value of 0, and the other pixel values remain unchanged;
步骤S240:计算步骤S230中所述抽取帧图像像素点均值μ1和标准差σ1,将该抽取帧图像中低于μ1-σ1的像素点赋值为0,其它像素保持不变,从而分割出永磁同步电机表面温度较高的像素区域。Step S240: Calculate the average value μ 1 and standard deviation σ 1 of the pixels of the extracted frame image described in step S230, assign the pixel points lower than μ 1 -σ 1 in the extracted frame image to 0, and keep other pixels unchanged, so that Segment the pixel area with higher surface temperature of the permanent magnet synchronous motor.
优选地,所述步骤S300中具体为:Preferably, the step S300 is specifically:
步骤S310:根据步骤S210所述第j次的热变化过程的一系列时序温度图像确定像素最大温度值的随时间变化的曲线;Step S310: Determine the time-varying curve of the maximum temperature value of the pixel according to a series of time-series temperature images of the jth thermal change process described in step S210;
步骤S320:根据步骤S240所述永磁同步电机表面温度较高的像素区域确定区域边缘最小值;Step S320: Determine the minimum value of the edge of the area according to the pixel area with a higher surface temperature of the permanent magnet synchronous motor described in step S240;
步骤S330:将热稳态恒定不变像素最大温度值和区域边缘最小值作为特征直方图的上下区间,将区间平均分割成10等份,统计步骤S240所述永磁同步电机表面温度较高的像素区域温度直方图;Step S330: Take the maximum temperature value of the thermal steady state constant pixel and the minimum value of the region edge as the upper and lower intervals of the feature histogram, divide the interval into 10 equal parts on average, and count the permanent magnet synchronous motors with higher surface temperatures described in step S240 Pixel area temperature histogram;
步骤S340:计算永磁同步电机表面温度较高的像素区域温度直方图的均值、标准差、偏态、峰度和熵;Step S340: Calculate the mean value, standard deviation, skewness, kurtosis and entropy of the temperature histogram of the pixel region with higher surface temperature of the permanent magnet synchronous motor;
步骤S350:提取步骤S310所述像素最大温度值的随时间变化的曲线特征;Step S350: extracting the time-varying curve characteristics of the pixel maximum temperature value described in step S310;
步骤S360:计算步骤S220所述经过滤波处理的第j次的热变化过程的一系列时序温度图像的热稳态帧间方差振动特征。Step S360: Calculating the thermal steady-state inter-frame variance vibration characteristics of a series of time-series temperature images of the j-th thermal change process that has been filtered in step S220.
优选地,所述步骤S400具体为:Preferably, the step S400 is specifically:
步骤S410:将第j次的热变化过程的提取的特征形成特征向量;Step S410: forming a feature vector from the extracted features of the jth thermal change process;
步骤S420:根据特征向量确定电机状态类别;Step S420: Determine the motor state category according to the feature vector;
优选地,所述步骤S600具体为:Preferably, the step S600 is specifically:
步骤S610:通过N次电机的热变化过程提取的特征向量及其对应的电机状态类别建立分类器的训练集;Step S610: establishing a training set of a classifier through the feature vectors extracted from the thermal change process of the motor for N times and the corresponding motor state categories;
步骤S620:分类器采用支持向量机,核函数采用径向基核函数,分类的训练集以提取的特征向量作为输入,以电机状态类别作为输出,训练支持向量机,得到永磁同步电机故障诊断支持向量机模型。Step S620: The classifier adopts a support vector machine, the kernel function adopts a radial basis kernel function, and the classified training set takes the extracted feature vector as input and the motor state category as output, trains the support vector machine, and obtains the fault diagnosis of the permanent magnet synchronous motor support vector machine model.
本发明还提供了一种永磁同步电机故障检测系统,包括图像采集模块,图像预处理模块、特征提取模块、模型建立模块和故障检测模块,其中:The present invention also provides a permanent magnet synchronous motor fault detection system, including an image acquisition module, an image preprocessing module, a feature extraction module, a model building module and a fault detection module, wherein:
图像采集模块,用于采集永磁同步电机的正常及带故障的热变化过程的N个一系列时序原始图像数据,j=1,j≤N,发送给图像预处理模块;The image acquisition module is used to collect N series of time-series original image data of the normal and faulty thermal change process of the permanent magnet synchronous motor, j=1, j≤N, and send it to the image preprocessing module;
图像预处理模块,用于将图像采集模块发送的第j次的热变化过程的一系列时序原始图像数据采用图像处理技术分割出永磁同步电机表面温度较高的像素区域,发送给特征提取模块;The image preprocessing module is used to use image processing technology to segment a series of time series original image data of the jth thermal change process sent by the image acquisition module into the pixel area with a higher surface temperature of the permanent magnet synchronous motor, and send it to the feature extraction module ;
特征提取模块,用于将图像预处理模块发送的经过图像处理的第j次的热变化过程的一系列时序图像数据进行提取特征,其中包括温度变化曲线特征、帧间方差振动特征和电机表面温度较高的像素区直方图相关特征,发送给模型建立模块;The feature extraction module is used to extract features from a series of time-series image data of the jth thermal change process sent by the image preprocessing module, including temperature change curve features, inter-frame variance vibration features and motor surface temperature Higher pixel area histogram related features are sent to the model building module;
模型建立模块,用于根据特征提取模块发送的提取特征确定电机状态类别;判断j>N是否成立,若不成立,j=j+1,返回图像预处理模块,若成立,则经过N次电机的热变化过程特征提取及电机状态类别确定,建立永磁同步电机故障诊断支持向量机模型,发送给故障检测模块;The model building module is used to determine the motor state category according to the extracted features sent by the feature extraction module; judge whether j>N is established, if not established, j=j+1, return to the image preprocessing module, and if established, go through N times of motor Feature extraction of thermal change process and determination of motor state category, establishment of permanent magnet synchronous motor fault diagnosis support vector machine model, and sending to fault detection module;
故障检测模块,用于使用模型建立模块训练好的模型对的永磁同步电机进行故障判别。The fault detection module is used to judge the fault of the permanent magnet synchronous motor by using the model trained by the model building module.
优选地,所述图像采集模块中使用红外热像仪采集原始图像数据。Preferably, an infrared thermal imager is used in the image acquisition module to acquire raw image data.
优选地,所述红外热像仪采集原始图像数据时,红外热像仪摆放要对准永磁同步电机侧面中心,红外热像仪和永磁同步电机位于同一水平高度,两者之间的水平距离的选取要使红外热像仪采集到的图像包括整个永磁同步电机,每次采集两者相对位置固定不变。Preferably, when the infrared thermal imager collects the original image data, the infrared thermal imager is placed at the center of the side of the permanent magnet synchronous motor, the infrared thermal imager and the permanent magnet synchronous motor are located at the same level, and the distance between the two The selection of the horizontal distance should make the image collected by the infrared thermal imager include the entire permanent magnet synchronous motor, and the relative position of the two is fixed each time it is collected.
可在无需直接接触电机的情况下,全自动地、准确地判断连续工作制下包括定子匝间故障、轴承故障、散热故障和退磁故障等永磁同步电机故障。Without direct contact with the motor, it can automatically and accurately judge permanent magnet synchronous motor faults under continuous duty, including stator turn-to-turn faults, bearing faults, heat dissipation faults, and demagnetization faults.
附图说明Description of drawings
图1为第一种实施方式提供的一种永磁同步电机故障检测方法的流程图;Fig. 1 is the flow chart of a kind of permanent magnet synchronous motor fault detection method that the first embodiment provides;
图2为第二种实施方式提供的一种永磁同步电机故障检测方法的流程图;Fig. 2 is the flow chart of a kind of permanent magnet synchronous motor fault detection method that the second embodiment provides;
图3为正常电机和故障电机最大温度变化曲线图;Fig. 3 is a curve diagram of the maximum temperature change of a normal motor and a faulty motor;
图4为本发明提供的一种永磁同步电机故障检测系统的结构框图;Fig. 4 is the structural block diagram of a kind of permanent magnet synchronous motor fault detection system provided by the present invention;
图5是本发明提供的永磁同步电机和红外热像仪摆放位置的主视示意图;Fig. 5 is a schematic front view of the placement position of the permanent magnet synchronous motor and the infrared thermal imaging camera provided by the present invention;
图6是本发明提供的永磁同步电机和红外热像仪摆放位置的俯视示意图。Fig. 6 is a schematic top view of the permanent magnet synchronous motor and the thermal imaging camera provided by the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步的详细说明。In order to enable those skilled in the art to better understand the technical solutions of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings.
参见图1,图1为第一种实施方式提供的一种永磁同步电机故障检测方法的流程图。Referring to FIG. 1 , FIG. 1 is a flowchart of a fault detection method for a permanent magnet synchronous motor provided in the first embodiment.
一种永磁同步电机故障检测方法,所述方法包括以下步骤:A method for fault detection of a permanent magnet synchronous motor, the method comprising the following steps:
步骤S100:采集永磁同步电机的正常及带故障的热变化过程的N个一系列时序原始图像数据,j=1,j≤N,N根据实际需要及经验确定;Step S100: Collect N series of time-series original image data of the normal and faulty thermal change process of the permanent magnet synchronous motor, j=1, j≤N, N is determined according to actual needs and experience;
步骤S200:将第j次的热变化过程的一系列时序原始图像数据采用图像处理技术分割出永磁同步电机表面温度较高的像素区域;Step S200: Segment a series of time-series original image data of the j-th thermal change process into pixel areas with higher surface temperature of the permanent magnet synchronous motor by image processing technology;
步骤S300:将经过图像处理的第j次的热变化过程的一系列时序图像数据进行特征提取,其中包括温度变化曲线特征、帧间方差振动特征和电机表面温度较高的像素区直方图相关特征;Step S300: Perform feature extraction on a series of time-series image data of the j-th thermal change process after image processing, including temperature change curve features, inter-frame variance vibration features, and histogram-related features of pixel areas with higher surface temperatures of the motor ;
步骤S400:根据第j次的热变化过程提取的特征确定电机状态类别;Step S400: Determine the motor state category according to the features extracted from the jth thermal change process;
步骤S500:判断j>N是否成立,若不成立,j=j+1,返回步骤S200,若成立进入步骤S600;Step S500: Determine whether j>N is established, if not, j=j+1, return to step S200, if established, enter step S600;
步骤S600:通过N次电机的热变化过程提取的特征及其对应的电机状态类别,建立永磁同步电机故障诊断支持向量机模型;Step S600: establishing a permanent magnet synchronous motor fault diagnosis support vector machine model through the features extracted from the thermal change process of the motor for N times and the corresponding motor state category;
步骤S700:用训练好的模型对现场的永磁同步电机进行故障判别。Step S700: Use the trained model to perform fault discrimination on the field permanent magnet synchronous motor.
分别采集正常永磁同步电机和若干个带故障的永磁同步电机的热变化过程的一系列时序原始图像数据。优选地,使用红外热像仪分别采集包括永磁同步电机的正常工作以及定子匝间故障、轴承故障、偏心故障、退磁故障等各种故障的永磁同步电机热变化过程的一系列时序原始灰度图像数据。热变化过程的一系列时序原始图像数据具体是指一般从冷态开始,对永磁同步电机施加额定阶跃负载后永磁同步电机温度上升到建立新的热平衡时的一系列时序原始图像。红外热像仪设定成预设时间间隔采集永磁同步电机热变化过程的一系列时序原始图像数据。所述预设时间间隔根据经验设定。A series of time-series original image data of the thermal change process of the normal permanent magnet synchronous motor and several faulty permanent magnet synchronous motors were collected respectively. Preferably, an infrared thermal imager is used to separately collect a series of time-series original gray images of the permanent magnet synchronous motor thermal change process including the normal operation of the permanent magnet synchronous motor and various faults such as stator turn-to-turn faults, bearing faults, eccentric faults, and demagnetization faults. image data. A series of time-series original image data of the thermal change process specifically refers to a series of time-series original images when the temperature of the permanent magnet synchronous motor rises to a new thermal balance after the rated step load is applied to the permanent magnet synchronous motor from the cold state. The thermal imaging camera is set to collect a series of time series original image data of the thermal change process of the permanent magnet synchronous motor at preset time intervals. The preset time interval is set according to experience.
将某一次的热变化过程的一系列时序原始图像数据采用图像处理技术分割出永磁同步电机表面温度较高的像素区域。将经过图像处理的该次的一系列的时序图像数据进行特征提取。提取其中包括温度变化曲线特征、帧间方差振动特征和电机表面温度较高的像素区直方图相关特征。根据该次的热变化过程提取的特征确定电机状态类别。按照步骤S200至步骤S400的方法将所有采集到正常的以及不同故障类型永磁同步电机热变化过程的一系列时序原始图像数据进行图像处理和特征提取,并根据提取的特征确定电机状态类别。通过所有的热变化过程提取的特征及其对应的电机状态类别,建立永磁同步电机故障诊断支持向量机模型。使用训练好的模型对现场采集的永磁同步电机进行故障判别,判断电机的运行状态,如果存在故障,则判断属于哪种永磁同步电机故障,并进行报警。A series of time-series original image data of a certain thermal change process is segmented by image processing technology to obtain pixel areas with higher surface temperature of the permanent magnet synchronous motor. Feature extraction is performed on a series of time-series image data that has undergone image processing. Extraction includes temperature variation curve features, inter-frame variance vibration features and histogram-related features of the pixel area with high surface temperature of the motor. Determine the motor state category according to the features extracted from this thermal change process. According to the method from step S200 to step S400, a series of time-series original image data collected from the normal and different fault types of the permanent magnet synchronous motor thermal change process are subjected to image processing and feature extraction, and the motor status category is determined according to the extracted features. A support vector machine model for fault diagnosis of permanent magnet synchronous motors is established through the features extracted from all thermal change processes and their corresponding motor state categories. Use the trained model to identify the faults of the permanent magnet synchronous motors collected in the field, judge the operating status of the motors, and if there is a fault, judge which permanent magnet synchronous motor fault belongs to, and give an alarm.
在更进一步的方案中,可以采集同种型号正常的及不同故障类型的永磁同步电机热变化过程的一系列时序原始图像数据,进而通过图像处理、特征提取,并根据提取特征确定电机状态类别后建立该类型的永磁同步电机的故障诊断支持向量机模型。对不同型号的永磁同步电机分别建立其对应的永磁同步电机的故障诊断支持向量机模型。针对不同类型的永磁同步电机进行故障判断时可以预先输入电机型号后,再采用该型号对应的永磁同步电机的故障诊断支持向量机模型对该永磁同步电机进行故障判别。In a further solution, a series of time-series original image data of the thermal change process of the permanent magnet synchronous motor with the same type of normal and different fault types can be collected, and then through image processing and feature extraction, the motor status category can be determined according to the extracted features Finally, the support vector machine model for fault diagnosis of this type of permanent magnet synchronous motor is established. For different types of permanent magnet synchronous motors, the corresponding permanent magnet synchronous motor fault diagnosis support vector machine models are established. When making fault judgments for different types of permanent magnet synchronous motors, you can input the motor model in advance, and then use the fault diagnosis support vector machine model of the permanent magnet synchronous motor corresponding to the model to perform fault judgment on the permanent magnet synchronous motor.
利用该方法可在无需直接接触电机的情况下,全自动地、准确地判断连续工作制下包括定子匝间故障、轴承故障、散热故障和退磁故障等永磁同步电机故障。The method can fully and accurately judge permanent magnet synchronous motor faults including stator turn-to-turn faults, bearing faults, heat dissipation faults, and demagnetization faults under continuous duty without direct contact with the motor.
参见图2至图3,图2为第二种实施方式提供的一种永磁同步电机故障检测方法的流程图,图3为正常电机和故障电机最大温度变化曲线图。Referring to FIG. 2 to FIG. 3 , FIG. 2 is a flowchart of a fault detection method for a permanent magnet synchronous motor provided in the second embodiment, and FIG. 3 is a maximum temperature change curve of a normal motor and a faulty motor.
一种永磁同步电机故障检测方法,所述方法包括以下步骤:A method for fault detection of a permanent magnet synchronous motor, the method comprising the following steps:
步骤S100:红外热像仪采集永磁同步电机的正常及带故障的热变化过程的N个一系列时序原始灰度图像数据,j=1,j≤N。Step S100: The infrared thermal imager collects N series of time-series original grayscale image data of the normal and faulty thermal change processes of the permanent magnet synchronous motor, j=1, j≤N.
步骤S210:将红外热像仪采集到第j次的热变化过程的一系列时序原始灰度图像转换为真实的温度图像。Step S210: Convert a series of time-series original grayscale images of the jth thermal change process collected by the infrared thermal imager into real temperature images.
由于红外热像仪采集的原始图像是灰度图像,灰度图像每一个像素点的值不代表真实温度,需依照如下公式(1)进行换算得到真实的温度图像:Since the original image collected by the infrared thermal imager is a grayscale image, the value of each pixel of the grayscale image does not represent the real temperature. It needs to be converted according to the following formula (1) to obtain the real temperature image:
其中,T(x,y)是图像(x,y)处的温度值,Wtot(x,y)是红外热像仪采集的图像(x,y)处的总辐射,τatm是室内空气的透过率,σ是斯蒂芬-玻尔兹曼常数,Trefl是反射温度,Tatm是室内温度,εobj是物体的发射率。Among them, T(x, y) is the temperature value at the image (x, y), W tot (x, y) is the total radiation at the image (x, y) collected by the infrared camera, and τ atm is the room air σ is the Stefan-Boltzmann constant, T refl is the reflection temperature, T atm is the room temperature, ε obj is the emissivity of the object.
步骤S220:将第j次的热变化过程的一系列时序温度图像进行高斯核滤波处理,用3×3高斯核去除一系列时序温度图像中噪声,其中滤波的公式如下:Step S220: Perform Gaussian kernel filtering on a series of time-series temperature images of the j-th thermal change process, and use a 3×3 Gaussian kernel to remove noise in a series of time-series temperature images, wherein the filtering formula is as follows:
其中I(x,y)是高斯滤波后温度图像(x,y)处的像素值,Kernel(k,l)是3×3高斯核函数在(k,l)处的像素值。Where I(x, y) is the pixel value at (x, y) of the temperature image after Gaussian filtering, and Kernel(k, l) is the pixel value at (k, l) of the 3×3 Gaussian kernel function.
步骤S230:在经过滤波处理的第j次的热变化过程的一系列时序温度图像中随机抽取热稳态时间段的一帧,用最大类间方差法计算Ttreshold作为图像分割的阈值,将该抽取帧图像中低于阈值的像素赋值为0,其它像素值保持不变。Step S230: Randomly extract a frame of the thermal steady-state time period from a series of time-series temperature images of the j-th thermal change process after filtering, and use the maximum inter-class variance method to calculate T treshold as the threshold for image segmentation. The pixels below the threshold in the extracted frame image are assigned a value of 0, and the values of other pixels remain unchanged.
步骤S240:计算步骤S230中所述抽取帧图像像素点均值μ1和标准差σ1,将该抽取帧图像中低于μ1-σ1的像素点赋值为0,其它像素保持不变,从而分割出永磁同步电机表面温度较高的像素区域。均值μ1和标准差σ1由下式所得:Step S240: Calculate the average value μ 1 and standard deviation σ 1 of the pixels of the extracted frame image described in step S230, assign the pixel points lower than μ 1 -σ 1 in the extracted frame image to 0, and keep other pixels unchanged, so that Segment the pixel area with higher surface temperature of the permanent magnet synchronous motor. The mean value μ 1 and standard deviation σ 1 are obtained by the following formula:
其中,I(c)表示第c个像素的温度值,总计有n个像素。Among them, I(c) represents the temperature value of the cth pixel, and there are n pixels in total.
步骤S310:根据步骤S210所述第j次的热变化过程的一系列时序温度图像确定像素最大温度值Tmax的随时间变化的曲线Tmax(t),如图3所示,是相同类型的正常电机和带故障电机Tmax随时间变化的温度曲线Tmax(t),以及对应温度上升时间积分的区域。而电机温度上升时间积分的区域的面积可作为故障诊断的特征之一输入到支持向量机当中。Step S310: Determine the time-varying curve T max (t) of the pixel maximum temperature value T max according to a series of time-series temperature images of the jth thermal change process described in step S210, as shown in FIG. 3 , are of the same type The temperature curve T max (t) of the normal motor and the faulty motor T max over time, and the corresponding temperature rise time integral area. And the area of the integral area of the motor temperature rise time can be input into the support vector machine as one of the characteristics of fault diagnosis.
步骤S320:根据步骤S240所述永磁同步电机表面温度较高的像素区域确定区域边缘最小值Tmin;Step S320: Determine the minimum value T min of the edge of the area according to the pixel area with a higher surface temperature of the permanent magnet synchronous motor described in step S240;
步骤S330:将步骤S310中热稳态恒定不变像素最大温度值Tmax和步骤S320确定的区域边缘最小值Tmin作为特征直方图的上下区间,将区间平均分割成10等份,统计步骤S240所述永磁同步电机表面温度较高的像素区域温度直方图,具体如下:Step S330: Take the maximum temperature value T max of the thermally stable constant pixel in step S310 and the minimum value T min of the region edge determined in step S320 as the upper and lower intervals of the feature histogram, divide the interval into 10 equal parts on average, and count the steps S240 The temperature histogram of the pixel region with higher surface temperature of the permanent magnet synchronous motor is as follows:
其中,S(xi)是xi温度区间的像素个数;H(xi)是xi温度区间温度出现的频率。Among them, S( xi ) is the number of pixels in the temperature range of xi ; H( xi ) is the frequency of occurrence of temperature in the temperature range of xi .
步骤S340:计算步骤330得到的永磁同步电机表面温度较高的像素区域温度直方图的均值μ2、标准差σ2、偏态Sk、峰度K和熵E:Step S340: Calculate the mean value μ 2 , standard deviation σ 2 , skewness Sk, kurtosis K, and entropy E of the temperature histogram of the pixel region with a higher surface temperature of the permanent magnet synchronous motor obtained in step 330:
步骤S350:提取步骤S310所述像素最大温度值Tmax的随时间变化的曲线Tmax(t)特征:Step S350: Extracting the features of the time-varying curve T max (t) of the pixel maximum temperature value T max described in step S310:
其中,Area是上升时间内上升温度的积分,ts是指达到新的热稳态10%上升到90%所需的上升时间区段,Tmax(t)是电机t时刻温度的最大值;Tatm是室内环境温度。Among them, Area is the integral of the rising temperature within the rising time, t s refers to the rising time section required to reach the new thermal steady state from 10% to 90%, and T max (t) is the maximum temperature of the motor at time t; T atm is the room ambient temperature.
步骤S360:计算步骤S220所述经过滤波处理的第j次的热变化过程的一系列时序温度图像的热稳态帧间方差振动特征V:Step S360: Calculating the thermal steady-state inter-frame variance vibration feature V of a series of time-series temperature images of the j-th thermal change process after the filtering process described in step S220:
其中,V是热稳态时序温度图像的帧间方差中的最大值,It(z)是热稳态第t帧的第z个像素的温度值,一帧图像总计有n个像素值;是热稳态总计f帧图像第z个像素的温度值平均值,所述一系列时序温度图像为f帧。Wherein, V is the maximum value in the inter-frame variance of the thermal steady-state time-series temperature image, I t (z) is the temperature value of the zth pixel of the thermal steady-state t frame, and a frame of image has n pixel values in total; is the average temperature value of the z-th pixel of the total f frames of images in the thermal steady state, and the series of time-series temperature images are f frames.
步骤S410:将第j次的热变化过程的提取的特征形成特征向量,一次热变化过程的一系列时序温度图像可以得到相应的19维特征向量X=[Area,V,Tmax,Tmin,μ2,σ2,Sk,E,K,H(x1),...H(xi),...H(x10),其中H(xi)是最热区第xi温度区间的频率,Tmax是热稳态的恒定值。Step S410: Form the extracted features of the jth thermal change process into a feature vector, and a series of time-series temperature images of a thermal change process can obtain a corresponding 19-dimensional feature vector X=[Area, V, T max , T min , μ 2 , σ 2 , Sk, E, K, H(x 1 ),...H( xi ),...H(x 10 ), where H( xi ) is the xith temperature in the hottest zone The frequency of the interval, T max is a constant value in thermal steady state.
步骤S420:根据特征向量X确定电机状态类别Y。类别Y的确定由试验电机状态类别决定,如可检测的永磁同步电机的故障类型有定子匝间故障Y1、轴承故障Y2、散热故障Y3、退磁故障Y4,还有正常电机的类别Y0。Step S420: Determine the motor state category Y according to the feature vector X. The determination of the category Y is determined by the state category of the test motor. For example, the fault types of the permanent magnet synchronous motor that can be detected include stator turn-to-turn fault Y 1 , bearing fault Y 2 , heat dissipation fault Y 3 , demagnetization fault Y 4 , and normal motor faults. Class Y 0 .
步骤S500:判断j>N是否成立,若不成立,j=j+1,返回步骤S200,若成立进入步骤S610;Step S500: Determine whether j>N is true, if not, j=j+1, return to step S200, if true, enter step S610;
步骤S610:通过N次电机的热变化过程提取的特征向量及其对应的电机状态类别建立分类器的训练集;Step S610: establishing a training set of a classifier through the feature vectors extracted from the thermal change process of the motor for N times and the corresponding motor state categories;
步骤S620:分类器采用支持向量机,核函数采用径向基核函数,分类的训练集以提取的特征向量X作为输入,以电机状态类别Y作为输出,训练支持向量机,得到永磁同步电机故障诊断支持向量机模型。Step S620: The classifier adopts a support vector machine, the kernel function adopts a radial basis kernel function, and the classified training set takes the extracted feature vector X as input and the motor state category Y as output, trains the support vector machine, and obtains a permanent magnet synchronous motor Fault diagnosis support vector machine model.
步骤S700:用训练好的模型对现场永磁同步电机进行故障判别。红外热像仪采集现场永磁同步电机一系列时序原始灰度图像数据,然后采用步骤S210至步骤S360获得现场永磁同步电机的特征,现场故障判断时,用训练好的模型根据永磁同步电机的特征判断电机的运行状态,如果存在故障,则判断属于哪种永磁电机故障,并进行报警。Step S700: Use the trained model to perform fault discrimination on the field permanent magnet synchronous motor. The infrared thermal imaging camera collects a series of time-series original grayscale image data of the on-site permanent magnet synchronous motor, and then uses steps S210 to S360 to obtain the characteristics of the on-site permanent magnet synchronous motor. The characteristics of the motor are used to judge the running state of the motor. If there is a fault, it is judged which kind of permanent magnet motor fault it belongs to, and an alarm is issued.
参见图4至图6,图4为本发明提供的一种永磁同步电机故障检测系统的结构框图,图5是本发明提供的永磁同步电机和红外热像仪摆放位置的主视示意图,图6是本发明提供的永磁同步电机和红外热像仪摆放位置的俯视示意图。Referring to Figures 4 to 6, Figure 4 is a structural block diagram of a permanent magnet synchronous motor fault detection system provided by the present invention, and Figure 5 is a schematic front view of the permanent magnet synchronous motor and infrared thermal imaging camera placement provided by the present invention , FIG. 6 is a schematic top view of the permanent magnet synchronous motor and the infrared thermal imaging camera provided by the present invention.
本发明还提供了一种永磁同步电机故障检测系统,包括图像采集模块1,图像预处理模块2、特征提取模块3、模型建立模块4和故障检测模块5,其中:The present invention also provides a permanent magnet synchronous motor fault detection system, including an image acquisition module 1, an image preprocessing module 2, a feature extraction module 3, a model building module 4 and a fault detection module 5, wherein:
图像采集模块1,用于采集正常的永磁同步电机及带故障的永磁同步电机热变化过程的N个一系列时序原始图像数据,j=1,j≤N,N根据实际需要及经验确定,发送给图像预处理模块2;Image collection module 1, used to collect N series of time-series original image data of normal permanent magnet synchronous motor and faulty permanent magnet synchronous motor thermal change process, j=1, j≤N, N is determined according to actual needs and experience , sent to the image preprocessing module 2;
图像预处理模块2,用于将图像采集模块1发送的第j次的热变化过程的一系列时序原始图像数据采用图像处理技术分割出永磁同步电机表面温度较高的像素区域,发送给特征提取模块3;The image preprocessing module 2 is used to segment a series of time-series original image data of the j-th thermal change process sent by the image acquisition module 1 into the pixel area with a higher surface temperature of the permanent magnet synchronous motor using image processing technology, and send it to the feature extract module 3;
特征提取模块3,用于将图像预处理模块2发送的经过图像处理的第j次的热变化过程的一系列时序图像数据进行提取特征,其中包括温度变化曲线特征、帧间方差振动特征和电机表面温度较高的像素区直方图相关特征,发送给模型建立模块4;The feature extraction module 3 is used to extract features from a series of time-series image data of the jth thermal change process sent by the image preprocessing module 2 after image processing, including temperature change curve features, inter-frame variance vibration features and motor The relevant features of the histogram of the pixel area with higher surface temperature are sent to the model building module 4;
模型建立模块4,用于根据特征提取模块3发送的提取特征确定电机状态类别;判断j>N是否成立,若不成立,j=j+1,返回图像预处理模块,若成立,则经过N次电机的热变化过程特征提取及电机状态类别确定,建立永磁同步电机故障诊断支持向量机模型,发送给故障检测模块5;The model building module 4 is used to determine the motor state category according to the extracted features sent by the feature extraction module 3; judge whether j>N is established, if not established, j=j+1, return to the image preprocessing module, and if established, pass through N times The feature extraction of the thermal change process of the motor and the determination of the motor state category establish a permanent magnet synchronous motor fault diagnosis support vector machine model and send it to the fault detection module 5;
故障检测模块5,用于使用模型建立模块4训练好的模型对现场永磁同步电机进行故障判别。The fault detection module 5 is used to use the model trained by the model building module 4 to discriminate the fault of the on-site permanent magnet synchronous motor.
图像采集模块1分别采集永磁同步电机的正常及若干个带故障的热变化过程的一系列时序原始图像数据。优选地,使用红外热像仪采集包括永磁同步电机的正常工作以及定子匝间故障、轴承故障、偏心故障、退磁故障等各种故障的永磁同步电机热变化过程的一系列时序原始图像数据。热变化过程的一系列时序原始图像数据具体是指一般从冷态开始,对永磁同步电机施加额定阶跃负载后永磁同步电机温度上升到建立新的热平衡时的一系列时序原始图像。红外热像仪设定成预设时间间隔采集永磁同步电机热变化过程的一系列时序原始图像数据。The image acquisition module 1 collects a series of time-series original image data of the normal and several faulty thermal change processes of the permanent magnet synchronous motor respectively. Preferably, an infrared thermal imager is used to collect a series of time-series original image data of the thermal change process of the permanent magnet synchronous motor including the normal operation of the permanent magnet synchronous motor and various faults such as stator turn-to-turn faults, bearing faults, eccentric faults, and demagnetization faults . A series of time-series original image data of the thermal change process specifically refers to a series of time-series original images when the temperature of the permanent magnet synchronous motor rises to a new thermal balance after the rated step load is applied to the permanent magnet synchronous motor from the cold state. The thermal imaging camera is set to collect a series of time series original image data of the thermal change process of the permanent magnet synchronous motor at preset time intervals.
图像预处理模块2将某一次的热变化过程的一系列时序原始图像数据采用图像处理技术分割出永磁同步电机表面温度较高的像素区域。特征提取模块3将经过图像处理的该次的一系列的时序图像数据进行特征提取。提取其中包括温度变化曲线特征、帧间方差振动特征和电机表面温度较高的像素区直方图相关特征。模型建立模块4根据该次的热变化过程提取的特征确定电机状态类别。按照步骤图像预处理模块2和特征提取模块3的方法将所有采集到不同故障类型永磁同步电机热变化过程的一系列时序原始图像数据进行图像处理和特征提取,并根据提取的特征确定电机状态类别。通过所有的热变化过程提取的特征及其对应的电机状态类别,建立永磁同步电机故障诊断支持向量机模型。故障检测模块5使用训练好的模型对现场永磁同步电机进行故障判别,判断电机的运行状态,如果存在故障,则判断属于哪种永磁同步电机故障,并进行报警。The image preprocessing module 2 uses image processing technology to segment a series of time-series original image data of a certain thermal change process into pixel areas with higher surface temperature of the permanent magnet synchronous motor. The feature extraction module 3 performs feature extraction on the series of time-series image data that has undergone image processing. Extraction includes temperature variation curve features, inter-frame variance vibration features and histogram-related features of the pixel area with high surface temperature of the motor. The model building module 4 determines the state category of the motor according to the features extracted from this thermal change process. According to the method of image preprocessing module 2 and feature extraction module 3, a series of time-series original image data collected in the thermal change process of permanent magnet synchronous motors with different fault types are image processed and feature extracted, and the motor state is determined according to the extracted features category. A support vector machine model for fault diagnosis of permanent magnet synchronous motors is established through the features extracted from all thermal change processes and their corresponding motor state categories. The fault detection module 5 uses the trained model to perform fault discrimination on the field permanent magnet synchronous motor, and judges the running state of the motor. If there is a fault, it judges which permanent magnet synchronous motor fault belongs to, and gives an alarm.
在更进一步的方案中,可以采集同种型号不同故障类型永磁同步电机热变化过程的一系列时序原始图像数据,进而通过图像预处理、特征提取,并根据提取特征确定电机状态类别后建立该类型的永磁同步电机的故障诊断支持向量机模型。对不同型号的永磁同步电机分别建立其对应的永磁同步电机的故障诊断支持向量机模型后,针对不同类型的永磁同步电机进行故障判断时可以预先输入电机型号后,然后采用该型号对应的永磁同步电机的故障诊断支持向量机模型对该永磁同步电机进行故障判别。In a further solution, a series of time-series original image data of the thermal change process of the permanent magnet synchronous motor of the same model and different fault types can be collected, and then through image preprocessing and feature extraction, and the state category of the motor is determined according to the extracted features. Types of Support Vector Machine Models for Fault Diagnosis of Permanent Magnet Synchronous Motors. After establishing the corresponding permanent magnet synchronous motor fault diagnosis support vector machine model for different types of permanent magnet synchronous motors, you can input the motor model in advance when making fault judgments for different types of permanent magnet synchronous motors, and then use the model corresponding The fault diagnosis support vector machine model of the permanent magnet synchronous motor is used for fault discrimination of the permanent magnet synchronous motor.
可在无需直接接触电机的情况下,全自动地、准确地判断连续工作制下包括定子匝间故障、轴承故障、散热故障和退磁故障等永磁同步电机故障。Without direct contact with the motor, it can automatically and accurately judge permanent magnet synchronous motor faults under continuous duty, including stator turn-to-turn faults, bearing faults, heat dissipation faults, and demagnetization faults.
如图5和图6所示,所述红外热像仪采集原始图像数据时,在被测永磁同步电机目标前方安装一台红外热像仪,红外热像仪具有定时捕捉热图像并传输到计算机中心的功能,测温范围在-20℃-300℃,温度分辨率小于0.1℃。红外热像仪摆放要对准永磁同步电机侧面中心,红外热像仪和永磁同步电机位于同一水平高度,两者之间的水平距离的选取要使红外热像仪采集到的图像包括整个永磁同步电机,每次采集两者相对位置固定不变。数据传输电缆做好电磁屏蔽,优化传输电缆的长度降低信号衰减量,调整红外热像仪的视觉传感器光圈和焦距保证采集到的热分布图像清晰准确。As shown in Figures 5 and 6, when the infrared thermal imaging camera collects the original image data, an infrared thermal imaging camera is installed in front of the measured permanent magnet synchronous motor target, and the infrared thermal imaging camera has the ability to regularly capture thermal images and transmit them to The function of the computer center, the temperature measurement range is -20°C-300°C, and the temperature resolution is less than 0.1°C. The thermal imaging camera should be placed at the center of the side of the permanent magnet synchronous motor. The thermal imaging camera and the permanent magnet synchronous motor are located at the same level. The horizontal distance between the two should be selected so that the images collected by the thermal imaging camera include For the entire permanent magnet synchronous motor, the relative position of the two is fixed each time it is collected. The data transmission cable is electromagnetically shielded, the length of the transmission cable is optimized to reduce signal attenuation, and the aperture and focal length of the visual sensor of the infrared thermal imager are adjusted to ensure that the collected thermal distribution images are clear and accurate.
以上对本发明所提供的一种永磁同步电机故障检测方法和系统进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。A fault detection method and system for a permanent magnet synchronous motor provided by the present invention has been introduced in detail above. In this paper, specific examples are used to illustrate the principles and implementation modes of the present invention, and the descriptions of the above embodiments are only used to help understand the core idea of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810411549.8A CN108445393B (en) | 2018-05-02 | 2018-05-02 | A kind of permanent magnet synchronous motor fault detection method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810411549.8A CN108445393B (en) | 2018-05-02 | 2018-05-02 | A kind of permanent magnet synchronous motor fault detection method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108445393A CN108445393A (en) | 2018-08-24 |
CN108445393B true CN108445393B (en) | 2019-10-29 |
Family
ID=63202642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810411549.8A Active CN108445393B (en) | 2018-05-02 | 2018-05-02 | A kind of permanent magnet synchronous motor fault detection method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108445393B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114115175B (en) * | 2021-10-29 | 2024-01-05 | 江苏大学 | High-impedance connection fault diagnosis system of permanent magnet synchronous motor control system |
CN116085290B (en) * | 2023-01-30 | 2024-11-15 | 浙江上风高科专风实业股份有限公司 | Sliding window thermal imaging-based fan thermal fault detection method and system |
CN119131035B (en) * | 2024-11-13 | 2025-03-18 | 西安重装韩城煤矿机械有限公司 | Belt conveyor motor overheat detection method based on infrared image |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101163364A (en) * | 2006-10-13 | 2008-04-16 | 北方工业大学 | Monitoring system and method for monitoring operation of electric element using the system |
CN107247230A (en) * | 2017-07-03 | 2017-10-13 | 浙江大学 | A kind of electric rotating machine state monitoring method based on SVMs and data-driven |
CN107609574A (en) * | 2017-08-18 | 2018-01-19 | 上海电力学院 | Wind turbines fault early warning method based on data mining |
WO2018020545A1 (en) * | 2016-07-25 | 2018-02-01 | 三菱電機株式会社 | Electric motor diagnosis device |
-
2018
- 2018-05-02 CN CN201810411549.8A patent/CN108445393B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101163364A (en) * | 2006-10-13 | 2008-04-16 | 北方工业大学 | Monitoring system and method for monitoring operation of electric element using the system |
WO2018020545A1 (en) * | 2016-07-25 | 2018-02-01 | 三菱電機株式会社 | Electric motor diagnosis device |
CN107247230A (en) * | 2017-07-03 | 2017-10-13 | 浙江大学 | A kind of electric rotating machine state monitoring method based on SVMs and data-driven |
CN107609574A (en) * | 2017-08-18 | 2018-01-19 | 上海电力学院 | Wind turbines fault early warning method based on data mining |
Also Published As
Publication number | Publication date |
---|---|
CN108445393A (en) | 2018-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117635565B (en) | Semiconductor surface defect detection system based on image recognition | |
CN111047568B (en) | Method and system for detecting and identifying steam leakage defect | |
CN108445393B (en) | A kind of permanent magnet synchronous motor fault detection method and system | |
CN117274722B (en) | Intelligent detection method for distribution box based on infrared image | |
CN105426828B (en) | Face detection method, device and system | |
CN112085089A (en) | Intelligent temperature measurement method of substation equipment based on deep learning algorithm | |
CN105957088B (en) | Transformer composite insulator casing monitoring method and system based on computer vision | |
CN106680285A (en) | Infrared image-assisted method of recognizing contamination condition of insulator by visible light image | |
CN106127253B (en) | A kind of method for detecting infrared puniness target using sample characteristics learning classification | |
CN112183472A (en) | A detection method based on improved RetinaNet for whether the test site personnel are wearing work clothes | |
CN106056597A (en) | Object visual detection method and device | |
CN107833211A (en) | Zero resistance insulator automatic testing method and device based on infrared image | |
CN111695512B (en) | Unattended cultural relic monitoring method and unattended cultural relic monitoring device | |
CN111862073A (en) | Temperature acquisition method and device for power equipment | |
CN114627286A (en) | Method for detecting wagon staff invasion based on PSPNet and improved YOLOv4 | |
CN111626104A (en) | A method and device for detecting hidden danger points of cables based on UAV infrared thermal image | |
CN108932513A (en) | A kind of status of electric power intelligent early-warning method based on infrared image | |
CN118392875A (en) | A nondestructive testing system and method for shaft parts surface | |
CN105957300B (en) | A kind of wisdom gold eyeball identification is suspicious to put up masking alarm method and device | |
CN114220084A (en) | A Defect Recognition Method of Power Distribution Equipment Based on Infrared Image | |
CN111339927B (en) | An intelligent identification system for the working status of the personnel in the electric power business hall | |
CN118776685A (en) | Temperature monitoring method for master alloy turning based on infrared image | |
CN112508892B (en) | Method and system for detecting tiny foreign matters on railway track surface based on machine vision | |
CN119206599A (en) | A method and system for detecting abnormal phenomena of electric energy meters based on image recognition | |
TWI777689B (en) | Method of object identification and temperature measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |