CN108439410A - 一种B4C/SiC纳米线复合微波吸收材料 - Google Patents

一种B4C/SiC纳米线复合微波吸收材料 Download PDF

Info

Publication number
CN108439410A
CN108439410A CN201810699456.XA CN201810699456A CN108439410A CN 108439410 A CN108439410 A CN 108439410A CN 201810699456 A CN201810699456 A CN 201810699456A CN 108439410 A CN108439410 A CN 108439410A
Authority
CN
China
Prior art keywords
microwave absorbing
nano wire
composite microwave
carbon
absorbing materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810699456.XA
Other languages
English (en)
Other versions
CN108439410B (zh
Inventor
吴雯雯
刘远
邢子君
王萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201810699456.XA priority Critical patent/CN108439410B/zh
Publication of CN108439410A publication Critical patent/CN108439410A/zh
Application granted granted Critical
Publication of CN108439410B publication Critical patent/CN108439410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/991Boron carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种B4C/SiC纳米线复合微波吸收材料,该材料是以石墨、碳纳米管、棉纤维等作为碳源,硼粉为硼源,与SiO2以及催化剂(硝酸铁或硝酸镍)充分混合后,在惰性气氛保护下加热反应,即得到B4C/SiC纳米线复合微波吸收材料。本发明所采用的原料简单易得、操作简单可控,制备的B4C/SiC纳米线复合材料结晶度好、形貌规则、尺寸均匀,具有良好的微波吸收性能。

Description

一种B4C/SiC纳米线复合微波吸收材料
技术领域
本发明属于微波吸收材料技术领域,具体涉及一种B4C/SiC纳米线复合微波吸收材料。
背景技术
B4C的晶体结构为二十面体,构成B4C的C原子和B原子均属于非金属元素,而且原子半径小,所以两者形成了强共价键,使得B4C表现出了高熔点、高硬度、低密度、中子吸收性能等物理特性。与此同时,B4C材料在毫米波阶段的吸波性能已经得到实际运用(W.Bin,A.Bruschi.Absorbing coatings for high power millimeter-wave devices andmatched.Fusion Engineering and design[J].2013,2510-2514.)。研究表明,B4C块体材料可以通过2.45GHz微波辐射加热到2000℃,烧结密度为理论密度的95%。这项实验证明了B4C材料在2.45GHz的频率具有一定的吸波性能(J.D.Kate,R.D.Blake,J.J.Petrovic,H.Sheinberg.Microwave sintering of boron carbide[J].MRS Proceedings.1988,10(1557):124-219.)。然而,B4C材料在更宽微波频段下的吸收性能则鲜有报道。
近年来,一维无机纳米材料中的碳化物,如碳化硅、碳化硼等,由于其具有较强的量子尺寸效应,常常表现出比传统块体材料更好的力学、光学及电学性能,在构造纳米器件方面也具有很好的应用前景,受到了极大关注。如一维SiC纳米材料有着优异的介电性质,SiC纳米线的加入能够提高复合材料介电损耗能力,获得优异的吸波性能。一维B4C纳米材料具有比块体材料更为优良的力学性能,能够承受多次高应变弯曲循环试验,最高应变可达45%。单个纳米线在高应变弯曲循环下也表现出优异的阴极射线性质,证明了一维B4C纳米材料具有良好的电学性质(Yuan Huang,Fei Liu,Qiang Luo,Yuan Tian.Fabricationof patterned boron carbide nanowires and their electrical,filed emission,andflexibility properties.Nano Research[J].2012,Vol.5(12):896-902.)。然而,有关B4C纳米线的吸波性能未见报道。
目前已存在多种纳米线的制备方法,其中包括基于气-液-固生长机制的化学气相沉积法,基于氧化物辅助生长机理的热蒸发法,以及使用一维材料作为模板通过覆盖或替换制备纳米线的模板法。其中,模板法原料简单易得,工艺相对简单实用。
发明内容
本发明的目的是提供一种结晶度好、形貌规则、尺寸均匀、具有良好的微波吸收性能的B4C/SiC纳米线复合材料。
本发明的B4C/SiC纳米线复合微波吸收材料由下述方法制备得到:
以石墨或碳纳米管或脱脂棉作为碳源,硼粉为硼源,SiO2为硅源,硝酸铁或硝酸镍为催化剂,按照硼碳摩尔比为1:4、SiO2与碳的摩尔百分比为15%~55%、催化剂与碳的摩尔百分比为10%~15%,将原料充分依次加入无水乙醇中,超声0.5~2小时,加热搅拌直至干燥,然后将干燥产物在惰性气氛保护下1200~1400℃反应,得到B4C/SiC纳米线复合微波吸收材料。
上述制备方法中,优选SiO2与碳的摩尔百分比为30%~45%。
上述制备方法中,进一步优选将干燥产物在惰性气氛保护下1300℃反应2~3小时。
本发明复合微波吸收材料的纳米线长度为1~50μm,长径比为20~1000。
本发明的优点是:
(1)原料价格便宜,制备工艺简单,容易实现。
(2)所制备B4C/SiC纳米线复合微波吸收材料组分可调,显微结构均匀。
(3)所制备B4C/SiC纳米线复合微波吸收材料结晶度好、形貌规则、尺寸均匀。
(4)所B4C/SiC纳米线复合微波吸收材料在2GHz~18GHz的频率范围内具有良好的吸波性能。
附图说明
图1是实施例1制备的B4C/SiC纳米线复合微波吸收材料的SEM图。
图2是实施例4制备的B4C/SiC纳米线复合微波吸收材料的SEM图。
图3是对比例1制备的B4C纳米线(曲线a)以及实施例1(曲线b)和实施例4(曲线c)制备的B4C/SiC纳米线复合微波吸收材料的XRD图。
图4是对比例1制备的B4C纳米线不同厚度下的反射系数随频率变化曲线。
图5是实施例1制备的B4C/SiC纳米线复合微波吸收材料不同厚度下的反射系数随频率变化曲线。
图6是实施例4制备的B4C/SiC纳米线复合微波吸收材料不同厚度下的反射系数随频率变化曲线。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
按照硼碳摩尔比为1:4,SiO2相对于碳的摩尔百分比为16%,硝酸镍相对于碳的摩尔百分比为12%,将脱脂棉置于管式炉中,在氩气气氛中700℃煅烧3小时,得到碳纤维;将0.0780g(6.5mmol)碳纤维、0.2811g(26mmol)硼粉、0.0625g(1mmol)SiO2、0.1405g(0.8mmol)硝酸镍依次加入20mL无水乙醇中,超声0.5小时,加热搅拌直至干燥。将干燥后的粉体放在石墨模具中,置于管式炉中,在氩气气氛中1300℃加热2小时,得到B4C/SiC纳米线复合微波吸收材料(见图1),纳米线长度为5~10μm,长径比为50~125。
实施例2
按照硼碳摩尔比为1:4,SiO2相对于碳的摩尔百分比为16%,硝酸镍相对于碳的摩尔百分比为12%,将0.1200g(10.0mmol)粒径为100目的石墨、0.4324g(40.0mmol)硼粉、0.0961g(1.6mmol)SiO2、0.2162g(1.2mmol)硝酸镍依次加入30mL无水乙醇中,超声0.5小时,加热搅拌直至干燥。将干燥后的粉体放在石墨模具中,置于管式炉中,在氩气气氛中1300℃加热2小时,得到B4C/SiC纳米线复合微波吸收材料。
实施例3
本实施例中,用等摩尔碳纳米管替换实施例2中的石墨,其他步骤与实施例2相同,得到B4C/SiC纳米线复合微波吸收材料。
实施例4
按照硼碳摩尔比为1:4,SiO2相对于碳的摩尔百分比为36%,硝酸镍相对于碳的摩尔百分比为12%,将脱脂棉置于管式炉中,在氩气气氛中700℃煅烧3小时,得到碳纤维;将0.1536g(12.8mmol)碳纤维、0.5535g(5.12mmol)硼粉、0.2767g(4.6mmol)SiO2、0.2767g(1.5mmol)硝酸镍依次加入30mL无水乙醇中,超声0.5小时,加热搅拌直至干燥。将干燥后的粉体放在石墨模具中,置于管式炉中,在氩气气氛中1300℃加热2小时,得到B4C/SiC纳米线复合微波吸收材料(见图2),纳米线长度为10~30μm,长径比为100~600。
实施例5
按照硼碳摩尔比为1:4,SiO2相对于碳的摩尔百分比为36%,硝酸镍相对于碳的摩尔百分比为12%,将0.1200g(10.0mmol)粒径为100目的石墨、0.4324g(40.0mmol)硼粉、0.2162g(3.6mmol)SiO2、0.2162g(1.2mmol)硝酸镍依次加入20mL无水乙醇中,超声0.5小时,加热搅拌直至干燥。将干燥后的粉体放在石墨模具中,置于管式炉中,在氩气气氛中1300℃加热2小时,得到B4C/SiC纳米线复合微波吸收材料。
实施例6
本实施例中,用等摩尔碳纳米管替换实施例5中的石墨,其他步骤与实施例5相同,得到B4C/SiC纳米线复合微波吸收材料。
对比例1
按照硼碳摩尔比为1:4,SiO2相对于碳的摩尔百分比为4%,硝酸镍相对于碳的摩尔百分比为12%,将脱脂棉置于管式炉中,在氩气气氛中700℃煅烧3小时,得到碳纤维;将0.0810g(6.8mmol)碳纤维、0.2919g(27.0mmol)硼粉、0.0162g(0.3mmol)SiO2、0.1459g(0.8mmol)硝酸镍依次加入20mL无水乙醇中,超声0.5小时,加热搅拌直至干燥。将干燥后的粉体放在石墨模具中,置于管式炉中,在氩气气氛中1300℃加热3小时,得到B4C纳米线。
为了证明本发明的有益效果,发明人将实施例1和实施例4制备的B4C/SiC纳米线复合微波吸收材料以及对比例1制备的B4C纳米线分别与石蜡按质量比为4:6混合,制备成环状样品,采用矢量网络分析仪测试样品的微波电磁参数,并计算出在2GHz~18GHz的频率范围内不同匹配厚度下的反射损失,结果见图4~6。
由图4~6可见,对比例1制备的B4C纳米线的匹配厚度为5mm时,反射损失在7.3GHz处达到最小值-13.4dB,有效吸收带宽为1.65GHz。而本发明实施例1制备的B4C/SiC纳米线复合微波吸收材料的匹配厚度为4mm时,反射损失在9.01GHz处达到最小值-14.9dB,有效吸收带宽为2.34GHz,实施例4制备的B4C/SiC纳米线复合微波吸收材料的匹配厚度为3.3mm时,反射损失在11.8GHz处达到最小值-50.8dB,有效吸收带宽为3.12GHz。由此可见,本发明的B4C/SiC纳米线复合微波吸收材料相对于B4C纳米线,具有更强的微波吸收损耗,且具有更大的有效吸收带宽,其中实施例4制备的B4C/SiC纳米线复合微波吸收材料相对于对比例1制备的B4C纳米线,微波吸收损耗提高了近3倍,有效吸收带宽也提高了约1倍。

Claims (4)

1.一种B4C/SiC纳米线复合微波吸收材料,其特征在于该材料由下述方法制备得到:以石墨或碳纳米管或脱脂棉作为碳源,硼粉为硼源,SiO2为硅源,硝酸铁或硝酸镍为催化剂,按照硼碳摩尔比为1:4、SiO2与碳的摩尔百分比为15%~55%、催化剂与碳的摩尔百分比为10%~15%,将原料充分依次加入无水乙醇中,超声0.5~2小时,加热搅拌直至干燥,然后将干燥产物在惰性气氛保护下1200~1400℃反应,得到B4C/SiC纳米线复合微波吸收材料。
2.根据权利要求1所述的B4C/SiC纳米线复合微波吸收材料,其特征在于:所述SiO2与碳的摩尔百分比为30%~45%。
3.根据权利要求1所述的B4C/SiC纳米线复合微波吸收材料,其特征在于:将干燥产物在惰性气氛保护下1300℃反应2~3小时。
4.根据权利要求1~3任意一项所述的B4C/SiC纳米线复合微波吸收材料,其特征在于:所述复合微波吸收材料的纳米线长度为1~50μm,长径比为20~1000。
CN201810699456.XA 2018-06-29 2018-06-29 一种B4C/SiC纳米线复合微波吸收材料 Active CN108439410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810699456.XA CN108439410B (zh) 2018-06-29 2018-06-29 一种B4C/SiC纳米线复合微波吸收材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810699456.XA CN108439410B (zh) 2018-06-29 2018-06-29 一种B4C/SiC纳米线复合微波吸收材料

Publications (2)

Publication Number Publication Date
CN108439410A true CN108439410A (zh) 2018-08-24
CN108439410B CN108439410B (zh) 2019-10-25

Family

ID=63207014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810699456.XA Active CN108439410B (zh) 2018-06-29 2018-06-29 一种B4C/SiC纳米线复合微波吸收材料

Country Status (1)

Country Link
CN (1) CN108439410B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511748A (zh) * 2019-08-07 2019-11-29 陕西师范大学 一种荧光碳化硼纳米带的制备方法
CN111377449A (zh) * 2018-12-28 2020-07-07 内蒙古元瓷新材料科技有限公司 一种碳化硼纳米颗粒的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219536A (zh) * 2011-04-27 2011-10-19 浙江大学 一种B4C/SiC晶须/SiC复相陶瓷基复合材料及其制备方法
CN102491331A (zh) * 2011-11-15 2012-06-13 西北工业大学 一种制备SiC纳米线和纳米带的方法
CN103738964A (zh) * 2013-12-30 2014-04-23 张家港市东大工业技术研究院 一种SiC/SiO2同轴纳米线的制备方法
CN103928276A (zh) * 2014-04-29 2014-07-16 宁波工程学院 一种提高SiC场发射阴极材料高温电子发射稳定性的方法
US20140377160A1 (en) * 2013-05-31 2014-12-25 University Of Notre Dame Du Lac Combustion synthesis of graphene and carbonous nanomaterials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219536A (zh) * 2011-04-27 2011-10-19 浙江大学 一种B4C/SiC晶须/SiC复相陶瓷基复合材料及其制备方法
CN102491331A (zh) * 2011-11-15 2012-06-13 西北工业大学 一种制备SiC纳米线和纳米带的方法
US20140377160A1 (en) * 2013-05-31 2014-12-25 University Of Notre Dame Du Lac Combustion synthesis of graphene and carbonous nanomaterials
CN103738964A (zh) * 2013-12-30 2014-04-23 张家港市东大工业技术研究院 一种SiC/SiO2同轴纳米线的制备方法
CN103928276A (zh) * 2014-04-29 2014-07-16 宁波工程学院 一种提高SiC场发射阴极材料高温电子发射稳定性的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377449A (zh) * 2018-12-28 2020-07-07 内蒙古元瓷新材料科技有限公司 一种碳化硼纳米颗粒的制备方法
CN110511748A (zh) * 2019-08-07 2019-11-29 陕西师范大学 一种荧光碳化硼纳米带的制备方法

Also Published As

Publication number Publication date
CN108439410B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
Lan et al. Efficient high-temperature electromagnetic wave absorption enabled by structuring binary porous SiC with multiple interfaces
Luo et al. High-temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes
Lan et al. High-temperature electromagnetic wave absorption, mechanical and thermal insulation properties of in-situ grown SiC on porous SiC skeleton
Zhou et al. Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties
Wang et al. Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency
Duan et al. A review of absorption properties in silicon-based polymer derived ceramics
Duan et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic
Farhan et al. Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires
Huo et al. Electrospinning synthesis of SiC/Carbon hybrid nanofibers with satisfactory electromagnetic wave absorption performance
Li et al. Construction of multiple heterogeneous interface and its effect on microwave absorption of SiBCN ceramics
Zhan et al. Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique
Long et al. Continuous SiCN fibers with interfacial SiC x N y phase as structural materials for electromagnetic absorbing applications
Liu et al. Synthesis and microwave absorption properties of carbon coil–carbon fiber hybrid materials
CN103738964B (zh) 一种SiC/SiO2同轴纳米线的制备方法
Liu et al. Enhanced microwave-absorption properties of polymer-derived SiC/SiOC composite ceramics modified by carbon nanowires
Logesh et al. Tunable microwave absorption performance of carbon fiber-reinforced reaction bonded silicon nitride composites
Luo et al. Modeling for high-temperature dielectric behavior of multilayer Cf/Si3N4 composites in X-band
Zhang et al. Graphene-layer-coated boron carbide nanosheets with efficient electromagnetic wave absorption
Ye et al. Enhanced electromagnetic absorption properties of novel 3D-CF/PyC modified by reticulated SiC coating
Qi et al. Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids
Dong et al. Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3· 2SiO2 porous ceramic
CN108439410B (zh) 一种B4C/SiC纳米线复合微波吸收材料
Jiang et al. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption
Feng et al. Dielectric properties and electromagnetic wave absorbing performance of single-source-precursor synthesized Mo4. 8Si3C0. 6/SiC/Cfree nanocomposites with an in situ formed Nowotny phase
Wang et al. Dielectric response and microwave absorption properties of SiC whisker-coated carbon fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant