CN108436333B - 基于机器视觉的焊接机器人 - Google Patents

基于机器视觉的焊接机器人 Download PDF

Info

Publication number
CN108436333B
CN108436333B CN201810241417.5A CN201810241417A CN108436333B CN 108436333 B CN108436333 B CN 108436333B CN 201810241417 A CN201810241417 A CN 201810241417A CN 108436333 B CN108436333 B CN 108436333B
Authority
CN
China
Prior art keywords
detection data
information
unit
matrix
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810241417.5A
Other languages
English (en)
Other versions
CN108436333A (zh
Inventor
程宾
莫波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGZHOU ZSROBOT INTELLIGENT EQUIPMENT Co.,Ltd.
Original Assignee
Guangzhou Zsrobot Intelligent Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Zsrobot Intelligent Equipment Co ltd filed Critical Guangzhou Zsrobot Intelligent Equipment Co ltd
Priority to CN201810241417.5A priority Critical patent/CN108436333B/zh
Publication of CN108436333A publication Critical patent/CN108436333A/zh
Application granted granted Critical
Publication of CN108436333B publication Critical patent/CN108436333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manipulator (AREA)

Abstract

本发明提供了一种基于机器视觉的焊接机器人,包括:焊接单元,用于进行焊接作业;基于机器视觉的监测单元,用于对焊接质量进行监测;机器人监控服务器,用于根据监测结果对焊接单元进行反馈,使所述焊接单元调整焊接作业。本方法提高了通过图像识别机器人焊接质量的准确度和可靠性。

Description

基于机器视觉的焊接机器人
技术领域
本发明属于机器人车间监控技术领域,特别是涉及一种基于机器视觉的焊接机器人。
背景技术
机器人已经被普遍地应用到生产线,包括组装、焊接、涂胶等场合都常见机器人执行操作的身影。例如,人们对于汽车等机械加工制品的性能和外观的要求也越来越高。汽车涂装效果是汽车外观给人最直接的印象。汽车涂装工艺是汽车制造四大工艺(冲压、焊装、涂装、总装)之一,其质量直接影响消费者对于汽车品牌的第一印象。由于汽车涂装质量受到多种因素的影响,如:涂料本身、涂装环境以及各个工艺参数设定等,使得汽车涂装成为一项高精度、高难度的工作,因此汽车车身喷漆烘干后仍然需要进行瑕疵检测。但由于汽车表面的高反光特性,使得瑕疵检测异常困难。
目前,我国机器人加工车间中的涂装瑕疵检测环节均由人工完成,通过打油石,光照等方法,从不同角度结合观察和触摸等方式对微小瑕疵进行检测。在生产线上,完成涂装烘干后,一般由多名工人对瑕疵进行检测,为后续修复环节提供依据。这项工作不仅需要检测人员具有丰富的工作经验,并且要求检测工人始终保持高强度的注意力,对于流水线连续工作的工人,很容易产生视觉疲劳,从而易导致检测效率和检测准确率下降,不可避免地会出现误检漏检的现象。另一方面,随着世界经济的区域调整和中国经济的产业转型,人工成本也越来越高,采用人工检测的方法也无法适应目前高速、精准、自动化的生产要求。因此,如何提高瑕疵检测的自动化水平,降低生产成本是我国汽车产业也是世界机器人加工业面临的迫切问题。此外,通过视频检测瑕疵是本领域常用的技术手段,但车间难免由于传输带运动、机械加工操作等造成视频采集过程中存在对摄像设备的震动,影响利用其图像进行瑕疵检测的质量。
经检索,申请号为CN201510317542.6的中国发明专利申请公开了一种机器人焊接系统的焊接质量检测方法,其包括:第一获取步骤:获取工件的标识信息;第二获取步骤,获取焊接所述工件时的焊接电流信息、焊接电压信息和焊接速度信息;以及第一比较判断步骤,将所获取的焊接电流信息、焊接电压信息、焊接速度信息分别与预定的对应所述工件的标识信息的焊接电流区间、焊接电压区间、焊接速度区间进行比较,以判断所述工件的焊接是否存在焊接质量问题。但是,这种方式的电流、电压信息和速度信息由于机器人的动作,通常难以获得稳定和准确的检测。
发明内容
为了提高机器人焊接质量监控准确度,本发明提供了一种基于机器视觉的焊接机器人,包括:
焊接单元,用于进行焊接作业;
基于机器视觉的监测单元,用于对焊接质量进行监测;
机器人监控服务器,用于根据监测结果对焊接单元进行反馈,使所述焊接单元调整焊接作业。
进一步地,所述基于机器视觉的监测单元包括:
检测数据获取单元,用于通过三个视频采集设备获得对工业焊接机器人焊接作业中的焊接对象的检测数据;
稳定化单元,用于对检测数据进行稳定化;
识别单元,用于对经过稳定化的数据进行焊接质量识别。
进一步地,所述视频采集设备的拍摄角度彼此不同。
进一步地,所述视频采集设备的焦距能够进行自动调整,且各自的调整范围彼此不同。
进一步地,所述检测数据是由多个图像组成的帧数据集合。
进一步地,所述检测数据获取单元包括:
第一视频采集设备,用于采集第一检测数据并记录其第一采集方向信息;
第二视频采集设备,用于采集第二检测数据并记录其第二采集方向信息;
第三视频采集设备,用于采集第三检测数据并记录其第三采集方向信息;
第一检测数据集获得单元,用于对所述第一检测数据、第二检测数据、第三检测数据、第一采集方向信息、第二采集方向信息和第三采集方向信息进行第一收集,得到第一检测数据集,所述第一收集包括将所述第一检测数据、第二检测数据、第三检测数据、第一采集方向信息、第二采集方向信息和第三采集方向信息进行保存,得到第一检测数据集。
进一步地,所述稳定化单元包括:
第二检测数据集获得单元,用于根据第一检测数据、第二检测数据和第三检测数据在不同时刻分别对应的第一采集方向、第二采集方向、第三采集方向,对第一检测数据集中的各帧数据进行重新组合,得到第二检测数据集;
传输单元,用于将第二检测数据集传输到机器人监控服务器。
进一步地,所述第一采集方向信息包括水平信息和姿态信息,所述水平信息表示视频采集设备的焦距所在直线朝向现场数据来源的方向的方向角,所述姿态信息表示所述视频采集设备的三维加速度矢量。
进一步地,所述第二检测数据集获得单元包括:
第一水平信息差值计算单元,用于在第一时刻t1,分别计算第一采集方向信息的水平信息与第二采集方向信息的水平信息、第一采集方向信息的水平信息与第三采集方向信息的水平信息这两者之间的差值,该差值分别对应于第一水平信息差值α1和第二水平信息差值α2
第二水平信息差值计算单元,用于在第一时刻t1之后的第二时刻t2,分别计算第一采集方向信息的水平信息与第二采集方向信息的水平信息、第一采集方向信息的水平信息与第三采集方向信息的水平信息这两者之间的差值,该差值分别对应于第三水平信息差值α3和第四水平信息差值α4
比值计算单元,用于计算第一采集方向信息的姿态信息、第二采集方向信息的姿态信息和第三采集方向信息的姿态信息这三种姿态信息在第一时刻t1与第二时刻t2之间的时间段内的第一姿态信息变化率g1、第二姿态信息变化率g2和第三姿态信息变化率g3,其中所述第一、第二和第三姿态信息变化率是通过三维加速度的矢量和与第二时刻与第一时刻之间的时间差之间的比值计算得到的;
第一像素匹配矩阵计算单元,用于计算像素匹配矩阵A如下:
Figure GDA0001662593450000041
Figure GDA0001662593450000042
Figure GDA0001662593450000043
第一过渡矩阵计算单元,用于:设在第一时刻t1,第一检测数据对应的像素集合对应的矩阵为m,第二检测数据对应的像素集合对应的矩阵为n,第三检测数据对应的像素集合对应的矩阵为p;在第二时刻t2,第一检测数据对应的像素集合对应的矩阵为x,第二检测数据对应的像素集合对应的矩阵为y,第三检测数据对应的像素集合对应的矩阵为z,计算第一过渡矩阵C1为:
Figure GDA0001662593450000044
其中mod(t2-t1,2)表示对t2-t1的差值的绝对值取相对于2的商的余数;
第二像素匹配矩阵计算单元,用于以
Figure GDA0001662593450000045
作为翻转中心点的空间坐标,对矩阵A进行对称翻转,得到矩阵A’;
第二过渡矩阵计算单元,用于计算第二过渡矩阵C2为:
Figure GDA0001662593450000051
内插单元,用于利用矩阵C2对矩阵A’进行内插,得到矩阵A”,并计算第二检测数据集中与第二时刻t2对应的检测数据帧对应的像素集合对应的矩阵q:
Figure GDA0001662593450000052
累积单元,用于将q进行保存,进而不断累积得到第二检测数据集。
进一步地,所述机器人监控服务器包括:预警子单元,用于当所述第二检测数据集的帧数据中,与预定位置相对应的空间坐标对应的帧数据的灰度大于预设灰度阈值时,发出焊接质量预警信息。
本发明的技术方案具有如下有益效果:
通过多个不同焦距的摄像头、照相机等摄像设备采集到的对工业焊接机器人焊接作业中的焊接对象的检测数据的稳定化处理,提高了识别焊接质量过程中由于机器人所在流水线或操作工件的抖动、震动产生的焊接质量检测图像模糊不清的问题,提高了供机器人监控服务器通过灰度面积和深度的检测进行焊缝宽度识别的准确度和可靠性。
附图说明
图1示出了本发明的机器人的组成框图。
具体实施方式
根据本发明的优选实施例,如图1所示的基于机器视觉的焊接机器人,基于机器视觉的焊接机器人,包括:
焊接单元,用于进行焊接作业;
基于机器视觉的监测单元,用于对焊接质量进行监测;
机器人监控服务器,用于根据监测结果对焊接单元进行反馈,使所述焊接单元调整焊接作业。
优选地,所述基于机器视觉的监测单元包括:
检测数据获取单元,用于通过三个视频采集设备获得对工业焊接机器人焊接作业中的焊接对象的检测数据;
稳定化单元,用于对检测数据进行稳定化;
识别单元,用于对经过稳定化的数据进行焊接质量识别。
优选地,所述视频采集设备的拍摄角度彼此不同。
优选地,所述视频采集设备的焦距能够进行自动调整,且各自的调整范围彼此不同。
优选地,所述检测数据是由多个图像组成的帧数据集合。
优选地,所述检测数据获取单元包括:
第一视频采集设备,用于采集第一检测数据并记录其第一采集方向信息;
第二视频采集设备,用于采集第二检测数据并记录其第二采集方向信息;
第三视频采集设备,用于采集第三检测数据并记录其第三采集方向信息;
第一检测数据集获得单元,用于对所述第一检测数据、第二检测数据、第三检测数据、第一采集方向信息、第二采集方向信息和第三采集方向信息进行第一收集,得到第一检测数据集,所述第一收集包括将所述第一检测数据、第二检测数据、第三检测数据、第一采集方向信息、第二采集方向信息和第三采集方向信息进行保存,得到第一检测数据集。
优选地,所述稳定化单元包括:
第二检测数据集获得单元,用于根据第一检测数据、第二检测数据和第三检测数据在不同时刻分别对应的第一采集方向、第二采集方向、第三采集方向,对第一检测数据集中的各帧数据进行重新组合,得到第二检测数据集;
传输单元,用于将第二检测数据集传输到机器人监控服务器。
优选地,所述第一采集方向信息包括水平信息和姿态信息,所述水平信息表示视频采集设备的焦距所在直线朝向现场数据来源的方向的方向角,所述姿态信息表示所述视频采集设备的三维加速度矢量。
优选地,所述第二检测数据集获得单元包括:
第一水平信息差值计算单元,用于在第一时刻t1,分别计算第一采集方向信息的水平信息与第二采集方向信息的水平信息、第一采集方向信息的水平信息与第三采集方向信息的水平信息这两者之间的差值,该差值分别对应于第一水平信息差值α1和第二水平信息差值α2
第二水平信息差值计算单元,用于在第一时刻t1之后的第二时刻t2,分别计算第一采集方向信息的水平信息与第二采集方向信息的水平信息、第一采集方向信息的水平信息与第三采集方向信息的水平信息这两者之间的差值,该差值分别对应于第三水平信息差值α3和第四水平信息差值α4
比值计算单元,用于计算第一采集方向信息的姿态信息、第二采集方向信息的姿态信息和第三采集方向信息的姿态信息这三种姿态信息在第一时刻t1与第二时刻t2之间的时间段内的第一姿态信息变化率g1、第二姿态信息变化率g2和第三姿态信息变化率g3,其中所述第一、第二和第三姿态信息变化率是通过三维加速度的矢量和与第二时刻与第一时刻之间的时间差之间的比值计算得到的;
第一像素匹配矩阵计算单元,用于计算像素匹配矩阵A如下:
Figure GDA0001662593450000081
Figure GDA0001662593450000082
Figure GDA0001662593450000083
第一过渡矩阵计算单元,用于:设在第一时刻t1,第一检测数据对应的像素集合对应的矩阵为m,第二检测数据对应的像素集合对应的矩阵为n,第三检测数据对应的像素集合对应的矩阵为p;在第二时刻t2,第一检测数据对应的像素集合对应的矩阵为x,第二检测数据对应的像素集合对应的矩阵为y,第三检测数据对应的像素集合对应的矩阵为z,计算第一过渡矩阵C1为:
Figure GDA0001662593450000084
其中mod(t2-t1,2)表示对t2-t1的差值的绝对值取相对于2的商的余数;
第二像素匹配矩阵计算单元,用于以
Figure GDA0001662593450000085
作为翻转中心点的空间坐标,对矩阵A进行对称翻转,得到矩阵A’;
第二过渡矩阵计算单元,用于计算第二过渡矩阵C2为:
Figure GDA0001662593450000086
内插单元,用于利用矩阵C2对矩阵A’进行内插,得到矩阵A”,并计算第二检测数据集中与第二时刻t2对应的检测数据帧对应的像素集合对应的矩阵q:
Figure GDA0001662593450000091
累积单元,用于将q进行保存,进而不断累积得到第二检测数据集。
优选地,所述机器人监控服务器包括:预警子单元,用于当所述第二检测数据集的帧数据中,与预定位置相对应的空间坐标对应的帧数据的灰度大于预设灰度阈值时,发出焊接质量预警信息。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种基于机器视觉的焊接机器人,包括:
焊接单元,用于进行焊接作业;
基于机器视觉的监测单元,用于对焊接质量进行监测;
机器人监控服务器,用于根据监测结果对焊接单元进行反馈,使所述焊接单元调整焊接作业;
所述基于机器视觉的监测单元包括:
检测数据获取单元,用于通过三个视频采集设备获得对工业焊接机器人焊接作业中的焊接对象的检测数据;
稳定化单元,用于对检测数据进行稳定化;
识别单元,用于对经过稳定化的数据进行焊接质量识别;
所述视频采集设备的拍摄角度彼此不同;
所述视频采集设备的焦距能够进行自动调整,且各自的调整范围彼此不同;
所述检测数据是由多个图像组成的帧数据集合;
其特征在于,所述检测数据获取单元包括:
第一视频采集设备,用于采集第一检测数据并记录其第一采集方向信息;
第二视频采集设备,用于采集第二检测数据并记录其第二采集方向信息;
第三视频采集设备,用于采集第三检测数据并记录其第三采集方向信息;
第一检测数据集获得单元,用于对所述第一检测数据、第二检测数据、第三检测数据、第一采集方向信息、第二采集方向信息和第三采集方向信息进行第一收集,得到第一检测数据集,所述第一收集包括将所述第一检测数据、第二检测数据、第三检测数据、第一采集方向信息、第二采集方向信息和第三采集方向信息进行保存,得到第一检测数据集;
所述稳定化单元包括:
第二检测数据集获得单元,用于根据第一检测数据、第二检测数据和第三检测数据在不同时刻分别对应的第一采集方向、第二采集方向、第三采集方向,对第一检测数据集中的各帧数据进行重新组合,得到第二检测数据集;
传输单元,用于将第二检测数据集传输到机器人监控服务器;
所述第一采集方向信息包括水平信息和姿态信息,所述水平信息表示视频采集设备的焦距所在直线朝向现场数据来源的方向的方向角,所述姿态信息表示所述视频采集设备的三维加速度矢量;
所述第二检测数据集获得单元包括:
第一水平信息差值计算单元,用于在第一时刻t1,分别计算第一采集方向信息的水平信息与第二采集方向信息的水平信息、第一采集方向信息的水平信息与第三采集方向信息的水平信息这两者之间的差值,该差值分别对应于第一水平信息差值α1和第二水平信息差值α2
第二水平信息差值计算单元,用于在第一时刻t1之后的第二时刻t2,分别计算第一采集方向信息的水平信息与第二采集方向信息的水平信息、第一采集方向信息的水平信息与第三采集方向信息的水平信息这两者之间的差值,该差值分别对应于第三水平信息差值α3和第四水平信息差值α4
比值计算单元,用于计算第一采集方向信息的姿态信息、第二采集方向信息的姿态信息和第三采集方向信息的姿态信息这三种姿态信息在第一时刻t1与第二时刻t2之间的时间段内的第一姿态信息变化率g1、第二姿态信息变化率g2和第三姿态信息变化率g3,其中所述第一、第二和第三姿态信息变化率是通过三维加速度的矢量和与第二时刻与第一时刻之间的时间差之间的比值计算得到的;
第一像素匹配矩阵计算单元,用于计算像素匹配矩阵A如下:
Figure DEST_PATH_IMAGE019
第一过渡矩阵计算单元,用于:设在第一时刻t1,第一检测数据对应的像素集合对应的矩阵为m,第二检测数据对应的像素集合对应的矩阵为n,第三检测数据对应的像素集合对应的矩阵为p;在第二时刻t2,第一检测数据对应的像素集合对应的矩阵为x,第二检测数据对应的像素集合对应的矩阵为y,第三检测数据对应的像素集合对应的矩阵为z,计算第一过渡矩阵C1为:
Figure DEST_PATH_IMAGE021
其中mod(t2-t1,2)表示对t2-t1的差值的绝对值取相对于2的商的余数;
第二像素匹配矩阵计算单元,用于以
Figure DEST_PATH_IMAGE027
作为翻转中心点的空间坐标,对矩阵A进行对称翻转,得到矩阵A’;
第二过渡矩阵计算单元,用于计算第二过渡矩阵C2为:
Figure DEST_PATH_IMAGE029
内插单元,用于利用矩阵C2对矩阵A’进行内插,得到矩阵A’’,并计算第二检测数据集中与第二时刻t2对应的检测数据帧对应的像素集合对应的矩阵q:
Figure DEST_PATH_IMAGE031
累积单元,用于将q进行保存,进而不断累积得到第二检测数据集。
2.根据权利要求1所述的基于机器视觉的焊接机器人,其特征在于,所述机器人监控服务器包括:预警子单元,用于当所述第二检测数据集的帧数据中,与预定位置相对应的空间坐标对应的帧数据的灰度大于预设灰度阈值时,发出焊接质量预警信息。
CN201810241417.5A 2018-03-22 2018-03-22 基于机器视觉的焊接机器人 Active CN108436333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810241417.5A CN108436333B (zh) 2018-03-22 2018-03-22 基于机器视觉的焊接机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810241417.5A CN108436333B (zh) 2018-03-22 2018-03-22 基于机器视觉的焊接机器人

Publications (2)

Publication Number Publication Date
CN108436333A CN108436333A (zh) 2018-08-24
CN108436333B true CN108436333B (zh) 2020-07-10

Family

ID=63196161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810241417.5A Active CN108436333B (zh) 2018-03-22 2018-03-22 基于机器视觉的焊接机器人

Country Status (1)

Country Link
CN (1) CN108436333B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549865A (en) * 1977-06-24 1979-01-25 Kayaba Ind Co Ltd Method of controlling articulated type robot and its device
CN102538781B (zh) * 2011-12-14 2014-12-17 浙江大学 基于机器视觉和惯导融合的移动机器人运动姿态估计方法
CN203509343U (zh) * 2013-10-18 2014-04-02 无锡庆源激光科技有限公司 激光头吹气环形导气机构
CN206445627U (zh) * 2016-12-30 2017-08-29 广州蓝圣智能科技有限公司 门框a级面打磨专机
CN106945047A (zh) * 2017-04-27 2017-07-14 上海新朋联众汽车零部件有限公司 焊接机器人误差补偿控制系统及其控制方法

Also Published As

Publication number Publication date
CN108436333A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
US9561593B2 (en) Working method using sensor and working system for performing same
CN111013883A (zh) 一种可用于多车型的智能喷涂的机器人控制方法
US10427300B2 (en) Robot program generation for robotic processes
CN109903279B (zh) 焊缝运动轨迹的自动示教方法和装置
CN108572625B (zh) 机床的控制系统
Princely et al. Vision assisted robotic deburring of edge burrs in cast parts
CN112010024B (zh) 一种基于激光和视觉融合检测的货箱自动抓取方法及系统
CN113146172B (zh) 一种基于多视觉的检测与装配系统及方法
CN103776378A (zh) 一种非接触式柔性在线尺寸测量系统
CN106767401A (zh) 一种基于十字激光和机器视觉的轴孔类零件定姿定位方法
CN110125906A (zh) 作业机器人系统
CN114347015B (zh) 一种机器人抓取控制方法、系统、装置及介质
Bellandi et al. Roboscan: a combined 2D and 3D vision system for improved speed and flexibility in pick-and-place operation
Xia et al. Workpieces sorting system based on industrial robot of machine vision
CN108582075A (zh) 一种智能机器人视觉自动化抓取系统
CN109916346B (zh) 一种基于视觉系统的工件平整度的检测装置及检测方法
CN107633501A (zh) 机器视觉的图像识别定位方法
CN108436333B (zh) 基于机器视觉的焊接机器人
CN109764807A (zh) 发动机缸体位置标定的2d视觉检测方法及检测系统
US20200139551A1 (en) Robot system
CN114851206B (zh) 基于视觉引导机械臂抓取炉具的方法
CN110969357A (zh) 一种铝合金机加工零件孔洞视觉检测方法
Suszyński et al. No Clamp Robotic Assembly with Use of Point Cloud Data from Low-Cost Triangulation Scanner
CN114926531A (zh) 基于双目视觉的大视场下工件焊缝自主定位方法及系统
CN108453441A (zh) 工业焊接机器人焊接质量识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200612

Address after: Room 101, No.6 Fangda Road, YUNPU Industrial Zone, Huangpu District, Guangzhou City, Guangdong Province

Applicant after: GUANGZHOU ZSROBOT INTELLIGENT EQUIPMENT Co.,Ltd.

Address before: 610041 No. 3, 5 and 15, 88 Guanghe two street, hi tech Zone, Chengdu, Sichuan.

Applicant before: SICHUAN HENGLI ZHIFANG AUTOMATION ENGINEERING Co.,Ltd.

GR01 Patent grant
GR01 Patent grant