CN108435202A - 一种高催化活性Pt基复合纳米枝晶及其制备方法 - Google Patents

一种高催化活性Pt基复合纳米枝晶及其制备方法 Download PDF

Info

Publication number
CN108435202A
CN108435202A CN201810262084.4A CN201810262084A CN108435202A CN 108435202 A CN108435202 A CN 108435202A CN 201810262084 A CN201810262084 A CN 201810262084A CN 108435202 A CN108435202 A CN 108435202A
Authority
CN
China
Prior art keywords
dendrite
base composite
composite nano
catalytic activity
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810262084.4A
Other languages
English (en)
Inventor
曾宇乔
杨星梅
丁雪卉
肖敬才
郑云西
朱奎
季宝荣
张旭海
董岩
蒋建清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810262084.4A priority Critical patent/CN108435202A/zh
Publication of CN108435202A publication Critical patent/CN108435202A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/12Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种高催化活性Pt基复合纳米枝晶的制备方法,在K2PtCl4、NiSO4、CuSO4、(NH4)2SO4、Na3C6H5O7和H3BO3的混合溶液中,以铜片、镍片、石墨片或玻碳片为工作电极在溶液中以1.5‑3.0A/cm2恒流方式进行100‑300秒电化学沉积,可以获得Pt基复合材料。该材料具有纳米枝晶结构,一次枝晶长度约为300‑700纳米,二次枝晶尺寸在20‑50纳米之间。Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。具有该种结构的Pt基复合纳米枝晶对甲醇和甲酸等有机物表现出优异的电化学催化效果。

Description

一种高催化活性Pt基复合纳米枝晶及其制备方法
技术领域
本发明涉及一种Pt基复合纳米枝晶材料的制备方法,特别是一种可用于电化学催化邻域的Pt基复合纳米材料制备方法,属于纳米材料制备领域。
背景技术
纳米化后的Pt具有优异的电化学活性和良好的导电性,对甲醇等有机物表现出极高的电化学催化性能,被广泛应用于能源、化工等领域。目前此类Pt纳米催化材料主要包括两种:一种是纳米颗粒,一种是纳米多孔。前者因容易团聚、缺乏自支撑性等缺陷需要与C粉等混合使用,一定程度上降低了催化效率。后者结构容易在催化过程中会发生结构粗化,循环寿命有待提高。枝晶状的纳米材料具有自支撑性,且兼具大比表面积、高结构稳定性等优势,在催化领域获得瞩目。目前,具有高催化活性的Pd、Cu、Au等纳米枝晶材料已被开发出来,也有大量研究者尝试在酸液中沉积Pt枝晶,但获得的材料为类枝晶的Pt簇,即由大量立方状的纳米颗粒堆积而成,无明显的分级尖锐枝晶结构,其对甲醇等有机物的催化效果与市售Pt纳米颗粒催化效果相当。具有更佳催化效果的Pt纳米枝晶材料尚未见任何报道。
发明内容
技术问题:本发明公开了一种本发明公开了一种具有高催化活性的Pt基复合纳米枝晶材料及其制备方法。该种材料对甲醇和甲酸等有机物具有优异的电化学催化效果。
技术方案:本发明的一种高催化活性Pt基复合纳米枝晶的制备方法,在含Ni2+、Cu2 +和PtCl4 -2的混合溶液中,以导电材料为工作电极在溶液中进行电化学沉积,可以获得Pt基复合纳米枝晶材料。
其中,该Pt基复合纳米枝晶材料的形态特点是由大量一次和二次枝晶构成,一次枝晶长度约为300-700纳米,二次枝晶尺寸在20-50纳米之间,Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。
沉积Pt基复合纳米枝晶材料的混合溶液为:
K2PtCl4+NiSO4+CuSO4+(NH4)2SO4+Na3C6H5O7+H3BO3
所述K2PtCl4的浓度为3-7mM,NiSO4浓度为5-15mM,CuSO4浓度为5-15mM,(NH4)2SO4浓度为2M Na3C6H5O7浓度为0.2-0.4M,H3BO3浓度为0.3-0.5M。
所述沉积Pt基复合纳米枝晶材料的工作电极为Cu、Ni、石墨或玻碳。
所述电化学沉积,工艺参数为:1.5-3.0A/cm2电流密度条件下沉积100-300秒。
有益效果:与现有类枝晶的Pt簇相比,本发明具有以下有益效果:
1.因本发明材料中Pt主要分布在枝晶表面,且枝晶分级结构显著,在相同比表面积条件下,本发明Pt载量更低,而催化活性位置更多,成本更低。
2.本发明中Pt显示出优于市售Pt纳米颗粒的催化活性,而形貌类似的类枝晶Pt簇催化效果与市售Pt纳米颗粒的催化活性相当。
具体实施方式
在含Ni2+、Cu2+和PtCl4 -2的混合溶液中,以导电材料为工作电极在溶液中进行电化学沉积,可以获得Pt基复合纳米枝晶材料。
沉积Pt基复合纳米枝晶材料的混合溶液为K2PtCl4+NiSO4+CuSO4+(NH4)2SO4+Na3C6H5O7+H3BO3。其中,K2PtCl4的浓度为3-7mM,NiSO4浓度为5-15mM,CuSO4浓度为5-15mM,(NH4)2SO4浓度为2M,Na3C6H5O7浓度为0.2-0.4M,H3BO3浓度为0.3-0.5M。
沉积Pt基复合纳米枝晶材料的工作电极为Cu、Ni、石墨或玻碳。
沉积Pt基复合纳米枝晶材料的工艺参数特征为:在1.5-3.0A/cm2电流密度条件下沉积100-300秒。
沉积得到的材料形态特征为:Pt基复合纳米枝晶材料的形态特点是由大量一次和二次枝晶构成,一次枝晶长度约为300-700纳米,二次枝晶尺寸在20-50纳米之间。Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。
下面给出5个利用本发明的制备方法制备枝晶状三维石墨烯材料的具体实施例。
实施例1
在3mM K2PtCl4+15mM NiSO4+5mM CuSO4+2M(NH4)2SO4+0.2M Na3C6H5O7+0.3M H3BO3混合溶液中,以Cu为工作电极,1.5A/cm2电流密度条件下沉积100秒。获得的Pt基复合纳米枝晶材料由大量一次和二次枝晶构成,一次枝晶长度约为300纳米,二次枝晶尺寸在20-30纳米之间。Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。枝晶中Pt平均含量约为10at%,Ni平均含量为45at%,Cu平均含量约为45at%。
实施例2
在7mM K2PtCl4+15mM NiSO4+5mM CuSO4+2M(NH4)2SO4+0.4M Na3C6H5O7+0.5M H3BO3混合溶液中,以Ni为工作电极,2.0A/cm2电流密度条件下沉积200秒。获得的Pt基复合纳米枝晶材料由大量一次和二次枝晶构成,一次枝晶长度约为400纳米,二次枝晶尺寸在20-50纳米之间。Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。枝晶中Pt平均含量约为20at%,Ni平均含量为45at%,Cu平均含量约为35at%。
实施例3
在7mM K2PtCl4+5mM NiSO4+15mM CuSO4+2M(NH4)2SO4+0.4M Na3C6H5O7+0.5M H3BO3混合溶液中,以石墨片为工作电极,3.0A/cm2电流密度条件下沉积200秒。获得的Pt基复合纳米枝晶材料由大量一次和二次枝晶构成,一次枝晶长度约为700纳米,二次枝晶尺寸在40-50纳米之间。Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。枝晶中Pt平均含量约为10at%,Ni平均含量为20at%,Cu平均含量约为70at%。
实施例4
在7mM K2PtCl4+15mM NiSO4+5mM CuSO4+2M(NH4)2SO4+0.4M Na3C6H5O7+0.5M H3BO3混合溶液中,以玻碳为工作电极,2.0A/cm2电流密度条件下沉积300秒。获得的Pt基复合纳米枝晶材料由大量一次和二次枝晶构成,一次枝晶长度约为300纳米,二次枝晶尺寸在20-40纳米之间。Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。枝晶中Pt平均含量约为20at%,Ni平均含量为45at%,Cu平均含量约为35at%。
实施例5
在5mM K2PtCl4+12.5mM NiSO4+5mM CuSO4+2M(NH4)2SO4+0.4M Na3C6H5O7+0.5MH3BO3混合溶液中,以Cu为工作电极,2.0A/cm2电流密度条件下沉积200秒。获得的Pt基复合纳米枝晶材料由大量一次和二次枝晶构成,一次枝晶长度约为400纳米,二次枝晶尺寸在20-30纳米之间。Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。枝晶中Pt平均含量约为20at%,Ni平均含量为40at%,Cu平均含量约为40at%。该材料对甲醇的电催化氧化峰值电位相较市售Pt纳米颗粒负移了30mV,循环寿命提高了20%。

Claims (6)

1.一种高催化活性Pt基复合纳米枝晶的制备方法,其特征在于在含Ni2+、Cu2+和PtCl4 -2的混合溶液中,以导电材料为工作电极在溶液中进行电化学沉积,可以获得Pt基复合纳米枝晶材料。
2.根据权利要求1所述的一种高催化活性Pt基复合纳米枝晶的制备方法,其特征在于该Pt基复合纳米枝晶材料的形态特点是由大量一次和二次枝晶构成,一次枝晶长度约为300-700纳米,二次枝晶尺寸在20-50纳米之间,Pt分布于枝晶表面,并在枝晶尖端富集,形成大量原子级别的台阶。
3.根据权利要求1所述的一种高催化活性Pt基复合纳米枝晶的制备方法,其特征在于,沉积Pt基复合纳米枝晶材料的混合溶液为:
K2PtCl4+NiSO4+CuSO4+(NH4)2SO4+Na3C6H5O7+H3BO3
4.根据权利要求3所述的一种高催化活性Pt基复合纳米枝晶的制备方法,其特征在于,所述K2PtCl4的浓度为3-7mM,NiSO4浓度为5-15mM,CuSO4浓度为5-15mM,(NH4)2SO4浓度为2MNa3C6H5O7浓度为0.2-0.4M,H3BO3浓度为0.3-0.5M。
5.根据权利要求1所述的一种高催化活性Pt基复合纳米枝晶的制备方法,其特征在于,所述沉积Pt基复合纳米枝晶材料的工作电极为Cu、Ni、石墨或玻碳。
6.根据权利要求1所述的一种高催化活性Pt基复合纳米枝晶的制备方法,其特征在于,所述电化学沉积,工艺参数为:1.5-3.0A/cm2电流密度条件下沉积100-300秒。
CN201810262084.4A 2018-03-28 2018-03-28 一种高催化活性Pt基复合纳米枝晶及其制备方法 Withdrawn CN108435202A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810262084.4A CN108435202A (zh) 2018-03-28 2018-03-28 一种高催化活性Pt基复合纳米枝晶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810262084.4A CN108435202A (zh) 2018-03-28 2018-03-28 一种高催化活性Pt基复合纳米枝晶及其制备方法

Publications (1)

Publication Number Publication Date
CN108435202A true CN108435202A (zh) 2018-08-24

Family

ID=63197441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810262084.4A Withdrawn CN108435202A (zh) 2018-03-28 2018-03-28 一种高催化活性Pt基复合纳米枝晶及其制备方法

Country Status (1)

Country Link
CN (1) CN108435202A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113241447A (zh) * 2021-04-06 2021-08-10 华南理工大学 一种低铂核壳结构催化剂及其制备方法与其掺杂改性方法
CN114836780A (zh) * 2022-05-07 2022-08-02 东南大学 一种水解制氢用六元高熵泡沫及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113241447A (zh) * 2021-04-06 2021-08-10 华南理工大学 一种低铂核壳结构催化剂及其制备方法与其掺杂改性方法
CN114836780A (zh) * 2022-05-07 2022-08-02 东南大学 一种水解制氢用六元高熵泡沫及其制备方法
CN114836780B (zh) * 2022-05-07 2023-11-03 东南大学 一种水解制氢用六元高熵泡沫及其制备方法

Similar Documents

Publication Publication Date Title
Gao et al. 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction
Li et al. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications
Yang et al. Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction
Wang et al. Core–shell-structured low-platinum electrocatalysts for fuel cell applications
Chen et al. Electrosynthesis of NiP x nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution
Sumi et al. Development of a novel method of NiCoP alloy coating for electrocatalytic hydrogen evolution reaction in alkaline media
Kublanovsky et al. Electrocatalytic properties of Co-Mo alloys electrodeposited from a citrate-pyrophosphate electrolyte
CN101613080B (zh) 一种纳米镍/二氧化钛纳米管列阵复合材料制备方法
CN102471105A (zh) 碳纳米管复合结构体及其制备方法
Guo et al. Direct electrodeposition of Ni‐Co‐S on carbon paper as an efficient cathode for anion exchange membrane water electrolysers
Li et al. Hierarchical amorphous bimetallic sulfide nanosheets supported on Co-C nanofibers to synergistically boost water electrolysis
CN108435202A (zh) 一种高催化活性Pt基复合纳米枝晶及其制备方法
CN113957480A (zh) 电化学催化二氧化碳还原储能用铜基催化剂、电极、其制备方法及应用
Fu et al. Fe2O3 and Co bimetallic decorated nitrogen doped graphene nanomaterial for effective electrochemical water split hydrogen evolution reaction
CN101740787B (zh) 用于燃料电池的金属颗粒-非晶金刚石复合阳极及制备方法
El-Hallag et al. The effect of electrodeposition potential on catalytic properties of Ni nanoparticles for hydrogen evolution reaction (HER) in alkaline media
Yang et al. An open-structured carbon fiber brush electrode for efficient hydrogen evolution by inducing oriented bubble transport
CN109537030B (zh) 一种碳纳米颗粒溶液的制备方法及其在镍涂层中的应用
Zhan et al. Petal-like NiCoP sheets on 3D nitrogen-doped carbon nanofiber network as a robust bifunctional electrocatalyst for water splitting
CN108565132B (zh) 一种具有金属氧化物纳米结构的纤维材料及其制备方法
Zhou et al. Co (OH) 2 nanosheets supported on laser ablated cu foam: an efficient oxygen evolution reaction electrocatalyst
Tian et al. Performance of ethanol electro-oxidation on Ni–Cu alloy nanowires through composition modulation
Kheirmand et al. Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
CN114150343B (zh) 一种纳米茸状NiMoCu催化剂及其制备方法
CN103757680A (zh) 一种具有核壳结构的铂镍纳米线有序阵列的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180824

WW01 Invention patent application withdrawn after publication