CN108431370A - 扭转力矩传感器 - Google Patents

扭转力矩传感器 Download PDF

Info

Publication number
CN108431370A
CN108431370A CN201780005787.2A CN201780005787A CN108431370A CN 108431370 A CN108431370 A CN 108431370A CN 201780005787 A CN201780005787 A CN 201780005787A CN 108431370 A CN108431370 A CN 108431370A
Authority
CN
China
Prior art keywords
axis
transmission shaft
temperature
fluid
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780005787.2A
Other languages
English (en)
Other versions
CN108431370B (zh
Inventor
莱昂内尔·雷诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Helicopter Engines SAS
Original Assignee
Safran Helicopter Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines SAS filed Critical Safran Helicopter Engines SAS
Publication of CN108431370A publication Critical patent/CN108431370A/zh
Application granted granted Critical
Publication of CN108431370B publication Critical patent/CN108431370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/04Arrangement of sensing elements responsive to load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/109Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving measuring phase difference of two signals or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/12Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving photoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/08Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving optical means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

本发明涉及一种扭转力矩传感器,包括经受待测量的力矩的传动轴(12)、参考轴(14)以及用于测量两个轴之间的角度变形的装置,该角度变形表示待测量的力矩。力矩传感器的特征在于,传动轴(12)包括孔(24),孔从传动轴(12)的被称为轴的输入端(28)的一个端部延伸到相反的端部,并且力矩传感器包括用于限制两个轴的温度的外壳(22)和流体流通回路,该流体流通回路包括由所述孔(24)构成的部分、用于在轴的所述输入端(28)处将流体注入到孔(24)中的注入器(32)以及流体流通回路中的流体温度传感器(34),所测量的温度意在用于校正力矩测量。

Description

扭转力矩传感器
技术领域
本发明涉及一种力矩传感器。特别地,本发明涉及一种用于测量特别是飞行器的涡轮发动机中的旋转元件的力矩的扭转力矩传感器。
背景技术
扭转力矩传感器是用于测量力矩的装置,其工作原理是测量第一轴(被称为传动轴,经受待测量的力矩)上的扭力,并且对由于该扭力而在传动轴和第二轴(被称为参考轴,其不经受待测量的力矩)之间引起的角度变形进行比较。该比较使得能够推导出待测量的力矩。
具体地,对角度变形的测量是通过在每个轴上添加形成发音轮的读取齿以及通过传感器探测每个齿从传感器前面的通过来完成的。在传动轴上没有力矩的情况下,传动轴上的读取齿和参考轴上的读取齿间隔开一定的距离。当传动轴经受一力矩时,所产生的扭力引起轴的变形以及传动轴上的读取齿相对于参考轴上的读取齿的运动。与参考轴上的齿相比,该运动引起齿在传感器前面通过的时间的变化,并且能够从中推导出轴所经受的力矩。
当这种力矩传感器用于高温度变化的环境中时,例如用于飞行器的涡轮发动机中时,对于待测量的相同的力矩来说,传动轴上的扭力可能不同,这取决于传动轴的温度。因此,测量到的角度变形以相同的方式变化,并且测量到的力矩具有或多或少很大的误差,这取决于温度,而力矩传感器关于该温度被校准。
为了防止由于力矩传感器所经受的可变温度引起的测量误差,多种解决方案已经被提出。
特别地,所提出的一种解决方案是在发音轮上使用倾斜的读取齿,使得能够减小温度的影响。然而,由读取齿的倾斜度产生的校正是恒定的,并且不取决于力矩。因此,该校正仅针对一个力矩范围进行了优化,并且引入了在此范围之外的误差。
另一种解决方案是将力矩传感器放置在一个限制的环境中,以使它不经受任何温度变化。然而,使力矩传感器受限制可以减少温度变化,但不能完全消除它们。因此测量误差未被校正并且测量精度受到影响。
越来越精确的力矩测量需求使发明者寻求响应这些问题的新颖的解决方案。
发明目的
本发明旨在克服已知的扭转力矩传感器的缺点中的至少一些。
具体地,本发明的目的是在本发明的至少一个实施例中提供一种力矩传感器,该力矩传感器能够以高精度测量力矩。
在本发明还旨在至少一个实施例中提供一种力矩传感器,该力矩传感器中的力矩测量不受温度变化的影响。
本发明还旨在在本发明的至少一个实施例中提供一种力矩传感器,该力矩传感器能够容易地适应于多种飞行器涡轮发动机。
发明内容
为此,本发明涉及一种扭转力矩传感器,该扭转力矩传感器包括经受待测量的力矩的被称为传动轴的第一轴、被称为参考轴的第二轴以及用于测量传动轴与参考轴之间的角度变形的装置,所述角度变形表示待测量的力矩,
其特征在于,传动轴包括孔,孔形成内壁并且从传动轴的被称为轴的输入端的一个端部延伸到被称为轴的输出端的相反的端部,并且力矩传感器包括:
-第一轴和第二轴的温度限制外壳,以及
-流体流通回路,该流体流通回路包括:
-由传动轴的所述孔构成的部分,
-流体注入器,该流体注入器在轴的所述输入端处将流体注入到孔中,以及
-被称为主温度传感器的温度传感器,该温度传感器适用于测量流体流通回路中的流体的温度,所测量的流体温度用于校正力矩测量。
因此,根据本发明的扭转力矩传感器首先能够通过限制的方式在传动轴上施加温度,这使得能够显着地减小传动轴外部的温度的影响,其次由于流体在形成于传动轴中的孔中的流通使得能够在传动轴上施加流体的温度,流体的温度是已知的,因为它被主温度传感器测量出。因此传动轴的温度是已知的,因为它非常接近流体的温度,因此能够预测其对所测量的角度变形(由于传动轴上的扭力)的影响并且因此能够根据轴的该温度而对力矩测量进行校正。
借助温度传感器测量流体的温度比测量传动轴的温度更简单。
此外,根据本发明的力矩传感器使得能够简化构象和校准过程,其中确定构象参数使得能够在实际操作情况下(例如当力矩传感器被安装在发动机中时)正确地测量力矩。这些构象参数例如形成传动轴的温度与所测量的角度变形之间的联系,这使得能够从中推导出力矩。在现有技术中,这种构象必须在要安装力矩传感器的发动机中执行。在发动机的实质性改变的情况下,必须再次执行对力矩传感器的构象。在本发明中,由于被流体施加的温度和限制,构象参数与安装有力矩传感器的发动机无关,因此简化了构象过程,因为该构象过程能够在可被根据本发明的所有待构象的力矩传感器所使用的测试发动机中执行,或者能够在合适的构象工作台上进行而不需要整个发动机。
流体流通回路和温度传感器形成用于校正力矩测量的装置的一部分。该力矩测量校正装置包括计算器,该计算器使得能根据温度传感器提供的温度测量值来校正力矩测量。
力矩传感器可以进一步包括多个温度传感器。然而,因为流体的温度由于限制而变化不大,因此通常只需要一个温度传感器。
有利地并且根据本发明的第一变型,传动轴和参考轴是同轴的,传动轴被设置在参考轴内。
根据本发明的这个方面,力矩传感器的空间需求大大减少。由传动轴和参考轴形成的组件有时被称为力矩传感器轴。
有利地并且根据本发明的第二变型,传动轴和参考轴是同轴的,参考轴被设置在传动轴内并且流体在传动轴的内壁和参考轴的外壁之间流通。
根据本发明的这个方面,力矩传感器的空间需求大大减小,并且力矩传感器被构造成使得流体与传动轴的内壁接触,从而调节传动轴的温度,尽管在传动轴内存在有参考轴(也就是说参考轴存在于传动轴的孔中)。
有利地并且根据本发明,流体是油,并且流体流通回路是液压回路。
根据本发明的这个方面,油是在工业领域中广泛使用的流体,其流通回路受到控制,并且使得能够与传动轴进行良好的热交换以将温度施加在传动轴上。
此外,当力矩传感器被用在涡轮发动机中时,能够至少部分地复用现有的油流通回路(也被称为液压回路)。特别地,主温度传感器可以是已经存在于涡轮发动机中的用于其他用途的温度传感器。
根据本发明的其它变体,流体可以是燃料(例如煤油)、气体(例如空气)等。
有利地并且根据本发明,主温度传感器适用于测量轴的输入端处的流体的温度。
根据本发明的这个方面,主温度传感器使得能够降低轴的输入端处的温度,该温度接近于当流体在轴的孔中流通时将被施加在轴上的温度。
此外,当在涡轮发动机中使用力矩传感器时,温度传感器经常出现在液压回路开始的位置(在设备的各种部件中进行流通之前),并且因此能够被用于力矩传感器而不需要安装将会是多余的额外的温度传感器。
有利地并且根据本发明的最后一方面,力矩传感器包括辅助温度传感器,该辅助温度传感器适用于测量轴的输出端处的流体的温度。
根据本发明的该方面,将第二传感器添加到轴的输出端使得能够检测流体在穿过传动轴之后任何的温度变化。该变型可以应用于在轴的限制出现故障的情况下,并且因此可以凭借第二传感器而将这种情况考虑在内并进行校正。温度的测量因此被改进并且更稳健。
有利地并且根据本发明,孔包括通过过渡区域连接的孔的两个子部段,孔的两个子部段为在轴输入端这一侧的第一子部段,以及在轴输出端这一侧的第二子部段,第二子部段具有的直径小于第一子部段的直径。
根据本发明的这一方面,凭借在过渡区域处形成的弯道,孔的直径的减小提供了油的更好的流通。
有利地并且根据本发明的该最后一个方面,第二子部段相对于第一子部端和孔偏移。
本发明还涉及一种包括旋转轴的涡轮发动机,其特征在于,该涡轮发动机包括适用于测量旋转轴的力矩的根据本发明的扭转力矩传感器。
本发明还涉及一种力矩传感器和涡轮发动机,其特征在于结合了上面或下面提到的特征的全部或一些。
附图说明
本发明的其它目的、特征和优点将通过阅读下文中仅通过非限制性示例并且参照附图给出的描述而呈现,在附图中:
-图1是根据本发明第一实施例的扭转力矩传感器的局部横截面示意图,
-图2是根据本发明第二实施例的扭转力矩传感器的一部分的横截面示意图。
具体实施方式
以下实施例是示例。尽管描述涉及一个或多个实施例,但这并不一定意味着每个参考涉及相同的实施例,或者特征仅适用于仅一个实施例。各种实施例的简单特征也可以被组合以提供其他实施例。在附图中,出于说明和清楚的目的,未严格遵守尺度和比例。特别地,所示的各种轴的长度可根据本发明的各种实施例而变化。
图1以局部横截面示意性地示出了根据本发明第一实施例的扭转力矩传感器100。
力矩传感器包括两个轴,即,被称为传动轴12的第一轴和被称为参考轴14的第二轴。在该第一实施例中,传动轴12和参考轴14是同轴的并且传动轴12被布置在参考轴14内部。
传动轴12经受待被扭转力矩传感器10测量的力矩,而参考轴14不经受力矩。因此传动轴12经受一扭力,该扭力表示待测量的力矩。
传动轴12和参考轴14各自包括发音轮16a、16b,发音轮包括读取齿18,这两个轮16a、16b被构造成使得读取传感器20能够检测两个发音轮16a、16b上的读取齿18的通过。该读取例如以光学或磁性的方式完成,并且由于仅传动轴12经受待测量的力矩的事实,因此能够确定每个齿的通过之间的时间并且因此确定传动轴12和参考轴14之间的角度变形。表示传动轴12的扭力的角度变形使得能够确定待测量的力矩。发音轮16a、16b和读取传感器20形成用于测量角度变形的装置。
为了减小温度对力矩传感器10的影响,特别是温度对传动轴12的扭力的影响,力矩传感器10首先包括温度限制外壳22,该温度限制外壳使得可以消除或限制外部温度对力矩传感器10的影响,其次包括流体流通回路,该流体流通回路使得能够在传动轴12上施加一温度,该温度是穿过传动轴的流体的温度。
流体流通回路包括由传动轴12中的孔24组成的部分,以便使流体穿过该孔24流通。孔24形成内壁26并且从传动轴12的一个端部(被称为轴的输入端28)延伸到相反的端部(被称为轴的输出端30)。孔24可包括通过形成一个或多个弯道的过渡区域31连接的、具有不同直径的多个子部段,以便改善流体的流通。
因此,流体在孔24中流通并与内壁26接触,因此能够通过热传递将其温度施加在传动轴12上。通过限制外壳对传动轴12的限制还能够确保传动轴12的任何温度变化确实仅与流体的温度变化有关。孔24中的流体路径由在轴的输入端28和输出端30之间穿过传动轴12的箭头表示。
借助于流体流通回路的注入器32,流体在轴的输入端28处被注入到孔24中。注入器32使得流体能够在孔的内壁26上扩散以及使得流体能够沿着孔24流通。在孔24的输出端处,流体继续其在流体流通回路中的流通。
为了知道流体的温度,流体流通回路包括至少一个温度传感器:在该实施例中,主温度传感器34被布置成靠近轴的输入端28,并处于注入器32的前面,以便测量轴的输入端28处的流体的温度。
因此,测量到的流体的温度使得能够对力矩传感器10的力矩测量进行校正:传动轴12的扭力能够根据其温度而变化,得知该温度使得能够确定扭力的变化,并且能够由此推导出对借助于用于读取发音轮16a、16b的传感器20确定的力矩的校正,以便获得对力矩的精确测量。根据读取传感器20的测量值和由主温度传感器34测量的温度而对力矩进行的计算例如可以通过计算机(未示出)来执行。
参考轴14不需要任何流体流通回路,因为它不经受力矩,因此不具有取决于其温度的任何扭力变量。
图2示意性地示出了根据本发明第二实施例的扭转力矩传感器200的一部分。
与第一实施例一样,力矩传感器包括两个轴,传动轴12和参考轴14。在该第二实施例中,传动轴12和参考轴14是同轴的,这与第一实施例不同,参考轴14被布置在传动轴12内。为了简化附图,力矩传感器10的包括发音轮的部分未被示出,因为它们与第一实施例相似。
因此,由注入器32注入的流体的流通发生在传动轴的内壁26与参考轴14的外壁35之间的孔24中。图中的箭头示出了力矩传感器中的流体路径。
此外,在该第二实施例中,力矩传感器10包括主温度传感器34和辅助温度传感器36,该辅助温度传感器提供对轴的输出端处的温度的第二次测量。该辅助温度传感器36使得能够改进测量并且在限制外壳22对传动轴12进行错误限制时由于外部因素而引起传动轴12的温度变化的情况下是有用的。在实践中,对传动轴12的不完美的限制引起由主温度传感器34测量到的、轴的输入端处的值与由辅助温度传感器36测量到的、轴的输出端处的值之间的温度变化,该温度变化仍然很小。用于校正力矩传感器10的测量的所测量到的温度值例如可以是在轴的输入端和输出端处测量的温度之间的平均值,以便将较小的变化考虑在内。
在第一实施例和第二实施例中使用的流体例如是油。具体地,当根据这些实施例中的一个的力矩传感器用于飞行器涡轮发动机时,涡轮发动机包括用于供应各种设备的油液压回路。该液压回路中的油可用于供应力矩传感器的流体流通回路。此外,液压回路的元件可以复用,例如,如果油在该传感器和轴的输入端之间没有经受任何温度变化,则用于由液压回路分配的油的温度传感器可以用作力矩传感器的主温度传感器。
根据其它实施例,所使用的流体例如可以是燃料(特别是煤油)或者在飞行器的涡轮发动机中有时也是可用的气体(特别是空气)。

Claims (9)

1.扭转力矩传感器,包括经受待测量的力矩的、被称为传动轴(12)的第一轴、被称为参考轴的第二轴(14)以及用于测量所述传动轴(12)和所述参考轴(14)之间的角度变形的装置,所述角度变形表示待测量的力矩,
其特征在于,所述传动轴(12)包括孔(24),所述孔形成内壁(26)并且从所述传动轴(12)的被称为所述轴的输入端(28)的一个端部延伸到被称为所述轴的输出端(30)的相反的端部,并且所述力矩传感器包括:
-所述第一轴和所述第二轴的温度限制外壳(22),以及
-流体流通回路,所述流体流通回路包括:
-由所述传动轴(12)的所述孔(24)构成的部分,
-流体注入器(32),所述流体注入器在所述轴的所述输入端(28)处将流体注入到所述孔(24)中,以及
-被称为主温度传感器(34)的温度传感器,所述温度传感器适用于测量所述流体流通回路中的流体的温度,所测量的流体的温度用于校正力矩测量。
2.根据权利要求1所述的力矩传感器,其特征在于,所述传动轴(12)和所述参考轴(14)是同轴的,所述传动轴(12)被布置在所述参考轴(14)内。
3.根据权利要求1所述的力矩传感器,其特征在于,所述传动轴(12)和所述参考轴(14)是同轴的,所述参考轴(14)被布置在所述传动轴(12)内,并且所述流体在所述传动轴(12)的内壁(26)和所述参考轴(14)的外壁(35)之间流通。
4.根据权利要求1至3中任一项所述的力矩传感器,其特征在于,所述流体是油并且所述流体流通回路是液压回路。
5.根据权利要求1至4中任一项所述的力矩传感器,其特征在于,所述主温度传感器(34)适用于测量所述轴的输入端(28)处的流体的温度。
6.根据权利要求5所述的力矩传感器,其特征在于,所述力矩传感器包括辅助温度传感器(36),所述辅助温度传感器适用于测量所述轴的输出端(30)处的流体的温度。
7.根据权利要求1至6中任一项所述的力矩传感器,其特征在于,所述孔(24)包括通过过渡区域(31)连接的孔的两个子部段,所述孔的两个子部段为与轴输入端(28)处于同一侧的第一子部段,以及与轴输出端(30)处于同一侧的第二子部段,所述第二子部段具有的直径小于所述第一子部段的直径。
8.根据权利要求7所述的力矩传感器,其特征在于,所述第二子部段相对于所述第一子部段和所述孔(24)偏移。
9.包括旋转轴的涡轮发动机,其特征在于,所述涡轮发动机包括适用于测量旋转轴的力矩的、根据权利要求1至8中任一项所述的扭转力矩传感器(10a,10b)。
CN201780005787.2A 2016-01-20 2017-01-17 扭转力矩传感器 Active CN108431370B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1650431A FR3046841B1 (fr) 2016-01-20 2016-01-20 Couplemetre a torsion
FR1650431 2016-01-20
PCT/FR2017/050093 WO2017125671A1 (fr) 2016-01-20 2017-01-17 Couplemètre à torsion

Publications (2)

Publication Number Publication Date
CN108431370A true CN108431370A (zh) 2018-08-21
CN108431370B CN108431370B (zh) 2020-11-17

Family

ID=55451463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780005787.2A Active CN108431370B (zh) 2016-01-20 2017-01-17 扭转力矩传感器

Country Status (10)

Country Link
US (1) US10677670B2 (zh)
EP (1) EP3405652B1 (zh)
JP (1) JP2019504317A (zh)
KR (1) KR20180103872A (zh)
CN (1) CN108431370B (zh)
CA (1) CA3010592A1 (zh)
FR (1) FR3046841B1 (zh)
PL (1) PL3405652T3 (zh)
RU (1) RU2722591C2 (zh)
WO (1) WO2017125671A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259431B (zh) * 2019-06-05 2023-12-15 中国地质大学(武汉) 一种基于摩擦纳米发电原理的涡轮钻具扭矩测量传感器
FR3103273B1 (fr) * 2019-11-14 2022-01-28 Safran Aircraft Engines Procédé de surveillance de la torsion d’un arbre rotatif sur une turbomachine d’un aéronef
CN113153439B (zh) * 2021-05-06 2022-04-22 中国航发湖南动力机械研究所 一种具测扭功能的紧凑型涡轮轴结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123568A (en) * 1982-07-07 1984-02-01 Rolls Royce Measuring torque on gas- turbine engine shafts
US4774845A (en) * 1986-03-12 1988-10-04 Turbomeca Method and device for measuring the torque transmitted by a shaft subjected to temperature variations
CN102037339A (zh) * 2008-05-21 2011-04-27 涡轮梅坎公司 一种测量动力轴传递的扭矩的装置
FR2993657A1 (fr) * 2012-07-18 2014-01-24 Ct Tech Des Ind Mecaniques Dispositif de mesure d'un couple transmis par un arbre de transmission de puissance avec prise en compte des variations de temperature

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1296865A1 (ru) * 1985-03-06 1987-03-15 Куйбышевский инженерно-строительный институт им.А.И.Микояна Устройство дл измерени крут щего момента
US4899596A (en) * 1988-05-04 1990-02-13 Avco Corporation Self-calibrating torque measuring system
DE102010052337A1 (de) * 2010-11-25 2012-05-31 Voith Patent Gmbh Verfahren zur Einstellung des Arbeitsdruckes eines Getriebes
FR2972256B1 (fr) * 2011-03-02 2013-03-29 Turbomeca Procede de calibration d'un couplemetre a torsion
DE102011075400A1 (de) * 2011-05-06 2012-11-08 Siemens Ag Drehmomentsensoranordnung und Welle mit einer Drehmomentsensoranordnung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123568A (en) * 1982-07-07 1984-02-01 Rolls Royce Measuring torque on gas- turbine engine shafts
US4774845A (en) * 1986-03-12 1988-10-04 Turbomeca Method and device for measuring the torque transmitted by a shaft subjected to temperature variations
CN102037339A (zh) * 2008-05-21 2011-04-27 涡轮梅坎公司 一种测量动力轴传递的扭矩的装置
FR2993657A1 (fr) * 2012-07-18 2014-01-24 Ct Tech Des Ind Mecaniques Dispositif de mesure d'un couple transmis par un arbre de transmission de puissance avec prise en compte des variations de temperature

Also Published As

Publication number Publication date
PL3405652T3 (pl) 2020-03-31
CA3010592A1 (fr) 2017-07-27
EP3405652B1 (fr) 2019-08-07
RU2722591C2 (ru) 2020-06-02
KR20180103872A (ko) 2018-09-19
JP2019504317A (ja) 2019-02-14
EP3405652A1 (fr) 2018-11-28
FR3046841B1 (fr) 2018-02-02
US20190025142A1 (en) 2019-01-24
FR3046841A1 (fr) 2017-07-21
RU2018124456A3 (zh) 2020-04-10
RU2018124456A (ru) 2020-02-21
CN108431370B (zh) 2020-11-17
US10677670B2 (en) 2020-06-09
WO2017125671A1 (fr) 2017-07-27

Similar Documents

Publication Publication Date Title
RU2497087C2 (ru) Устройство для измерения крутящего момента, передаваемого валом отбора мощности
CN108431370A (zh) 扭转力矩传感器
CN103048115B (zh) 一种检测陀螺用光纤环质量的方法及其装置
CN110375726A (zh) 一种光纤陀螺系统级温度补偿方法、装置和光纤惯导系统
CN108870756A (zh) 燃气热水器的出水流量检测校正方法
US8910531B1 (en) System for determining target misalignment in turbine shaft and related method
US10132654B2 (en) Error compensation in an angle sensor
CN106595710A (zh) 一种用于惯性导航系统的系统级二次温度补偿方法
US20120297867A1 (en) System and method for measuring injection processes
CN105953946A (zh) 一种基于最小二乘的光纤陀螺温控装置温度系数标定方法
CN109100051A (zh) 温度传感器的动态响应的温度修正方法及装置
CN108362576A (zh) 一种变速器的变形测试方法
HUT77157A (hu) Eljárás és berendezés teljesítmény meghatározására
WO2019175771A1 (en) Measurement of axial displacement of a rotating shaft
RU2596178C2 (ru) Способ калибровки измерителя крутящего момента
KR102055055B1 (ko) 전자식 유량계 및 그 측정 오차 보정방법
CN110530618A (zh) 一种动力系统扭矩测量装置及方法
CN206891357U (zh) 一种六缸曲轴相位角的检测装置
JP2016098825A (ja) 内燃エンジンの制御方法
CN108495990A (zh) 根据温度对发动机进气管线中压力传感器进行校准的方法
CN107607142A (zh) 一种传感器的标定系统及标定方法
CN108699991A (zh) 使用根据温度的补偿来校准发动机的进气管线中的压力传感器的方法
Feliks et al. New approach to torque measurement unit development and its calibration
RU2648284C2 (ru) Способ измерения радиального зазора между торцами рабочих лопаток и статором газотурбинного двигателя
Egorov et al. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant