CN108427287A - 一种智能食品质量检测机器人 - Google Patents

一种智能食品质量检测机器人 Download PDF

Info

Publication number
CN108427287A
CN108427287A CN201810350794.2A CN201810350794A CN108427287A CN 108427287 A CN108427287 A CN 108427287A CN 201810350794 A CN201810350794 A CN 201810350794A CN 108427287 A CN108427287 A CN 108427287A
Authority
CN
China
Prior art keywords
food
particle
food quality
control process
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810350794.2A
Other languages
English (en)
Inventor
张昆娴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZUNYI INSTITUTE OF PRODUCTION QUALITY ANALYSIS
Original Assignee
ZUNYI INSTITUTE OF PRODUCTION QUALITY ANALYSIS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZUNYI INSTITUTE OF PRODUCTION QUALITY ANALYSIS filed Critical ZUNYI INSTITUTE OF PRODUCTION QUALITY ANALYSIS
Priority to CN201810350794.2A priority Critical patent/CN108427287A/zh
Publication of CN108427287A publication Critical patent/CN108427287A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于食品质量检测技术领域,公开了一种智能食品质量检测机器人。该智能食品质量检测机器人包括:中央控制处理系统、天然毒素检测模块、转基因食品检测模块、生物性污染检测模块、药物残留检测模块、有机物检测模块、食品质量检测实验台、触摸屏显示模块、开关机及基础设置按钮及带刹车的滑轮等。发明人通过对现阶段的食品检测方法的提炼,设计出了有关食品质量安全检测的各检测模块并进行整合。本发明设计优化了食品质量检测技术的细节,可减少食品安全问题的产生,设计思路清晰合理,填补了食品质量检测技术领域的智能机器人的空白,功能多样,设置方便,使用简单。

Description

一种智能食品质量检测机器人
技术领域
本发明属于食品质量检测技术,尤其涉及一种智能食品质量检测机器人。
背景技术
目前,我国食品的安全问题频发,严重威胁着人民的身体健康和生命安全,所以加强对食品质量检测技术的研究有助于我国食品整体质量的提高,及时发现食品中存在的有毒有害物质,能有效保障我国食品的安全。与传统食品检测技术相比较,当代的食品检测技术在诸多方面(食品的检测内容、检测深度与广度等)有了很大的进步和提高。食品质量检测既能够检测食品中的有毒有害物质,还能够详细检测出食品的化学构成成分、营养物质、微生物构成等。食品质量检测技术应用范围较广,主要体现在可以对食品的原材料、半成品、成品进行检测,并且还能够检测出食品添加剂、辅料等。食品对人民的生命安全有重要的影响,所以食品质量检测不容马虎。不同类型的食品也会有不同的检测要求,适用于不同的检测方法。
综上所述,现有技术存在的问题是:目前在食品质量检测技术领域,尚未有一款可以快速方便的自动检测食品质量的机器人,由于不同类型的食品也会有不同的检测要求,现有的食品检测设备检测手段单一且操作繁琐,检测结果等待时间较长。
发明内容
针对现有技术存在的问题,本发明提供了一种智能食品质量检测机器人。
本发明是这样实现的,一种智能食品质量检测机器人包括:中央控制处理系统、天然毒素检测模块、转基因食品检测模块、生物性污染检测模块、药物残留检测模块、有机物检测模块、食品质量检测实验台、触摸屏显示模块、开关机及基础设置按钮及带刹车的滑轮等。
所述中央控制处理系统内置于智能食品质量检测机器人壳体内部;
进一步,天然毒素检测模块与中央控制处理系统连接,用于将被检测的食品当中存在的天然毒素成分检测的结果反馈给中央控制处理系统;
进一步,转基因食品检测模块与中央控制处理系统连接,用于检测被检食品是否为转基因食品并将检测结果反馈给中央控制处理系统;
进一步,生物性污染检测模块与中央控制处理系统连接,用于对被检食品的生物性污染情况进行检测并将检测结果反馈给中央控制处理系统;
进一步,药物残留检测模块与中央控制处理系统连接,用于对被检食品的药物残留情况进行检测并将检测结果反馈给中央控制处理系统;
进一步,有机物检测模块与中央控制处理系统连接,用于对被检食品的有机物成分进行检测并将检测结果反馈给中央控制处理系统。
所述食品质量检测实验台安装于智能食品质量检测机器人壳体内部,可在智能食品质量检测机器人壳体内部及外部之间进行切换,以便于对食品的采样。
所述触摸屏显示模块与中央控制处理系统连接,可对智能食品质量检测机器人的各项参数进行调整并将中央控制处理系统处理后的检测结果显示在显示屏幕上。
进一步,中央控制处理系统包括存储有天然毒素数据信息、转基因数据信息、生物性污染数据信息、药物残留数据信息、有机物数据信息的知识库模块和模糊控制模块;
模糊控制模块采用粒子群算法进行处理,设在一个D维搜索空间中,有N个粒子,即粒子种群规模为N,在可能的搜索范围[-Xmax,Xmax]内服从均匀分布产生N个粒子的位置,每个粒子的速度都在[-Vmax,Vmax]内,且服从均匀分布、产生,其中第i个粒子位置为X={x1x2...xn}T,速度为V={v1v2...vn}T,历史最优值为P={P1P2...Pn}T,种群的全局最优值为Pg={Pg1Pg2...Pgn}T,粒子Xi在本身速度、历史最优值和全局最优值的影响下,按追随当前最优粒子的原理,更新自身的速度和位置,每个粒子的速度和下一次的位置,分别由公式(1)和(2)决定:
vid t+1=vid t+c1r1(pid-xid t)+c2r2(pgd-xid t) (1)
xid t+1=xid t+vid t+1 (2)
公式中:N=1,2...,是粒子的编码;t是当前迭代次数;C1C2为学习因子,分别用来调整粒子速度更新公式中“自我认知”与“社会认知”在速度项中的权重,若C1=0,则粒子只有社会经验收敛速度较快,但容易陷入局部最优点,而C2=0,则粒子之间没有交互和共享信息,相当于各个粒子单独寻优寻优效果较差;r1、r2是(0,1)的随机数。
进一步,模糊控制模块采用粒子群算法的处理步骤为:
(1)设定种群规模N、最优值空间维数D、算法精度、最大迭代次数maxT等参数初始化迭代次数;
(2)随机初始化种群,在取值空间范围内生成粒子的位置和速度;
(3)根据适应度函数,计算每个粒子的适应度值,初始化单个粒子的历史最优值和种群的全局最优值;
(4)根据公式(1)、(2)对各个粒子的速度和位置进行更新;
(5)每个粒子将本次迭代中计算的适应值,与自身的历史最优值进行比较,若好于历史最优值,则将本次迭代中计算的适应值作为新的历史最优值,否则,历史最优值保持不变;
(6)每个粒子都将自己的历史最优值,与种群的全局最优值进行比较,若好于种群的全局最优值,则将该历史最优值作为新的全局最优值,否则,全局最优值保持不变;
(7)如果没有达到精度或最大迭代次数,返回(4),迭代次数加1,进入下一次迭代,否则停止循环。
进一步,模糊控制模块接收到检测模块测得的被控制量的反馈量(精确值)后,将其与给定值进行比较得到误差信号E,将误差E以及误差变化率作为模糊控制器的输入量,把误差E和误差变化率EC的精确值进行模糊化处理转化为模糊量,误差、误差的模糊量都将用相应的模糊语言表示,得到误差E和误差EC的模糊语言集合的一个集合再由集合模糊控制规则(模糊关系)根据模糊逻辑推理的合成规则进行模糊决策,得到模糊控制量为:
模糊量不能直接作为执行机构的输入,还需经过解模糊化即将模糊量转换成精确值,在解模糊化后,模糊量成为精确值,再通过数模转换对执行机构施加模拟控制量,以此实现对被控对象的控制,模糊控制模块正是不断重复上述过程来实现控制功能的。
进一步,转基因食品检测模块检测方法为:
首先,食品质量检测实验台检测转基因食品样本,获得转基因食品样本与转基因食品抗体试液反应的测试结果,并将食品质量检测实验台所处环境的信息及所述测试结果发送给中央控制处理系统;
其次,根据中央控制处理系统所处环境的信息从知识库模块的数据库中获取不同浓度的转基因食品样本反应数据;
再次,将不同浓度的转基因食品样本反应数据与测试结果进行对比分析,获得所述转基因食品样本中转基因食品浓度的分析结果,并将所述分析结果发送给触摸屏显示模块。
进一步,将不同浓度的转基因食品样本反应数据与测试结果进行对比分析的分析公式为:
其中,f0为分析结果,f(T,RH,P)为知识库模块的数据库,P0为环境气压值,T0为环境温度值,RH0为环境相对湿度,T1和T2为知识库模块数据库中与T0相邻的两个实验温度值,la为T1和T2之间的阈值长度,l1和l2分别为T0对应到T1和T2的距离;RH1和RH2为知识库模块数据库中与RH0相邻的两个实验相对湿度值,lb为RH1和RH2之间的阈值长度,l3和l4分别为RH0对应到RH1和RH2的距离;P1和P2为知识库模块数据库中与P0相邻的两个实验气压值,lc为P1和P2之间的阈值长度,l5和l6分别为P0对应到P1和P2的距离。
本发明的优点及积极效果为:1)该智能食品质量检测机器人可在天然毒素、转基因食品、生物性污染、药物残留、有机物五个方面对需要进行检测的食品的样品进行检测,检测手段综合全面2)该智能食品质量检测机器人采用按钮+触摸屏的操作方式,可以很好的方便使用者的操作,操作简单,不繁琐。3)该智能食品质量检测机器人的中央控制处理系统采用基于粒子群算法的模糊控制系统,可以很快的将检测结果反馈出来并可以在一定程度上避免机器死机情况的发生。
附图说明
图1是本发明实施例提供的该智能食品质量检测机器人的结构框图;
图2是本发明实施例提供的该智能食品质量检测机器人的结构示意图;
图3是本发明实施例提供的模糊控制模块工作原理示意图;
图中:1、中央控制处理系统;2、天然毒素检测模块;3、转基因食品检测模块;4、生物性污染检测模块;5、药物残留检测模块;6、有机物检测模块;7、食品质量检测实验台;8、触摸屏显示模块;9、智能食品质量检测机器人壳体;10、开关机及基础设置按钮;11、带刹车的滑轮。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。
下面结合附图对本发明的结构作详细的描述。
如图1与图2所示,本发明提供的一种智能食品质量检测机器人包括:中央控制处理系统1、天然毒素检测模块2、转基因食品检测模块3、生物性污染检测模块4、药物残留检测模块5、有机物检测模块6、食品质量检测实验台7、触摸屏显示模块8、智能食品质量检测机器人壳体9、开关机及基础设置按钮10及带刹车的滑轮11等。
所述中央控制处理系统1内置于智能食品质量检测机器人壳体9内部;
进一步,天然毒素检测模块2与中央控制处理系统1连接,用于将被检测的食品当中存在的天然毒素成分检测的结果反馈给中央控制处理系统1;
进一步,转基因食品检测模块3与中央控制处理系统1连接,用于检测被检食品是否为转基因食品并将检测结果反馈给中央控制处理系统1;
进一步,生物性污染检测模块4与中央控制处理系统1连接,用于对被检食品的生物性污染情况进行检测并将检测结果反馈给中央控制处理系统1;
进一步,药物残留检测模块5与中央控制处理系统1连接,用于对被检食品的药物残留情况进行检测并将检测结果反馈给中央控制处理系统1;
进一步,有机物检测模块6与中央控制处理系统1连接,用于对被检食品的有机物成分进行检测并将检测结果反馈给中央控制处理系统1。
所述食品质量检测实验台7安装于智能食品质量检测机器人壳体9内部,可在智能食品质量检测机器人壳体9内部及外部之间进行切换,以便于对食品的采样。
所述触摸屏显示模块8与中央控制处理系统1连接,可对智能食品质量检测机器人的各项参数进行调整并将中央控制处理系统1处理后的检测结果显示在显示屏幕上。
中央控制处理系统包括存储有天然毒素数据信息、转基因数据信息、生物性污染数据信息、药物残留数据信息、有机物数据信息的知识库模块和模糊控制模块;
模糊控制模块采用粒子群算法进行处理,设在一个D维搜索空间中,有N个粒子,即粒子种群规模为N,在可能的搜索范围[-Xmax,Xmax]内服从均匀分布产生N个粒子的位置,每个粒子的速度都在[-Vmax,Vmax]内,且服从均匀分布、产生,其中第i个粒子位置为X={x1x2...xn}T,速度为V={v1v2...vn}T,历史最优值为P={P1P2...Pn}T,种群的全局最优值为Pg={Pg1Pg2...Pgn}T,粒子Xi在本身速度、历史最优值和全局最优值的影响下,按追随当前最优粒子的原理,更新自身的速度和位置,每个粒子的速度和下一次的位置,分别由公式(1)和(2)决定:
vid t+1=vid t+c1r1(pid-xid t)+c2r2(pgd-xid t) (1)
xid t+1=xid t+vid t+1 (2)
公式中:N=1,2...,是粒子的编码;t是当前迭代次数;C1C2为学习因子,分别用来调整粒子速度更新公式中“自我认知”与“社会认知”在速度项中的权重,若C1=0,则粒子只有社会经验收敛速度较快,但容易陷入局部最优点,而C2=0,则粒子之间没有交互和共享信息,相当于各个粒子单独寻优寻优效果较差;r1、r2是(0,1)的随机数。
进一步,模糊控制模块采用粒子群算法的处理步骤为:
(1)设定种群规模N、最优值空间维数D、算法精度、最大迭代次数maxT等参数初始化迭代次数;
(2)随机初始化种群,在取值空间范围内生成粒子的位置和速度;
(3)根据适应度函数,计算每个粒子的适应度值,初始化单个粒子的历史最优值和种群的全局最优值;
(4)根据公式(1)、(2)对各个粒子的速度和位置进行更新;
(5)每个粒子将本次迭代中计算的适应值,与自身的历史最优值进行比较,若好于历史最优值,则将本次迭代中计算的适应值作为新的历史最优值,否则,历史最优值保持不变;
(6)每个粒子都将自己的历史最优值,与种群的全局最优值进行比较,若好于种群的全局最优值,则将该历史最优值作为新的全局最优值,否则,全局最优值保持不变;
(7)如果没有达到精度或最大迭代次数,返回(4),迭代次数加1,进入下一次迭代,否则停止循环。
进一步,模糊控制模块接收到检测模块测得的被控制量的反馈量(精确值)后,将其与给定值进行比较得到误差信号E,将误差E以及误差变化率作为模糊控制器的输入量,把误差E和误差变化率EC的精确值进行模糊化处理转化为模糊量,误差、误差的模糊量都将用相应的模糊语言表示,得到误差E和误差EC的模糊语言集合的一个集合再由集合模糊控制规则(模糊关系)根据模糊逻辑推理的合成规则进行模糊决策,得到模糊控制量为:
模糊量不能直接作为执行机构的输入,还需经过解模糊化即将模糊量转换成精确值,在解模糊化后,模糊量成为精确值,再通过数模转换对执行机构施加模拟控制量,以此实现对被控对象的控制,模糊控制模块正是不断重复上述过程来实现控制功能的。
进一步,转基因食品检测模块检测方法为:
首先,食品质量检测实验台检测转基因食品样本,获得转基因食品样本与转基因食品抗体试液反应的测试结果,并将食品质量检测实验台所处环境的信息及所述测试结果发送给中央控制处理系统;
其次,根据中央控制处理系统所处环境的信息从知识库模块的数据库中获取不同浓度的转基因食品样本反应数据;
再次,将不同浓度的转基因食品样本反应数据与测试结果进行对比分析,获得所述转基因食品样本中转基因食品浓度的分析结果,并将所述分析结果发送给触摸屏显示模块。
进一步,将不同浓度的转基因食品样本反应数据与测试结果进行对比分析的分析公式为:
其中,f0为分析结果,f(T,RH,P)为知识库模块的数据库,P0为环境气压值,T0为环境温度值,RH0为环境相对湿度,T1和T2为知识库模块数据库中与T0相邻的两个实验温度值,la为T1和T2之间的阈值长度,l1和l2分别为T0对应到T1和T2的距离;RH1和RH2为知识库模块数据库中与RH0相邻的两个实验相对湿度值,lb为RH1和RH2之间的阈值长度,l3和l4分别为RH0对应到RH1和RH2的距离;P1和P2为知识库模块数据库中与P0相邻的两个实验气压值,lc为P1和P2之间的阈值长度,l5和l6分别为P0对应到P1和P2的距离。
本发明的工作原理是:对该智能食品质量检测机器人连接电源后,按下开关机及基础设置按钮10的开机按钮,此时触摸屏显示模块8会显示出登陆界面,使用者输入用户名及密码后便可进入操作界面。使用者可将待检食品的样品放置于食品质量检测实验台7中,注意在开始检测前,需要操作者将天然毒素、转基因食品、生物性污染、药物残留、有机物五个方面的检测参数进行初步的设置,设置完成后操作者便可以在开关机及基础设置按钮10上按下开始检测按钮后,该智能食品质量检测机器人将会对该食品样品进行天然毒素、转基因食品、生物性污染、药物残留、有机物五个方面的检测,待检测完成后,系统会在触摸屏显示模块8显示出各项检测数据及结果。
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (8)

1.一种智能食品质量检测机器人,其特征在于,所述智能食品质量检测机器人设置有:中央控制处理系统、天然毒素检测模块、转基因食品检测模块、生物性污染检测模块、药物残留检测模块、有机物检测模块、食品质量检测实验台、触摸屏显示模块、开关机及基础设置按钮及带刹车的滑轮;所述中央控制处理系统内置于智能食品质量检测机器人壳体内部;
天然毒素检测模块与中央控制处理系统连接,用于将被检测的食品当中存在的天然毒素成分检测的结果反馈给中央控制处理系统;
转基因食品检测模块与中央控制处理系统连接,用于检测被检食品是否为转基因食品并将检测结果反馈给中央控制处理系统;
生物性污染检测模块与中央控制处理系统连接,用于对被检食品的生物性污染情况进行检测并将检测结果反馈给中央控制处理系统;
药物残留检测模块与中央控制处理系统连接,用于对被检食品的药物残留情况进行检测并将检测结果反馈给中央控制处理系统;
有机物检测模块与中央控制处理系统连接,用于对被检食品的有机物成分进行检测并将检测结果反馈给中央控制处理系统。
2.如权利要求1所述智能食品质量检测机器人,其特征在于,所述食品质量检测实验台安装于智能食品质量检测机器人壳体内部,可在智能食品质量检测机器人壳体内部及外部之间进行切换,以便于对食品的采样。
3.如权利要求1所述智能食品质量检测机器人,其特征在于,所述触摸屏显示模块与中央控制处理系统连接,可对智能食品质量检测机器人的各项参数进行调整并将中央控制处理系统处理后的检测结果显示在显示屏幕上。
4.如权利要求1所述智能食品质量检测机器人,其特征在于,中央控制处理系统包括存储有天然毒素数据信息、转基因数据信息、生物性污染数据信息、药物残留数据信息、有机物数据信息的知识库模块和模糊控制模块;
模糊控制模块采用粒子群算法进行处理,设在一个D维搜索空间中,有N个粒子,即粒子种群规模为N,在搜索范围[-Xmax,Xmax]内服从均匀分布产生N个粒子的位置,每个粒子的速度都在[-Vmax,Vmax]内,且服从均匀分布、产生,其中第i个粒子位置为X={x1x2...xn}T,速度为V={v1v2...vn}T,历史最优值为P={P1P2...Pn}T,种群的全局最优值为Pg={Pg1Pg2...Pgn}T,粒子Xi在本身速度、历史最优值和全局最优值的影响下,按追随当前最优粒子的原理,更新自身的速度和位置,每个粒子的速度和下一次的位置,分别由公式(1)和(2)决定:
vid t+1=vid t+c1r1(pid-xid t)+c2r2(pgd-xid t) (1)
xid t+1=xid t+vid t+1 (2)
公式中:N=1,2...,是粒子的编码;t是当前迭代次数;C1C2为学习因子,r1、r2是(0,1)的随机数。
5.如权利要求4所述智能食品质量检测机器人,其特征在于,模糊控制模块采用粒子群算法的处理步骤为:
(1)设定种群规模N、最优值空间维数D、算法精度、最大迭代次数maxT等参数初始化迭代次数;
(2)随机初始化种群,在取值空间范围内生成粒子的位置和速度;
(3)根据适应度函数,计算每个粒子的适应度值,初始化单个粒子的历史最优值和种群的全局最优值;
(4)根据公式(1)、(2)对各个粒子的速度和位置进行更新;
(5)每个粒子将本次迭代中计算的适应值,与自身的历史最优值进行比较,若好于历史最优值,则将本次迭代中计算的适应值作为新的历史最优值,否则,历史最优值保持不变;
(6)每个粒子都将自己的历史最优值,与种群的全局最优值进行比较,若好于种群的全局最优值,则将该历史最优值作为新的全局最优值,否则,全局最优值保持不变;
(7)如果没有达到精度或最大迭代次数,返回(4),迭代次数加1,进入下一次迭代,否则停止循环。
6.如权利要求4所述智能食品质量检测机器人,其特征在于,模糊控制模块接收到检测模块测得的被控制量的反馈量后,将其与给定值进行比较得到误差信号E,将误差E以及误差变化率作为模糊控制器的输入量,把误差E和误差变化率EC的精确值进行模糊化处理转化为模糊量,误差、误差的模糊量都将用相应的模糊语言表示,得到误差E和误差EC的模糊语言集合的一个集合再由集合模糊控制规则(模糊关系)根据模糊逻辑推理的合成规则进行模糊决策,得到模糊控制量为:
经过解模糊化后,模糊量成为精确值,再通过数模转换对执行机构施加模拟控制量,以此实现对被控对象的控制,模糊控制模块正是不断重复上述过程来实现控制功能的。
7.如权利要求1所述智能食品质量检测机器人,其特征在于,转基因食品检测模块检测方法为:
首先,食品质量检测实验台检测转基因食品样本,获得转基因食品样本与转基因食品抗体试液反应的测试结果,并将食品质量检测实验台所处环境的信息及所述测试结果发送给中央控制处理系统;
其次,根据中央控制处理系统所处环境的信息从知识库模块的数据库中获取不同浓度的转基因食品样本反应数据;
再次,将不同浓度的转基因食品样本反应数据与测试结果进行对比分析,获得所述转基因食品样本中转基因食品浓度的分析结果,并将所述分析结果发送给触摸屏显示模块。
8.如权利要求7所述智能食品质量检测机器人,其特征在于,将不同浓度的转基因食品样本反应数据与测试结果进行对比分析的分析公式为:
其中,f0为分析结果,f(T,RH,P)为知识库模块的数据库,P0为环境气压值,T0为环境温度值,RH0为环境相对湿度,T1和T2为知识库模块数据库中与T0相邻的两个实验温度值,la为T1和T2之间的阈值长度,l1和l2分别为T0对应到T1和T2的距离;RH1和RH2为知识库模块数据库中与RH0相邻的两个实验相对湿度值,lb为RH1和RH2之间的阈值长度,l3和l4分别为RH0对应到RH1和RH2的距离;P1和P2为知识库模块数据库中与P0相邻的两个实验气压值,lc为P1和P2之间的阈值长度,l5和l6分别为P0对应到P1和P2的距离。
CN201810350794.2A 2018-04-18 2018-04-18 一种智能食品质量检测机器人 Pending CN108427287A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810350794.2A CN108427287A (zh) 2018-04-18 2018-04-18 一种智能食品质量检测机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810350794.2A CN108427287A (zh) 2018-04-18 2018-04-18 一种智能食品质量检测机器人

Publications (1)

Publication Number Publication Date
CN108427287A true CN108427287A (zh) 2018-08-21

Family

ID=63161260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810350794.2A Pending CN108427287A (zh) 2018-04-18 2018-04-18 一种智能食品质量检测机器人

Country Status (1)

Country Link
CN (1) CN108427287A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363885A (en) * 1993-06-02 1994-11-15 R. J. Reynolds Tobacco Company Robotic sample preparation system and method
CN1844928A (zh) * 2006-03-21 2006-10-11 深圳大学 一种检测食物过敏原的仪器
CN101509869A (zh) * 2009-03-13 2009-08-19 重庆大学 基于可编程微镜阵列的可见-近红外光谱探测方法及光谱仪
CN101915708A (zh) * 2010-08-17 2010-12-15 江南大学 食品物性仿生检测机器人及检测方法
CN201754138U (zh) * 2010-08-17 2011-03-02 江南大学 食品物性仿生检测机器人
CN106093305A (zh) * 2016-06-08 2016-11-09 电子科技大学 一种用于义齿及食品检测仿生咀嚼机器人
CN106770312A (zh) * 2016-11-23 2017-05-31 河池学院 食品质量检测机器人
CN107402294A (zh) * 2017-07-31 2017-11-28 重庆微奥云生物技术有限公司 一种转基因食品检测系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363885A (en) * 1993-06-02 1994-11-15 R. J. Reynolds Tobacco Company Robotic sample preparation system and method
CN1844928A (zh) * 2006-03-21 2006-10-11 深圳大学 一种检测食物过敏原的仪器
CN101509869A (zh) * 2009-03-13 2009-08-19 重庆大学 基于可编程微镜阵列的可见-近红外光谱探测方法及光谱仪
CN101915708A (zh) * 2010-08-17 2010-12-15 江南大学 食品物性仿生检测机器人及检测方法
CN201754138U (zh) * 2010-08-17 2011-03-02 江南大学 食品物性仿生检测机器人
CN106093305A (zh) * 2016-06-08 2016-11-09 电子科技大学 一种用于义齿及食品检测仿生咀嚼机器人
CN106770312A (zh) * 2016-11-23 2017-05-31 河池学院 食品质量检测机器人
CN107402294A (zh) * 2017-07-31 2017-11-28 重庆微奥云生物技术有限公司 一种转基因食品检测系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张可村 等: "《工程优化方法及其应用》", 28 February 2007, 西安交通大学出版社 *
谢蓉 等: "《先进控制理论及应用导论》", 31 August 2015, 西北工业大学出版社 *
靳志宏 等: "《现代优化技术》", 28 February 2017, 大连海事大学出版社 *

Similar Documents

Publication Publication Date Title
Kroll et al. Model-based methods in the biopharmaceutical process lifecycle
Wang et al. Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast
KR20200123262A (ko) 센서 시스템을 위한 자동 제스처 인식
Arauzo-Bravo et al. Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems
CN107044976A (zh) 基于libs与堆叠式rbm深度学习技术的土壤重金属含量分析预测方法
CN106052753A (zh) 基于模糊支持向量机的秸秆发酵燃料乙醇过程关键状态变量软测量方法
CN110309867A (zh) 一种基于卷积神经网络的混合气体识别方法
CN110910964A (zh) 一种分子间的结合活性预测方法及装置
CN101748186A (zh) 基于模糊支持向量机的赖氨酸发酵过程关键状态变量软测量方法及系统
CN110135497A (zh) 模型训练的方法、面部动作单元强度估计的方法及装置
CN106970981A (zh) 一种基于转移矩阵构建关系抽取模型的方法
Zheng et al. Research on behavior recognition based on feature fusion of automatic coder and recurrent neural network
CN103675006A (zh) 最小二乘的工业熔融指数软测量仪表和方法
CN107766880B (zh) 基于ba-lssvm的光合细菌发酵过程关键参量的软测量方法
CN108427287A (zh) 一种智能食品质量检测机器人
Karlsson et al. Modelling dynamical systems using neural ordinary differential equations
CN108414346B (zh) 一种试验参数自适应的智能真三轴试验系统及试验方法
CN109859850A (zh) 基于变分模态分解和极限学习机的血糖预测方法
CN113762513A (zh) 一种基于dna链置换的dna神经元学习方法
CN109739178A (zh) 一种监测数据驱动的工件加工变形在线预测方法
Mi et al. Prediction of accumulated temperature in vegetation period using artificial neural network
Zhi-heng et al. Design of human-computer interaction control system based on hand-gesture recognition
Xia et al. Improved Capacitive Proximity Detection for Conductive Objects through Target Profile Estimation
CN103675009A (zh) 模糊方程的工业熔融指数软测量仪表及方法
CN113791690A (zh) 一种带有实时情绪识别功能的人机交互公共设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180821

RJ01 Rejection of invention patent application after publication