CN108426839A - 一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法 - Google Patents

一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法 Download PDF

Info

Publication number
CN108426839A
CN108426839A CN201810224085.XA CN201810224085A CN108426839A CN 108426839 A CN108426839 A CN 108426839A CN 201810224085 A CN201810224085 A CN 201810224085A CN 108426839 A CN108426839 A CN 108426839A
Authority
CN
China
Prior art keywords
laser
signal
ultrasonic
detection
manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810224085.XA
Other languages
English (en)
Other versions
CN108426839B (zh
Inventor
胡宏伟
曾慧婕
何绪晖
王向红
易可夫
陈小敏
沈晓炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201810224085.XA priority Critical patent/CN108426839B/zh
Publication of CN108426839A publication Critical patent/CN108426839A/zh
Application granted granted Critical
Publication of CN108426839B publication Critical patent/CN108426839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法。包括构建机械手式激光超声自动检测系统、激光超声波信号激励及信号采集、超声波信号相异系数计算及缺陷识别定位三个步骤。本发明的技术效果在于,通过对构件表面检测区域网格化,利用机械手式激光超声自动检测系统,依次扫查X及Y方向的超声检测信号,并进行相异系数计算,实现了增材制造构件缺陷在线快速定位,有效地提高了检测效率。

Description

一种基于机械手扫查激光超声信号相关分析的增材制造构件 检测方法
技术领域
本发明专利属于无损检测领域,特别涉及一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法。
背景技术
增材制造是一种以数字三维CAD模型文件为基础,运用高能束源或其他方式,将液体、熔融体、粉末、丝、片等特殊材料进行逐层堆积黏结,最终叠加成型,直接构造出实体的技术。这种技术具有节约材料、可以实现传统工艺难以或无法加工的复杂结构的制造等优点,在航天航空、医疗等重要行业得到广泛应用。但与此同时,增材制造存在由工艺参数控制不当导致的缺陷,主要有孔洞、翘曲变形、球化、存在未熔颗粒等。这些缺陷会严重影响构件的使用性能,制约了增材制造技术的实际工业应用。
为了有效地检测缺陷提高产品质量,可采用离线或在线无损检测技术。离线检测技术仅用于制造完成后的成品检测,如申请公布号CN 104597125 A,公布日为2015年5月6日的专利文献公开了一种用于3D打印件的超声检测控制方法及装置,通过控制超声检测设备的探头按照各待检测点对应的检测位置的入射角进行扫描,能够提高3D打印件的检测信号信噪比和缺陷检出率。但操作复杂,需确定待检测点,并且它只能检测出成形之后产品的缺陷,不能及时地调整参数来控制产品制造质量。
在线检测能及时发现缺陷并自动或人工干预制造过程,改善增材制造构件质量。现有增材制造过程中,在线检测方法主要有激光超声法、红外热成像法、CCD成像法等。其中激光超声具有非接触、灵敏度高、可检测复杂形状构件等优势,特别适合于增材制造过程的在线实时检测,如申请公布号CN106018288 A,公布日为2016年10月12日的专利文献公布了一种激光超声在线无损检测增材制造零件的方法,但该方法采用逐点扫查,使得扫描点数过多,扫描路径复杂,检测费时,降低了实际增材制造的检测效率。
发明内容
为提高激光超声在增材制造过程中的检测效率,实现缺陷的快速识别与定位。本发明提出了一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法。
为了实现上述技术目的,本发明的技术方案是,
一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法,包括以下步骤:
步骤一:构建机械手式激光超声自动检测系统,所述系统包括控制模块、机械手、夹紧装置、一套激光超声检测装置、数据采集及处理模块;机械手通过控制模块实现运动控制,夹紧装置安装在机械手的末端臂上,一套激光超声检测装置则通过夹紧装置与机械手相连,其中一套激光超声检测装置包括脉冲激光器和激光干涉仪,数据采集及处理模块包括数据采集卡和计算机;
步骤二:对增材制造过程中的构件进行激光超声波信号激励及信号采集,以基板表面中心为原点,基板表面为XOY面,建立空间直角坐标系OXYZ,调整机械手在空间中的路径和初始位置;根据构件三维模型的整体高度H以及切片层的厚度ΔH,确定脉冲激光器以及激光干涉仪在Z方向上的移动步距;根据构件三维模型的宽度、长度及检测精度需求确定脉冲激光器和激光干涉仪在X、Y方向上的移动步距;通过脉冲激光器激励超声波信号,激光干涉仪接收信号,数据采集及处理模块采集超声波数据并保存至计算机中;
步骤三:超声波信号相异系数计算及缺陷识别定位,首先提取步骤二中X方向上和Y方向上所采集的超声波数据,每一次激光超声检测完成后,先计算出X方向上不同位置点所采集信号之间的协方差、标准偏差及所采集信号两两之间的相异系数,再计算出Y方向上不同位置点所采集信号之间的协方差、标准偏差及所采集信号两两之间的相异系数。然后根据相异系数可得出X方向与Y方向上不同位置检测点所累加的相异系数之和,再根据给定阈值得出存在缺陷的区域,最后由X和Y方向上存在缺陷的共同区域判定缺陷所在的位置。
所述的方法,所述的步骤二中,对构件进行激光超声波信号激励及信号采集的步骤包括:
步骤1:调整机械手在空间中的路径和初始位置,使脉冲激光器距离基板表面的距离为d1,激光干涉仪距离基板表面的距离为d2,进一步调整脉冲激光器和激光干涉仪的方位,保证激光入射点距离基板边界距离d3,使激光干涉仪此时接收的超声波信号为最大值;
步骤2:根据构件三维模型的整体高度H以及切片层的厚度ΔH,确定脉冲激光器和激光干涉仪在Z轴方向上移动的距离h取值范围[d1,hz],其中hz=H+d1,将H划分为K等份,即选取K个Z方向的激光超声波激励位置,确定脉冲激光器和激光干涉仪Z方向上的移动步距ΔZ,ΔZ根据构件具体高度以及检测精度需求确定;
步骤3:根据构件三维模型的宽度和长度以及检测精度需求,将模型第k次检测的二维平面沿X方向划分为M等份,沿Y方向划分为N等份,确定脉冲激光器以及激光干涉仪在X方向上的移动步距ΔX和在Y方向上的移动步距ΔY,由机械手控制一套激光超声检测装置在XY平面内先后沿着X方向和Y方向运动,同时脉冲激光器实现激光超声波信号激励、激光干涉仪实现信号接收;第一次检测时,计算机实时将X方向和Y方向上每个检测点位置的超声波信号进行保存,获得的信号记为S1,m、E1,n,信号保存后,脉冲激光器和激光干涉仪沿着Z方向上升一个步长ΔZ,当所设定的新的一次加工层数完成后,开始第二次检测,脉冲激光器和激光干涉仪继续激励和接收X和Y方向上的超声波信号,获得新的信号S2,m、E2,n,类似的,即依次获得X方向的信号S1,m,S2,m,…,Sk,m、Y方向的信号E1,n,E2,n,…,Ek,n,直到构件加工完成,其中m=1,2,…,M,n=1,2,…,N。
所述的方法,所述的步骤三中,超声波信号相异系数计算及缺陷识别定位步骤包括:
步骤1:超声波信号相异系数计算,当采集信号为Sk,m(m=1,2,…,M)时,先求出SK,i和SK,j(其中i,j∈[1,M],且i≠j)相关系数:
再求出SK,i和SK,j的相异系数:
αK,i,j=1-ρK,i,j
当采集信号为EK,n(n=1,2,…,N)时,先求出EK,i和EK,j(其中i,j∈[1,N],且i≠j)相关系数:
再求出EK,i和EK,j的相异系数:
βk,i,j=1-δk,i,j
步骤2:缺陷识别定位,提取步骤三中所储存的相异系数αk,i,j及βk,i,j,分别对其进行求和计算,
设定阈值ε,当γk,i>ε时,此时第k次检测中X方向上i点所对应的扫描路径上存在缺陷,当σk,j>ε时,此时第k次检测中Y方向上j点所对应的扫描路径上存在缺陷,结合X、Y方向不同位置点所存在缺陷的路径,可以确定缺陷的具体位置(Sk,i,Ek,j)。
本发明的技术效果在于,通过对构件表面检测区域网格化,利用机械手式激光超声自动检测系统,依次扫查X及Y方向的超声检测信号,并进行相异系数计算,实现了增材制造构件缺陷在线快速定位,有效地提高了检测效率。
下面结合附图对本发明作进一步说明。
附图说明
图1为本发明检测系统示意图;
图2为本发明机械手式激光超声检测系统的结构示意图;
图3为本发明激光超声扫描路径示意图;
图4为本发明流程示意图;
图5为本发明具体实施方式中激光超声扫描路径示意图;
其中图2中1为机械手、2为夹紧装置、3为脉冲激光器、4为激光干涉仪、5为构件、6为基板。
具体实施方式
参见图1,以构建一个机械手式激光超声自动检测系统为步骤一,包括控制模块、机械手、夹紧装置、一套激光超声检测装置、数据采集及处理模块。机械手通过控制模块实现运动控制,夹紧装置安装在机械手的末端臂上,一套激光超声检测装置则通过夹紧装置与机械手相连;其中一套激光超声检测装置包括脉冲激光器和激光干涉仪,激光器和激光干涉仪的具体型号可根据实际被测构件做相应的调整,在本检测实例中,选用Nd:YAG激光器,F-P激光干涉仪,采样频率为200MHz的PCIe9852数据采集卡采集超声波信号数据。
步骤二、激光超声波信号激励及信号采集
(1)调整机械手在空间中的路径和初始位置,使脉冲激光器距离基板表面的距离为d1,激光干涉仪距离基板表面的距离d2,进一步调整脉冲激光器和激光干涉仪的方位,保证激光入射点距离基板边界距离d3,使激光干涉仪此时接收的超声波信号为最大值。本实例中,d1=d2=15mm,d3=8mm。
(2)根据构件三维模型的整体高度H以及切片层的厚度ΔH,确定脉冲激光器和激光干涉仪在Z轴方向上移动的距离h取值范围[d1,hz],其中hz=H+d1,将H划分为K等份,即选取K个Z轴方向的激光超声波激励位置,确定脉冲激光器和激光干涉仪Z轴方向上的移动步距ΔZ;ΔZ根据构件具体高度以及检测精度需求确定。本实例中H=100mm,ΔH=0.08mm,k=125,ΔZ=0.8mm。
(3)根据构件三维模型的宽度和长度以及检测精度需求,将模型第5次检测的二维平面沿X方向划分为2000等份,沿Y方向划分为1625等份,确定脉冲激光器以及激光干涉仪在X方向上的移动步距ΔX和在Y方向上的移动步距ΔY,由机械手控制一套激光超声检测装置在XY平面内先后沿着X方向和Y方向运动,同时脉冲激光器实现激光超声波信号激励、激光干涉仪实现信号接收。本实例中设定ΔX=0.04mm,ΔY=0.04mm。
(4)第一次检测时,计算机实时将X方向和Y方向上每个检测点位置的超声波信号进行保存,获得的信号记为S1,m、E1,n,信号保存后,脉冲激光器和激光干涉仪沿着Z轴方向上升一个步长0.8mm,当所设定的新的10层加工层数完成后,开始第二次检测,脉冲激光器和激光干涉仪继续激励和接收X和Y方向上的超声波信号,获得新的信号S2,m、E2,n,类似的,即依次获得X方向的信号S1,m,S2,m,…,S125,m、Y方向的信号E1,n,E2,n,…,E125,n,直到构件加工完成,其中m=1,2,…,M,n=1,2,…,N。本实例中,第5次检测获得X方向的信号为S5,1,S5,2,…,S5,2000、Y方向的信号为E5,1,E5,2,…,E5,1625
步骤三、超声波信号相异系数计算及缺陷识别定位计算
首先提取步骤二中X方向上和Y方向上所采集的超声波数据,每一次激光超声检测完成后,先计算出X方向上不同位置点所采集信号之间的协方差、标准偏差及所采集信号两两之间的相异系数,再计算出Y方向上不同位置点所采集信号之间的协方差、标准偏差及所采集信号两两之间的相异系数。然后根据相异系数可得出X方向与Y方向上不同位置检测点所累加的相异系数之和,再根据给定阈值得出存在缺陷的区域,最后由X和Y方向上存在缺陷的共同区域判定缺陷所在的位置。
其中,超声波信号相异系数计算及缺陷识别定位的步骤包括:
当采集信号为Sk,m(m=1,2,…,M)时,先求出SK,i和SK,j(其中i,j∈[1,M],且i≠j)相关系数:
再求出SK,i和SK,j的相异系数:
αK,i,j=1-ρK,i,j
当采集信号为EK,n(n=1,2,…,N)时,先求出EK,i和EK,j(其中i,j∈[1,N],且i≠j)相关系数:
再求出EK,i和EK,j的相异系数:
βi-j=1-δi-j
提取步骤三中所储存的相异系数αk,i,j及βk,i,j,分别对其进行求和计算,
设定阈值ε=0.8,当γk,i>ε时,此时第k次检测中X方向上i点所对应的扫描路径上存在缺陷,当σk,j>ε时,此时第k次检测中Y方向上j点所对应的扫描路径上存在缺陷,结合X、Y方向不同位置点所存在缺陷的路径,可以确定其中两个缺陷的具体位置(S5,150,E5,120)、(S5,1200,E5,720)。

Claims (3)

1.一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法,其特征在于,包括以下步骤:
步骤一:构建机械手式激光超声自动检测系统,所述系统包括控制模块、机械手、夹紧装置、一套激光超声检测装置、数据采集及处理模块;机械手通过控制模块实现运动控制,夹紧装置安装在机械手的末端臂上,一套激光超声检测装置则通过夹紧装置与机械手相连,其中一套激光超声检测装置包括脉冲激光器和激光干涉仪,数据采集及处理模块包括数据采集卡和计算机;
步骤二:对增材制造过程中的构件进行激光超声波信号激励及信号采集,以基板表面中心为原点,基板表面为XOY面,建立空间直角坐标系OXYZ,调整机械手在空间中的路径和初始位置;根据构件三维模型的整体高度H以及切片层的厚度ΔH,确定脉冲激光器以及激光干涉仪在Z方向上的移动步距;根据构件三维模型的宽度、长度及检测精度需求确定脉冲激光器和激光干涉仪在X、Y方向上的移动步距;通过脉冲激光器激励超声波信号,激光干涉仪接收信号,数据采集及处理模块采集超声波数据并保存至计算机中;
步骤三:超声波信号相异系数计算及缺陷识别定位,首先提取步骤二中X方向上和Y方向上所采集的超声波数据,每一次激光超声检测完成后,先计算出X方向上不同位置点所采集信号之间的协方差、标准偏差及所采集信号两两之间的相异系数,再计算出Y方向上不同位置点所采集信号之间的协方差、标准偏差及所采集信号两两之间的相异系数,然后根据相异系数可得出X方向与Y方向上不同位置检测点所累加的相异系数之和,再根据给定阈值得出存在缺陷的区域,最后由X和Y方向上存在缺陷的共同区域判定缺陷所在的位置。
2.根据权利要求1所述的方法,其特征在于,所述的步骤二中,对构件进行激光超声波信号激励及信号采集的步骤包括:
步骤1:调整机械手在空间中的路径和初始位置,使脉冲激光器距离基板表面的距离为d1,激光干涉仪距离基板表面的距离为d2,进一步调整脉冲激光器和激光干涉仪的方位,保证激光入射点距离基板边界距离d3,使激光干涉仪此时接收的超声波信号为最大值;
步骤2:根据构件三维模型的整体高度H以及切片层的厚度ΔH,确定脉冲激光器和激光干涉仪在Z轴方向上移动的距离h取值范围[d1,hz],其中hz=H+d1,将H划分为K等份,即选取K个Z方向的激光超声波激励位置,确定脉冲激光器和激光干涉仪Z方向上的移动步距ΔZ,ΔZ根据构件具体高度以及检测精度需求确定;
步骤3:根据构件三维模型的宽度和长度以及检测精度需求,将模型第k次检测的二维平面沿X方向划分为M等份,沿Y方向划分为N等份,确定脉冲激光器以及激光干涉仪在X方向上的移动步距ΔX和在Y方向上的移动步距ΔY,由机械手控制一套激光超声检测装置在XY平面内先后沿着X方向和Y方向运动,同时脉冲激光器实现激光超声波信号激励、激光干涉仪实现信号接收;第一次检测时,计算机实时将X方向和Y方向上每个检测点位置的超声波信号进行保存,获得的信号记为S1,m、E1,n,信号保存后,脉冲激光器和激光干涉仪沿着Z方向上升一个步长ΔZ,当所设定的新的一次加工层数完成后,开始第二次检测,脉冲激光器和激光干涉仪继续激励和接收X和Y方向上的超声波信号,获得新的信号S2,m、E2,n,类似的,即依次获得X方向的信号S1,m,S2,m,…,Sk,m、Y方向的信号E1,n,E2,n,…,Ek,n,直到构件加工完成,其中m=1,2,…,M,n=1,2,…,N。
3.根据权利要求1所述的方法,其特征在于,所述的步骤三中,超声波信号相异系数计算及缺陷识别定位步骤包括:
步骤1:超声波信号相异系数计算,当采集信号为Sk,m(m=1,2,…,M)时,先求出Sk,i和Sk,j(其中i,j∈[1,M],且i≠j)相关系数:
再求出SK,i和SK,j的相异系数:
αK,i,j=1-ρK,i,j
当采集信号为EK,n(n=1,2,…,N)时,先求出Ek,i和Ek,j(其中i,j∈[1,N],且i≠j)相关系数:
再求出EK,i和EK,j的相异系数:
βk,i,j=1-δk,i,j
步骤2:缺陷识别定位,提取所述权利要求3中所储存的相异系数αk,i,j及βk,i,j,分别对其进行求和计算:
设定阈值ε,当γk,i>ε时,此时第k次检测中X方向上i点所对应的扫描路径上存在缺陷,当σk,j>ε时,此时第k次检测中Y方向上j点所对应的扫描路径上存在缺陷,结合X、Y方向不同位置点所存在缺陷的路径,可以确定缺陷的具体位置(Sk,i,Ek,j)。
CN201810224085.XA 2018-03-19 2018-03-19 一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法 Active CN108426839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810224085.XA CN108426839B (zh) 2018-03-19 2018-03-19 一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810224085.XA CN108426839B (zh) 2018-03-19 2018-03-19 一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法

Publications (2)

Publication Number Publication Date
CN108426839A true CN108426839A (zh) 2018-08-21
CN108426839B CN108426839B (zh) 2021-02-26

Family

ID=63158942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810224085.XA Active CN108426839B (zh) 2018-03-19 2018-03-19 一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法

Country Status (1)

Country Link
CN (1) CN108426839B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387568A (zh) * 2018-12-21 2019-02-26 西安增材制造国家研究院有限公司 一种激光超声检测装置及增材制造、检测一体设备
CN109387567A (zh) * 2018-12-21 2019-02-26 西安增材制造国家研究院有限公司 一种基于波速修正的增材制造激光超声检测数据处理方法
CN109799192A (zh) * 2019-01-18 2019-05-24 广东工业大学 一种用于任意曲面的非接触激光超声无损检测系统及方法
CN110196231A (zh) * 2019-05-14 2019-09-03 东南大学 一种增材制件的激光超声离线检测装置及方法
CN111735874A (zh) * 2020-05-26 2020-10-02 东南大学 一种金属增减材在线检测装置及在线加工的方法
CN112179849A (zh) * 2020-09-17 2021-01-05 西安交通大学 一种五轴激光超声自动化检测设备及方法
CN112229911A (zh) * 2020-10-13 2021-01-15 上海大学 一种用于实时检测3d打印件脱层的方法和装置
CN112415011A (zh) * 2020-10-23 2021-02-26 武汉理工大学 用于电弧增材制件缺陷的机器人激光超声检测装置及方法
CN112964352A (zh) * 2021-03-22 2021-06-15 天津大学 基于机械臂的超声椭圆振动装置测量系统及方法
CN113375557A (zh) * 2021-06-18 2021-09-10 华中科技大学 在激光增材制造中利用光敏元件定位实际加工点的方法
JP2023031192A (ja) * 2021-08-24 2023-03-08 レーザー インスティチュート オブ シャンドン アカデミー オブ サイエンシス レーザ超音波とガルボスキャナーとの協働による金属付加製造同期検出システム及び方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792191A (zh) * 2012-10-30 2014-05-14 波音公司 使用激光超声检测系统检测复合结构的系统和方法
CN103808802A (zh) * 2014-02-26 2014-05-21 南京理工大学 一种材料内部缺陷的全光学激光超声测定方法
CN106018563A (zh) * 2007-02-21 2016-10-12 洛克希德马丁公司 用于激光超声波探伤的关节型机器人
CN106003726A (zh) * 2016-06-27 2016-10-12 中海清华(河南)智能科技发展有限公司 一种智能化激光3d打印装置及打印方法
CN106872492A (zh) * 2017-01-11 2017-06-20 南京航空航天大学 一种增材制造高精度自适应三维无损检测方法
CN107402044A (zh) * 2017-07-28 2017-11-28 华中科技大学 一种金属增材制造构件质量在线无损检测系统及方法
CN107598163A (zh) * 2017-09-01 2018-01-19 华中科技大学 一种适用于铺粉式增材制造的质量无损在线检测装备及方法
CN107607520A (zh) * 2017-08-17 2018-01-19 华中科技大学 一种元素与缺陷的激光光声复合检测方法及其系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018563A (zh) * 2007-02-21 2016-10-12 洛克希德马丁公司 用于激光超声波探伤的关节型机器人
CN103792191A (zh) * 2012-10-30 2014-05-14 波音公司 使用激光超声检测系统检测复合结构的系统和方法
CN103808802A (zh) * 2014-02-26 2014-05-21 南京理工大学 一种材料内部缺陷的全光学激光超声测定方法
CN106003726A (zh) * 2016-06-27 2016-10-12 中海清华(河南)智能科技发展有限公司 一种智能化激光3d打印装置及打印方法
CN106872492A (zh) * 2017-01-11 2017-06-20 南京航空航天大学 一种增材制造高精度自适应三维无损检测方法
CN107402044A (zh) * 2017-07-28 2017-11-28 华中科技大学 一种金属增材制造构件质量在线无损检测系统及方法
CN107607520A (zh) * 2017-08-17 2018-01-19 华中科技大学 一种元素与缺陷的激光光声复合检测方法及其系统
CN107598163A (zh) * 2017-09-01 2018-01-19 华中科技大学 一种适用于铺粉式增材制造的质量无损在线检测装备及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任明照 等: "基于多幅连续相关法的超声检测信号的缺陷识别技术", 《无损检测》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387567A (zh) * 2018-12-21 2019-02-26 西安增材制造国家研究院有限公司 一种基于波速修正的增材制造激光超声检测数据处理方法
CN109387567B (zh) * 2018-12-21 2021-02-02 西安增材制造国家研究院有限公司 一种基于波速修正的增材制造激光超声检测数据处理方法
CN109387568A (zh) * 2018-12-21 2019-02-26 西安增材制造国家研究院有限公司 一种激光超声检测装置及增材制造、检测一体设备
CN109799192A (zh) * 2019-01-18 2019-05-24 广东工业大学 一种用于任意曲面的非接触激光超声无损检测系统及方法
CN110196231B (zh) * 2019-05-14 2021-09-07 东南大学 一种增材制件的激光超声离线检测装置及方法
CN110196231A (zh) * 2019-05-14 2019-09-03 东南大学 一种增材制件的激光超声离线检测装置及方法
CN111735874A (zh) * 2020-05-26 2020-10-02 东南大学 一种金属增减材在线检测装置及在线加工的方法
CN112179849A (zh) * 2020-09-17 2021-01-05 西安交通大学 一种五轴激光超声自动化检测设备及方法
CN112229911A (zh) * 2020-10-13 2021-01-15 上海大学 一种用于实时检测3d打印件脱层的方法和装置
CN112229911B (zh) * 2020-10-13 2022-08-19 上海大学 一种用于实时检测3d打印件脱层的方法和装置
CN112415011A (zh) * 2020-10-23 2021-02-26 武汉理工大学 用于电弧增材制件缺陷的机器人激光超声检测装置及方法
CN112964352A (zh) * 2021-03-22 2021-06-15 天津大学 基于机械臂的超声椭圆振动装置测量系统及方法
CN113375557A (zh) * 2021-06-18 2021-09-10 华中科技大学 在激光增材制造中利用光敏元件定位实际加工点的方法
CN113375557B (zh) * 2021-06-18 2022-04-12 华中科技大学 在激光增材制造中利用光敏元件定位实际加工点的方法
JP2023031192A (ja) * 2021-08-24 2023-03-08 レーザー インスティチュート オブ シャンドン アカデミー オブ サイエンシス レーザ超音波とガルボスキャナーとの協働による金属付加製造同期検出システム及び方法
JP7317427B2 (ja) 2021-08-24 2023-07-31 レーザー インスティチュート オブ シャンドン アカデミー オブ サイエンシス レーザ超音波とガルボスキャナーとの協働による金属付加製造同期検出システム及び方法

Also Published As

Publication number Publication date
CN108426839B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN108426839A (zh) 一种基于机械手扫查激光超声信号相关分析的增材制造构件检测方法
CN108444921A (zh) 一种基于信号相关分析的增材制造构件在线检测方法
CN108801914B (zh) 一种对多沟槽型面板材成形缺陷的检测方法及检测系统
CN106950180B (zh) 一种快速定位缺陷的激光超声检测系统及其检测方法
CN105319272B (zh) 一种基于角域信号重构的水浸超声检测方法
CN110232388B (zh) 一种从蜂窝芯表面测量数据中识别蜂窝边的方法
CN104061853A (zh) 一种光学材料亚表面损伤层深度及形貌测量方法
CN106872492A (zh) 一种增材制造高精度自适应三维无损检测方法
CN105092616B (zh) 工业ct检测中小细节特征尺寸测量方法
CN110196231A (zh) 一种增材制件的激光超声离线检测装置及方法
CN112666263B (zh) 一种轻量化翼舵焊接超声检测灵敏度的测定方法
Kapłonek et al. Laser methods based on an analysis of scattered light for automated, in-process inspection of machined surfaces: A review
CN106767421B (zh) 基于多目视觉的动车车身关键尺寸检测系统解决方案
CN108376656A (zh) 基于二维x射线检测技术的超大晶粒尺寸的无损检测方法
JP2006170684A (ja) プレス不良の検査方法、及び検査装置
CN111693611A (zh) 一种利用激光超声检测金属亚表面缺陷的方法及系统
CN103170877A (zh) 一种微细车削过程中金刚石车刀精确定位的方法
CN110428408B (zh) 基于ELM-in-ELM的瑕疵检测方法
CN115880265A (zh) 融合磁光成像和红外热成像的焊接缺陷检测方法与系统
CN115752300A (zh) 一种在线激光视觉检测平面工件平整度的方法及系统
CN108279239A (zh) 一种球形燃料元件自动外观检测装置
Zou et al. Laser-based precise measurement of tailor welded blanks: a case study
CN101858891B (zh) 机车车辆车轴超声波透声性检验校正样轴及其使用方法
Spierings et al. Direct part density inspection in laser powder bed fusion using eddy current testing
Bally et al. Characterisation of weld heterogeneity through hardness mapping and miniature tensile testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant