CN108426702A - 增强现实设备的色散测量装置及方法 - Google Patents

增强现实设备的色散测量装置及方法 Download PDF

Info

Publication number
CN108426702A
CN108426702A CN201810053995.6A CN201810053995A CN108426702A CN 108426702 A CN108426702 A CN 108426702A CN 201810053995 A CN201810053995 A CN 201810053995A CN 108426702 A CN108426702 A CN 108426702A
Authority
CN
China
Prior art keywords
augmented reality
image
reality equipment
dispersion measurement
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810053995.6A
Other languages
English (en)
Other versions
CN108426702B (zh
Inventor
周凌
牛朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqin Technology Co Ltd
Original Assignee
Huaqin Telecom Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqin Telecom Technology Co Ltd filed Critical Huaqin Telecom Technology Co Ltd
Priority to CN201810053995.6A priority Critical patent/CN108426702B/zh
Publication of CN108426702A publication Critical patent/CN108426702A/zh
Application granted granted Critical
Publication of CN108426702B publication Critical patent/CN108426702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明实施方式涉及增强现实技术领域,公开了一种增强现实设备的色散测量装置及方法。本发明实施方式中,增强现实设备的色散测量装置包括:与增强现实设备的主光轴共线的摄像设备以及处理器;处理器与摄像设备通信连接;处理器用于控制摄像设备捕捉增强现实设备显示的基准图像以及测试图像,根据捕捉到的测试图像与基准图像的轮廓偏差,获取增强现实设备的色散信息。本发明实施例还提供了一种增强现实设备的色散测量方法。采用本发明的实施方式,能够客观地对AR设备的色散进行测量,快速高效,且准确度高。

Description

增强现实设备的色散测量装置及方法
技术领域
本发明实施例涉及增强现实技术领域,特别涉及增强现实设备的色散测量装置及方法。
背景技术
增强现实AR(Augmented Reality,简称“AR”)是通过棱镜改变光路方向,在人眼前呈现出不遮挡真实世界的虚拟影像,实现虚实融合效果的技术。由于光线经过棱镜折射时,材料的折射率会随入射光频率的减小(或波长的增大)而减小,从而产生色散现象,这就导致AR设备接收到的图像的焦点被展宽,令AR设备图像的重建效果有所下降,在用户使用AR设备进行观测的过程中,色差和像差会影响到观测体验效果,用户体验较差。因此,色散的测量以及消除对于AR设备起到了至关重要的作用。
发明人发现现有技术中至少存在如下问题:现有技术中对于AR设备色散的测试大多采用主观测试方法,即通过人眼观察一些特定的场景并对其进行主观性的判断,成本较高,效率较低,且不够准确。
发明内容
本发明实施方式的目的在于提供一种增强现实设备的色散测量装置及方法,能够客观地对AR设备的色散进行测量,快速高效,且准确度高。
为解决上述技术问题,本发明的实施方式提供了一种增强现实设备的色散测量装置,包括:与增强现实设备的主光轴共线的摄像设备以及处理器;
处理器与摄像设备通信连接;
处理器用于控制摄像设备捕捉增强现实设备显示的基准图像以及测试图像,根据捕捉到的测试图像与基准图像的轮廓偏差,获取增强现实设备的色散信息。
本发明的实施方式还提供了增强现实设备的色散测量方法,应用于增强现实设备的色散测量装置,增强现实设备的色散测量装置包括:与增强现实设备的主光轴共线的摄像设备以及处理器;处理器与摄像设备通信连接;
增强现实设备的色散测量方法包括:
捕捉增强现实设备显示的基准图像以及测试图像;
获取捕捉到的测试图像与基准图像的轮廓偏差;
根据轮廓偏差获取增强现实设备的色散信息。
本发明实施方式相对于现有技术而言,利用与AR设备的主光轴共线的摄像设备来采集AR设备显示的基准图像以及测试图像,相当于利用摄像设备代替人眼进行信息采集;利用处理器对采集到的基准图像以及测试图像进行分析比较,获取轮廓偏差,相当于利用处理器代替人脑进行色散评估。这样,相当于提供了一种机械视觉测量装置,能够客观地对AR设备的色散进行测量,快速高效,且准确度高。
另外,增强现实设备的色散测量装置还包括:暗箱;增强现实设备以及摄像设备均容置于暗箱,从而能够确保AR设备的色散测量不受外界环境光的干扰,令测量结果更加准确。
另外,,摄像设备包括:第一摄像头、第二摄像头以及支架;第一摄像头以及第二摄像头均固定于支架;支架设有固定部;其中,增强现实设备置于固定部时,第一摄像头正对于增强现实设备的左目镜;第二摄像头正对于增强现实设备的右目镜。这样,提供了摄像设备的一种具体实现形式,增加了本发明实施方式的灵活性。并且,AR设备安装在摄像设备的支架上,能够避免色散测量过程AR设备的移动,进一步地提高了测量结果的准确性。
另外,基准图像为二值图像;测试图像为修改二值图像的色彩参数后所得到的图像。通过这种方式,实现了针对单一色彩的色散测量,为获取AR设备较为全面的色散信息提供了基础。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据第二实施方式的增强现实设备的色散测量装置的结构示意图;
图2是根据第三实施方式的增强现实设备的色散测量方法的具体流程图;
图3是根据第四实施方式的增强现实设备的色散测量方法的具体流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本发明的第一实施方式涉及一种增强现实设备的色散测量装置,包括:与增强现实设备的主光轴共线的摄像设备以及处理器。处理器与摄像设备通信连接,处理器用于控制摄像设备捕捉增强现实设备显示的基准图像以及测试图像,根据捕捉到的测试图像与基准图像的轮廓偏差,获取增强现实设备的色散信息。
具体地说,摄像设备与AR设备的主光轴共线,令摄像设备的拍摄视角与AR设备的显示视角一致,能够令摄像设备捕捉到的AR设备显示的图像,与用户使用AR设备时用户眼睛所看到的图像一致,相当于利用摄像设备代替人眼进行信息采集。
本实施方式中,利用处理器对采集到的基准图像以及测试图像进行分析比较,获取轮廓偏差,相当于利用处理器代替人脑进行色散评估,判断AR设备接收到的图像的焦点是否被展宽以及被展宽的程度。其中,基准图像与测试图像的图像内容是一致的,基准图像与测试图像的区别在于:色彩不同。如,测试图像可以为基准图像修改某一色彩参数后的图像。这样,处理器便能够根据基准图像与测试图像的轮廓偏差,获取单个色彩的色散信息。在实际操作时,测试图像与基准图像也可以存在多个区域的色彩不同,令处理器能够根据基准图像与测试图像的轮廓偏差,同时获取多个色彩的色散信息,操作较为便捷。上述举例仅为说明,本实施方式中并不对基准图像与测试图像的具体实现形式做任何限定。并且,在实际操作时,基准图像还可以为二值图像,能够免去基准图像本身带有的色彩对轮廓偏差的干扰,令处理器较为方便、准确地获取AR设备针对某一色彩的色散信息。
具体地说,处理器获取测试图像的轮廓的方式可以为:处理器设置捕捉到的测试图像的图像参数,将捕捉到的测试图像由彩色图像转变为灰度图像,而后处理器对灰度图像进行边缘检测,获取轮廓。同理,处理器也可以通过上述方式获取基准图像的轮廓。
更具体地说,处理器在获取到测试图像与基准图像的轮廓后,可以将测试图像的轮廓以及基准图像的轮廓放置在同一坐标系中进行比对,从而获取测试图像的轮廓以及基准图像的轮廓的坐标偏差,将获取的坐标偏差作为测试图像与基准图像的轮廓偏差。这样,处理器便可以根据测试图像与基准图像的坐标偏差,设置区间,将所设置的区间作为AR设备的色散信息。
与现有技术相比,本实施方式中提供了一种机械视觉测量装置,能够客观地对AR设备的色散进行测量,快速高效,且准确度高。
本发明的第二实施方式涉及一种增强现实设备的色散测量装置,如图1所示。第二实施方式与第一实施方式大致相同,主要区别之处在于:在本发明第二实施方式中,提供了摄像设备的一种具体实现形式,增加了本发明实施方式的灵活性。
具体地说,AR设备可以为AR头盔、AR眼镜等。摄像设备2包括:第一摄像头21、第二摄像头22以及支架23。第一摄像头21以及第二摄像头22均固定于支架23,支架23设有固定部(图未示),AR设备1置于固定部时,第一摄像头21正对于AR设备1的左目镜,第二摄像头22正对于AR设备1的右目镜。这样,AR设备安装在摄像设备2的支架上,能够避免色散测量过程AR设备的移动,令摄像设备2与AR设备的主光轴始终保持共线,进一步地提高了测量结果的准确性。
本实施方式中,AR设备的色散测量装置还包括暗箱3,AR设备1以及摄像设备2均容置于暗箱3,从而能够确保AR设备的色散测量不受外界环境光的干扰,令测量结果更加准确。
本发明的第三实施方式涉及一种增强现实设备的色散测量方法,具体流程如图2所示。本实施方式在增强现实设备的色散测量装置的基础上进行实施,增强现实设备的色散测量装置包括:与增强现实设备的主光轴共线的摄像设备以及处理器;处理器与摄像设备通信连接。以下对增强现实设备的色散测量方法进行具体说明,步骤如下:
步骤101,捕捉增强现实设备显示的基准图像以及测试图像。
具体地说,增强现实设备可以依次显示基准图像以及测试图像,增强现实设备的色散测量装置利用摄像设备捕捉增强现实设备显示的基准图像以及测试图像。
更具体地说,基准图像与测试图像的图像内容是一致的,基准图像与测试图像的区别在于色彩不同,如,测试图像可以为基准图像修改某一色彩参数后的图像,这样,处理器便能够根据基准图像与测试图像的轮廓偏差,获取单个色彩的色散信息。在实际操作时,测试图像与基准图像也可以存在多个区域的色彩不同,令处理器能够根据基准图像与测试图像的轮廓偏差,同时获取多个色彩的色散信息,操作较为便捷。然而,上述举例仅为说明,本实施方式中并不对基准图像与测试图像的具体实现形式做任何限定。
步骤102,获取捕捉到的测试图像与基准图像的轮廓偏差。
具体地说,增强现实设备的色散测量装置通过处理器获取捕捉到的测试图像与基准图像的轮廓偏差。更具体地说,处理器获取测试图像的轮廓的方式可以为:处理器设置捕捉到的测试图像的图像参数,将捕捉到的测试图像由彩色图像转变为灰度图像,而后处理器对灰度图像进行边缘检测,获取测试图像的轮廓。同理,处理器也可以通过上述方式获取基准图像的轮廓。
本实施方式中,处理器在获取到测试图像与基准图像的轮廓后,可以将测试图像的轮廓以及基准图像的轮廓放置在同一坐标系中进行比对,从而获取测试图像的轮廓以及基准图像的轮廓的坐标偏差,将获取的坐标偏差作为测试图像与基准图像的轮廓偏差。
步骤103,根据轮廓偏差获取增强现实设备的色散信息。
具体地说,增强现实设备的色散测量装置可以根据获取到的坐标偏差,设置区间,将所设置的区间作为增强现实设备的色散信息。
本发明第四实施方式涉及一种增强现实设备的色散测量方法,具体流程如图3所示。本实施方式在第三实施方式的基础上加以改进,主要改进之处在于:在本发明第四实施方式中,基准图像为二值图像,二值图像为棋盘格,测试图像为修改二值图像的色彩参数后所得到的图像。
本实施方式中的步骤201与第三实施方式中的步骤101大致相同,步骤203与第一实施方式中的步骤103大致相同,为避免重复,以下仅对不同部分进行说明:
步骤202,获取捕捉到的测试图像与基准图像的轮廓偏差。
本实施方式中,步骤202包括子步骤2021至子步骤2022,以下进行具体说明:
子步骤2021,获取基准图像的棋盘格各格角点的位置坐标,以及测试图像的棋盘格各格角点的位置坐标。
具体地说,红、蓝、绿为光的三原色,本实施方式中,测试图像可以为红黑棋盘格、蓝黑棋盘格或绿黑棋盘格,为增强现实设备的色散测量装置能够获取较有代表性的色散信息提供了基础。
更具体地说,在像素的色彩RGB中,R通道里纯红色为255,黑色为0,因而处理器获取基准图像的棋盘格各格角点的位置坐标的方式可以为:获取各像素点的色彩RGB值,根据基准图像各像素点的色彩RGB值,获取基准图像中的各棋盘格格角点。如,处理器可以根据交点处R通道值、G通道值或B通道值不同,找出基准图像的棋盘格各格角点。同理,处理器可以利用上述相同的方式,获取测试图像的棋盘格各格角点的位置坐标。
本实施方式中,技术人员预先在处理器中存储了参考坐标系的设置规则,处理器根据设置规则设置参考坐标系,以便于在参考坐标系中对基准图像中的各棋盘格格角点进行标注,获取基准图像的棋盘格各格角点的位置坐标(xBX(i),yBX(i))。
子步骤2022,根据基准图像的棋盘格各格角点的位置坐标、测试图像的棋盘格各格角点的位置坐标以及预存的公式,计算轮廓偏差。
具体地说,处理器根据公式计算轮廓偏差α(i)。其中,公式可以由技术人员预先设置并保存在处理器中。
值得一提的是,本实施方式中,增强现实设备的色散测量装置在根据轮廓偏差获取增强现实设备的色散信息时,增强现实设备的色散测量装置可以获取轮廓偏差α(i)的最大值,并将最大值作为增强现实设备的色散信息。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

1.一种增强现实设备的色散测量装置,其特征在于,包括:与所述增强现实设备的主光轴共线的摄像设备以及处理器;
所述处理器与所述摄像设备通信连接;
所述处理器用于控制所述摄像设备捕捉所述增强现实设备显示的基准图像以及测试图像,根据捕捉到的所述测试图像与所述基准图像的轮廓偏差,获取所述增强现实设备的色散信息。
2.根据权利要求1所述的增强现实设备的色散测量装置,其特征在于,还包括:暗箱;
所述增强现实设备以及所述摄像设备均容置于所述暗箱。
3.根据权利要求1所述的增强现实设备的色散测量装置,其特征在于,所述摄像设备包括:第一摄像头、第二摄像头以及支架;
所述第一摄像头以及所述第二摄像头均固定于所述支架;
所述支架设有固定部;
其中,所述增强现实设备置于所述固定部时,所述第一摄像头正对于所述增强现实设备的左目镜;所述第二摄像头正对于所述增强现实设备的右目镜。
4.根据权利要求1所述的增强现实设备的色散测量装置,其特征在于,所述基准图像为二值图像;所述测试图像为修改所述二值图像的色彩参数后所得到的图像。
5.一种增强现实设备的色散测量方法,其特征在于,应用于增强现实设备的色散测量装置,所述增强现实设备的色散测量装置包括:与所述增强现实设备的主光轴共线的摄像设备以及处理器;所述处理器与所述摄像设备通信连接;
所述方法包括:
捕捉所述增强现实设备显示的基准图像以及测试图像;
获取捕捉到的所述测试图像与所述基准图像的轮廓偏差;
根据所述轮廓偏差获取所述增强现实设备的色散信息。
6.根据权利要求5所述的增强现实设备的色散测量方法,其特征在于,所述基准图像为二值图像;所述测试图像为修改所述二值图像的色彩参数后所得到的图像。
7.根据权利要求6所述的增强现实设备的色散测量方法,其特征在于,所述二值图像为棋盘格;
所述获取捕捉到的所述测试图像与所述基准图像的轮廓偏差,具体包括:
获取所述基准图像的棋盘格各格角点的位置坐标(xBX(i),yBX(i)),以及所述测试图像的棋盘格各格角点的位置坐标(xBY(i),yBY(i));其中,i代表格角点的编号;
根据公式计算轮廓偏差α(i)。
8.根据权利要求7所述的增强现实设备的色散测量方法,其特征在于,所述获取所述基准图像的棋盘格各格角点的位置坐标(xBX(i),yBX(i)),具体包括:
获取所述基准图像各像素点的色彩RGB值;
根据所述基准图像各像素点的色彩RGB值,获取所述基准图像中的各棋盘格格角点;
在预设的参考坐标系中,对所述基准图像中的各棋盘格格角点进行标注,获取所述基准图像的棋盘格各格角点的位置坐标(xBX(i),yBX(i))。
9.根据权利要求7所述的增强现实设备的色散测量方法,其特征在于,所述根据所述轮廓偏差获取所述增强现实设备的色散信息,具体包括:
获取所述轮廓偏差α(i)的最大值;
将所述最大值作为所述增强现实设备的色散信息。
10.根据权利要求7所述的增强现实设备的色散测量方法,其特征在于,所述测试图像为红黑棋盘格、蓝黑棋盘格或绿黑棋盘格。
CN201810053995.6A 2018-01-19 2018-01-19 增强现实设备的色散测量装置及方法 Active CN108426702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810053995.6A CN108426702B (zh) 2018-01-19 2018-01-19 增强现实设备的色散测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810053995.6A CN108426702B (zh) 2018-01-19 2018-01-19 增强现实设备的色散测量装置及方法

Publications (2)

Publication Number Publication Date
CN108426702A true CN108426702A (zh) 2018-08-21
CN108426702B CN108426702B (zh) 2020-06-02

Family

ID=63155990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810053995.6A Active CN108426702B (zh) 2018-01-19 2018-01-19 增强现实设备的色散测量装置及方法

Country Status (1)

Country Link
CN (1) CN108426702B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155036A (zh) * 2021-04-25 2021-07-23 歌尔股份有限公司 双目投影组装偏移量的测试方法及测试系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115429A1 (fr) * 2005-04-28 2006-11-02 Samsung Electronics Co. Ltd. Procede de calibrage adaptatif de distorsion radiale de sous-systeme optique d'un systeme de vision technique
CN101477687A (zh) * 2009-01-22 2009-07-08 上海交通大学 复杂背景下的棋盘格角点检测方法
CN102542534A (zh) * 2010-12-31 2012-07-04 北京海思威科技有限公司 基于图像轮廓的图像畸变校正方法和装置
CN104657940A (zh) * 2013-11-22 2015-05-27 中兴通讯股份有限公司 畸变图像校正复原与分析报警的方法和装置
CN105096269A (zh) * 2015-07-21 2015-11-25 北京交通大学 基于畸变直线结构检测的图像径向畸变矫正的方法及系统
CN105791789A (zh) * 2016-04-28 2016-07-20 努比亚技术有限公司 头戴设备、显示设备及自动调整显示输出的方法
CN105869142A (zh) * 2015-12-21 2016-08-17 乐视致新电子科技(天津)有限公司 虚拟现实头盔的成像畸变测试方法及装置
CN105867606A (zh) * 2015-12-15 2016-08-17 乐视致新电子科技(天津)有限公司 虚拟现实头盔中的图像获取方法、装置及虚拟现实头盔
CN106127714A (zh) * 2016-07-01 2016-11-16 南京睿悦信息技术有限公司 一种虚拟现实头戴显示器设备畸变参数的测量方法
CN106384118A (zh) * 2016-10-24 2017-02-08 乐视控股(北京)有限公司 虚拟现实中确定色散程度的方法或装置
CN106441822A (zh) * 2016-11-30 2017-02-22 深圳市虚拟现实技术有限公司 虚拟现实头盔畸变检测的方法及装置
CN107462400A (zh) * 2016-11-30 2017-12-12 深圳市虚拟现实技术有限公司 基于刻度对应的虚拟现实镜片色散检测的方法及装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115429A1 (fr) * 2005-04-28 2006-11-02 Samsung Electronics Co. Ltd. Procede de calibrage adaptatif de distorsion radiale de sous-systeme optique d'un systeme de vision technique
CN101477687A (zh) * 2009-01-22 2009-07-08 上海交通大学 复杂背景下的棋盘格角点检测方法
CN102542534A (zh) * 2010-12-31 2012-07-04 北京海思威科技有限公司 基于图像轮廓的图像畸变校正方法和装置
CN104657940A (zh) * 2013-11-22 2015-05-27 中兴通讯股份有限公司 畸变图像校正复原与分析报警的方法和装置
CN105096269A (zh) * 2015-07-21 2015-11-25 北京交通大学 基于畸变直线结构检测的图像径向畸变矫正的方法及系统
CN105867606A (zh) * 2015-12-15 2016-08-17 乐视致新电子科技(天津)有限公司 虚拟现实头盔中的图像获取方法、装置及虚拟现实头盔
CN105869142A (zh) * 2015-12-21 2016-08-17 乐视致新电子科技(天津)有限公司 虚拟现实头盔的成像畸变测试方法及装置
CN105791789A (zh) * 2016-04-28 2016-07-20 努比亚技术有限公司 头戴设备、显示设备及自动调整显示输出的方法
CN106127714A (zh) * 2016-07-01 2016-11-16 南京睿悦信息技术有限公司 一种虚拟现实头戴显示器设备畸变参数的测量方法
CN106384118A (zh) * 2016-10-24 2017-02-08 乐视控股(北京)有限公司 虚拟现实中确定色散程度的方法或装置
CN106441822A (zh) * 2016-11-30 2017-02-22 深圳市虚拟现实技术有限公司 虚拟现实头盔畸变检测的方法及装置
CN107462400A (zh) * 2016-11-30 2017-12-12 深圳市虚拟现实技术有限公司 基于刻度对应的虚拟现实镜片色散检测的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155036A (zh) * 2021-04-25 2021-07-23 歌尔股份有限公司 双目投影组装偏移量的测试方法及测试系统

Also Published As

Publication number Publication date
CN108426702B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN104596929B (zh) 确定空气质量的方法及设备
CN105096259B (zh) 深度图像的深度值恢复方法和系统
CN109074681A (zh) 信息处理装置、信息处理方法和程序
CN110251066A (zh) 基于主观距离计量测量眼睛屈光不正的系统和方法
US10444486B2 (en) Systems and methods for detection of blank fields in digital microscopes
CN109983501A (zh) 一种隐藏图像或视频中的对象的方法和相关的增强现实方法
CN111524080A (zh) 脸部皮肤特征的识别方法、终端及计算机设备
CN110147721A (zh) 一种三维人脸识别方法、模型训练方法和装置
CN107300776A (zh) 基于图像刻度的瞳距景深设置方法及装置
CN106251286B (zh) 图像处理方法、装置及设备
CN105651384A (zh) 一种全光信息采集系统
EP1158338A2 (en) Method for simulating an ocular optical system and apparatus therefor
EP3756161B1 (en) Method and system for calibrating a plenoptic camera system
CN105359024B (zh) 摄像装置和摄像方法
CN111239999B (zh) 一种基于显微镜的光学数据处理方法、装置及存储介质
CN107452031A (zh) 虚拟光线跟踪方法及光场动态重聚焦显示系统
JP2017009598A (ja) 美容施術効果の解析方法
CN109741285A (zh) 一种水下图像数据集的构建方法及系统
CN103714225A (zh) 自动彩妆的信息系统及其进行上妆方法
CN110533709A (zh) 深度图像获取方法、装置及系统、图像采集设备
CN108124152A (zh) 头戴式显示设备的畸变测量方法及系统
CN108197549A (zh) 基于3d成像的人脸识别方法及终端
JP2014157428A (ja) 画像表示装置、画像表示方法、及び、プログラム
CN108426702A (zh) 增强现实设备的色散测量装置及方法
EP3982102A1 (de) Verfahren und vorrichtung zum vermessen der lokalen brechkraft und/oder der brechkraftverteilung eines brillenglases

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Building 1, 399 Keyuan Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 201203

Patentee after: Huaqin Technology Co.,Ltd.

Address before: Building 1, No. 399 Keyuan Road, Pudong New Area, Shanghai, 201203

Patentee before: Huaqin Technology Co.,Ltd.

Address after: Building 1, No. 399 Keyuan Road, Pudong New Area, Shanghai, 201203

Patentee after: Huaqin Technology Co.,Ltd.

Address before: Building 1, No. 399 Keyuan Road, Zhangjiang hi tech park, Pudong New Area, Shanghai, 201203

Patentee before: HUAQIN TELECOM TECHNOLOGY Co.,Ltd.