CN108418243A - 电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法 - Google Patents

电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法 Download PDF

Info

Publication number
CN108418243A
CN108418243A CN201810180995.2A CN201810180995A CN108418243A CN 108418243 A CN108418243 A CN 108418243A CN 201810180995 A CN201810180995 A CN 201810180995A CN 108418243 A CN108418243 A CN 108418243A
Authority
CN
China
Prior art keywords
source
power
static var
var compensator
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810180995.2A
Other languages
English (en)
Other versions
CN108418243B (zh
Inventor
张阳
程谆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN201810180995.2A priority Critical patent/CN108418243B/zh
Publication of CN108418243A publication Critical patent/CN108418243A/zh
Application granted granted Critical
Publication of CN108418243B publication Critical patent/CN108418243B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法,将Crowbar电路和静止无功补偿器结合,分三个阶段进行无功补偿,具体步骤包括:采集并网点实时数据,计算所需无功功率Q*;判断Q*是否小于等于第一阶段无功阀值Q1N;若Q*≤Q1N,阻抗源直驱永磁风力发电系统进入第一阶段无功补偿,无功功率仅由流入Crowbar电路的功率提供;若Q*>Q1N,判断Q*是否小于等于第二阶段无功阀值Q2N;若Q*≤Q2N,阻抗源直驱永磁风力发电系统进入第二阶段无功补偿,无功功率由阻抗源逆变器和Crowbar电路提供;若Q*>Q2N,阻抗源直驱永磁风力发电系统进入第三阶段无功补偿,无功功率由阻抗源逆变器、Crowbar电路和静止无功补偿器共同承担。本发明在电网故障时能最大限度地提供无功功率,帮助电网电压恢复。

Description

电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功 补偿方法
技术领域
本发明属于风力发电并网控制领域,具体涉及一种电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法。
背景技术
阻抗源(Z源、准Z源、半准Z源等)直驱永磁风力发电系统具有单级控制、允许逆变桥臂直通、无需插入死区时间等优势,为进一步提高并网可靠性和降低系统成本提供了一种新思路。目前,阻抗源直驱永磁风力发电系统在电网电压故障时,多采用静止无功补偿装置或风机逆变装置来提供所需无功,而将Crowbar电路中的能量储存或者泄放,造成能量的浪费以及功率的闲置。因此,有必要设计一种结构紧凑、无功补偿能力强的阻抗源直驱永磁风力发电系统电网电压故障下的无功补偿方法。
发明内容
针对背景技术所述的缺陷或不足,本发明提供了一种电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法,提高了系统的紧凑性和无功补偿能力。
将Crowbar电路和静止无功补偿器结合,Crowbar电路的输入端接阻抗源网络电容,Crowbar电路的输出端接到静止无功补偿装置的直流侧。
一种电网电压故障下阻抗源(Z源、准Z源、半准Z源等)直驱永磁风力发电系统的分段式无功补偿方法,步骤包括:
(1.1) 采集并网点实时数据,计算所需无功功率Q*
(1.2) 判断Q*是否小于等于第一阶段无功阀值Q1N
(1.3) 若Q*≤Q1N,阻抗源直驱永磁风力发电系统进入第一阶段无功补偿,无功功率仅由流入Crowbar电路的功率提供;
(1.4) 若Q*>Q1N,判断Q*是否小于等于第二阶段无功阀值Q2N
(1.5) 若Q*≤Q2N,阻抗源直驱永磁风力发电系统进入第二阶段无功补偿,无功功率由阻抗源逆变器和Crowbar电路提供;
(1.6) 若Q*>Q2N,阻抗源直驱永磁风力发电系统进入第三阶段无功补偿,无功功率由阻抗源逆变器、Crowbar电路和静止无功补偿器共同承担。
所述步骤(1.2)中第一阶段无功阀值Q1N由系统功率和电网电压跌落程度共同决定。
所述步骤(1.3)中第一阶段无功补偿具体包括如下步骤:
(2.1) 采集阻抗源逆变器实时数据;
(2.2) 令阻抗源逆变器q轴电流给定值为0,阻抗源逆变器不提供无功功率;
(2.3) 阻抗源逆变器d轴由一个转速外环和一个电流内环构成;
(2.4) 采集Crowbar电路和静止无功补偿器的实时数据;
(2.5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率根据Q*大小,经静止无功补偿器向电网提供无功;
(2.6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(2.7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS1 *由系统功率和电网电压跌落程度决定。
所述步骤(1.4)中第二阶段无功阀值Q2N仅由系统功率决定。
所述步骤(1.5)中第二阶段无功补偿具体包括如下步骤:
(3.1) 采集阻抗源逆变器实时数据;
(3.2) 根据Q*和Q1N的值确定阻抗源逆变器q轴电流给定值iqZ2 *,阻抗源逆变器提供无功功率;
(3.3) 阻抗源逆变器d轴由一个电流环构成,根据Q*、Q1N和所需阻抗源逆变器提供的无功功率确定阻抗源逆变器d轴电流给定值idZ2 *
(3.4) 采集Crowbar电路和静止无功补偿器的实时数据;
(3.5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率全部转化为无功功率;
(3.6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(3.7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS2 *由Q1N决定。
所述步骤(1.6)中第三阶段无功补偿具体包括如下步骤:
(4.1) 采集阻抗源逆变器实时数据;
(4.2) 根据Q1N和Q2N的值确定阻抗源逆变器q轴电流给定值iqZ3 *,流过阻抗源逆变器的功率全部转化为无功功率;
(4.3) 令阻抗源逆变器d轴电流给定值为0,阻抗源逆变器不提供有功功率;
(4.4) 采集Crowbar电路和静止无功补偿器的实时数据;
(4.5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率全部转化为无功功率;
(4.6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(4.7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS3 *由Q*、Q1N和Q2N共同决定。
本发明与现有技术相比的益处在于:
(1)该方法将Crowbar电路和静止无功补偿器结合,省去了Crowbar电路的储能或耗能装置,提高了系统的紧凑型,降低了成本;
(2)该方法利用静止无功补偿器的逆变装置,使流入Crowbar电路的功率直接转化为无功提供给电网,增加了系统的无功补偿能力;
(3)该方法将电网电压故障时阻抗源直驱永磁风力发电系统的无功补偿分为三个阶段,更加合理地为电网提供无功,帮助电网电压恢复。
附图说明
图1为本发明实施方法的基本流程示意图。
图2为电网电压故障时阻抗源直驱永磁风力发电无功补偿系统结构图。
具体实施方式
为了更为具体地描述本发明,下面结合附图和实施方式对本发明做进一步说明。
如图1所示,一种电网电压故障下阻抗源(Z源、准Z源、半准Z源等)直驱永磁风力发电系统的分段式无功补偿方法,其步骤包括:
(1.1) 采集并网点实时数据,计算所需无功功率Q*
(1.2) 判断Q*是否小于等于第一阶段无功阀值Q1N
(1.3) 若Q*≤Q1N,阻抗源直驱永磁风力发电系统进入第一阶段无功补偿,无功功率仅由流入Crowbar电路的功率提供;
(1.4) 若Q*>Q1N,判断Q*是否小于等于第二阶段无功阀值Q2N
(1.5) 若Q*≤Q2N,阻抗源直驱永磁风力发电系统进入第二阶段无功补偿,无功功率由阻抗源逆变器和Crowbar电路提供;
(1.6) 若Q*>Q2N,阻抗源直驱永磁风力发电系统进入第三阶段无功补偿,无功功率由阻抗源逆变器、Crowbar电路和静止无功补偿器共同承担。
如图2所示,将Crowbar电路和静止无功补偿器结合,电网电压故障时将流入Crowbar电路的功率直接转化为无功功率提供给电网。
步骤(1.2)中第一阶段无功阀值Q1N由系统功率和电网电压跌落程度共同决定。
步骤(1.3)中第一阶段无功补偿具体包括如下步骤:
(2.1) 采集阻抗源逆变器实时数据;
(2.2) 令阻抗源逆变器q轴电流给定值为0,阻抗源逆变器不提供无功功率;
(2.3) 阻抗源逆变器d轴由一个转速外环和一个电流内环构成;
(2.4) 采集Crowbar电路和静止无功补偿器的实时数据;
(2.5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率根据Q*大小,经静止无功补偿器向电网提供无功;
(2.6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(2.7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS1 *由系统功率和电网电压跌落程度决定。
步骤(1.4)中第二阶段无功阀值Q2N仅由系统功率决定。
步骤(1.5)中第二阶段无功补偿具体包括如下步骤:
(3.1) 采集阻抗源逆变器实时数据;
(3.2) 根据Q*和Q1N的值确定阻抗源逆变器q轴电流给定值iqZ2 *,阻抗源逆变器提供无功功率;
(3.3) 阻抗源逆变器d轴由一个电流环构成,根据Q*、Q1N和所需阻抗源逆变器提供的无功功率确定阻抗源逆变器d轴电流给定值idZ2 *
(3.4) 采集Crowbar电路和静止无功补偿器的实时数据;
(3.5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率全部转化为无功功率;
(3.6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(3.7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS2 *由Q1N决定。
步骤(1.6)中第三阶段无功补偿具体包括如下步骤:
(4.1) 采集阻抗源逆变器实时数据;
(4.2) 根据Q1N和Q2N的值确定阻抗源逆变器q轴电流给定值iqZ3 *,流过阻抗源逆变器的功率全部转化为无功功率;
(4.3) 令阻抗源逆变器d轴电流给定值为0,阻抗源逆变器不提供有功功率;
(4.4) 采集Crowbar电路和静止无功补偿器的实时数据;
(4.5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率全部转化为无功功率;
(4.6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(4.7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS3 *由Q*、Q1N和Q2N共同决定。
应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明,凡在本发明思路和原则下的修改、改进方案均属于本发明的保护范围。

Claims (7)

1.将Crowbar电路和静止无功补偿器结合,Crowbar电路的输入端接阻抗源网络电容,Crowbar电路的输出端接到静止无功补偿装置的直流侧。
2.一种电网电压故障下阻抗源(Z源、准Z源、半准Z源等)直驱永磁风力发电系统的分段式无功补偿方法,其特征在于,步骤包括:
(1) 采集并网点实时数据,计算所需无功功率Q*
(2) 判断Q*是否小于等于第一阶段无功阀值Q1N
(3) 若Q*≤Q1N,阻抗源直驱永磁风力发电系统进入第一阶段无功补偿,无功功率仅由流入Crowbar电路的功率提供;
(4) 若Q*>Q1N,判断Q*是否小于等于第二阶段无功阀值Q2N
(5) 若Q*≤Q2N,阻抗源直驱永磁风力发电系统进入第二阶段无功补偿,无功功率由阻抗源逆变器和Crowbar电路提供;
(6) 若Q*>Q2N,阻抗源直驱永磁风力发电系统进入第三阶段无功补偿,无功功率由阻抗源逆变器、Crowbar电路和静止无功补偿器共同承担。
3.根据权利要求2所述的电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法,其特征在于,所述步骤(2)中第一阶段无功阀值Q1N由系统功率和电网电压跌落程度共同决定。
4.根据权利要求2所述的电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法,其特征在于,所述步骤(3)中第一阶段无功补偿具体包括如下步骤:
(1) 采集阻抗源逆变器实时数据;
(2) 令阻抗源逆变器q轴电流给定值为0,阻抗源逆变器不提供无功功率;
(3) 阻抗源逆变器d轴由一个转速外环和一个电流内环构成;
(4) 采集Crowbar电路和静止无功补偿器的实时数据;
(5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率根据Q*大小,经静止无功补偿器向电网提供无功;
(6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS1 *由系统功率和电网电压跌落程度决定。
5.根据权利要求2所述的电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法,其特征在于,所述步骤(4)中第二阶段无功阀值Q2N仅由系统功率决定。
6.根据权利要求2所述的电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法,其特征在于,所述步骤(5)中第二阶段无功补偿具体包括如下步骤:
(1) 采集阻抗源逆变器实时数据;
(2) 根据Q*和Q1N的值确定阻抗源逆变器q轴电流给定值iqZ2 *,阻抗源逆变器提供无功功率;
(3) 阻抗源逆变器d轴由一个电流环构成,根据Q*、Q1N和所需阻抗源逆变器提供的无功功率确定阻抗源逆变器d轴电流给定值idZ2 *
(4) 采集Crowbar电路和静止无功补偿器的实时数据;
(5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率全部转化为无功功率;
(6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS2 *由Q1N决定。
7.根据权利要求2所述的电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法,其特征在于,所述步骤(6)中第三阶段无功补偿具体包括如下步骤:
(1) 采集阻抗源逆变器实时数据;
(2) 根据Q1N和Q2N的值确定阻抗源逆变器q轴电流给定值iqZ3 *,流过阻抗源逆变器的功率全部转化为无功功率;
(3) 令阻抗源逆变器d轴电流给定值为0,阻抗源逆变器不提供有功功率;
(4) 采集Crowbar电路和静止无功补偿器的实时数据;
(5) 令Crowbar电路输入端电压UC1小于静止无功补偿器直流侧电压UCS,流入Crowbar电路的功率全部转化为无功功率;
(6) 令静止无功补偿器d轴电流给定值为0,静止无功补偿器不提供有功功率;
(7) 静止无功补偿器q轴由一个电流环构成,静止无功补偿器q轴电流给定值iqS3 *由Q*、Q1N和Q2N共同决定。
CN201810180995.2A 2018-03-06 2018-03-06 电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法 Expired - Fee Related CN108418243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810180995.2A CN108418243B (zh) 2018-03-06 2018-03-06 电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810180995.2A CN108418243B (zh) 2018-03-06 2018-03-06 电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法

Publications (2)

Publication Number Publication Date
CN108418243A true CN108418243A (zh) 2018-08-17
CN108418243B CN108418243B (zh) 2021-06-08

Family

ID=63130193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810180995.2A Expired - Fee Related CN108418243B (zh) 2018-03-06 2018-03-06 电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法

Country Status (1)

Country Link
CN (1) CN108418243B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922428A (zh) * 2021-09-28 2022-01-11 重庆海装风电工程技术有限公司 一种风力发电机组的无功输出控制方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447266A (zh) * 2011-08-23 2012-05-09 南京飓能电控自动化设备制造有限公司 基于dvr的风力发电机组低电压穿越支撑装置
CN103138277A (zh) * 2013-02-26 2013-06-05 贵州电网公司电网规划研究中心 一种风电场无功补偿控制方法
CN103795081A (zh) * 2014-01-27 2014-05-14 太原科技大学 直驱型风电系统低电压穿越的控制方法
CN105356520A (zh) * 2015-11-24 2016-02-24 上海电力学院 一种改善风电场低电压穿越能力的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447266A (zh) * 2011-08-23 2012-05-09 南京飓能电控自动化设备制造有限公司 基于dvr的风力发电机组低电压穿越支撑装置
CN103138277A (zh) * 2013-02-26 2013-06-05 贵州电网公司电网规划研究中心 一种风电场无功补偿控制方法
CN103795081A (zh) * 2014-01-27 2014-05-14 太原科技大学 直驱型风电系统低电压穿越的控制方法
CN105356520A (zh) * 2015-11-24 2016-02-24 上海电力学院 一种改善风电场低电压穿越能力的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李啸骢等: "基于Crowbar 保护的双馈风力发电机低电压控制策略研究", 《电力系统保护与控制》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922428A (zh) * 2021-09-28 2022-01-11 重庆海装风电工程技术有限公司 一种风力发电机组的无功输出控制方法和系统

Also Published As

Publication number Publication date
CN108418243B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN103715931A (zh) 多级转换器系统
Vijayakumar et al. Operation of inverter‐assisted wind‐driven slip‐ring induction generator for stand‐alone power supplies
Li et al. A modulated model predictive control scheme for the brushless doubly fed induction machine
Ahmadi et al. Voltage and frequency control in smart distribution systems in presence of DER using flywheel energy storage system
Karrari et al. Model validation of a high-speed flywheel energy storage system using power hardware-in-the-loop testing
CN108418243A (zh) 电网电压故障下阻抗源直驱永磁风力发电系统的分段式无功补偿方法
CN109962496A (zh) 一种基于高压直流输电的海上风电场集成拓扑设计方法
Kabat et al. Comparative analysis of fuzzy logic and synchronous reference frame controlled LVRT capability enhancement in wind energy system using DVR and STATCOM
Hachemi et al. Control of the power quality for a DFIG powered by multilevel inverters
CN108448974A (zh) 一种开关磁阻风力发电机高压变流系统
Sun et al. Analysis of a hybrid excitation brushless DC generator with an integrated shared-flux-path exciter
Wang et al. Model predictive control of matrix converter-based flywheel energy storage system
Elkomy et al. Enhancement of wind energy conversion systems active and reactive power control via flywheel energy storage systems integration
Mallik et al. Analysis of Self Excited Induction Generator for Standalone Micro-Hydro Scheme
Hmad et al. ROCOF Anti-islanding strategy based on frequency tracking observer for three phase DG inverter
Kumar et al. Comparison of Z-source EZ-source and TZ-source inverter systems for wind energy conversion
Mekki et al. Decoupling vector control and optimisation of PMSG-based wind energy system using adaptive type-1 and type-2 fuzzy logic control
Devabhaktuni et al. Modeling and analysis of wind turbine driven self-excited induction generator connected to grid interface with multilevel H-bridge inverter
Xu et al. Over‐current protection method for PMSM VSI with small DC‐link capacitor
Mohamed et al. Voltage Regulation Using a Driven-PMSG with Static Compensator
Okafor et al. Modelling and control of slip power recovery schemes for small hydro power stations
Patel et al. Power-Loss Ride-Through with Reduced Number of Voltage Sensors in a Cascaded H-Bridge Inverter fed Vector Controlled Induction Motor Drive
Li et al. Novel AC-Field Hybrid Excitation DC Generator with Spoke-Type Segmented-PMs Rotor
Knight et al. A cage rotor induction generator capable of supplying reactive power
Naidu et al. Cascaded Fuzzy Logic Algorithm for Multi-Functional Control of PMSG Based WECS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210608