CN108416756A - 一种基于机器学习的区域感知图像去噪方法 - Google Patents
一种基于机器学习的区域感知图像去噪方法 Download PDFInfo
- Publication number
- CN108416756A CN108416756A CN201810255379.9A CN201810255379A CN108416756A CN 108416756 A CN108416756 A CN 108416756A CN 201810255379 A CN201810255379 A CN 201810255379A CN 108416756 A CN108416756 A CN 108416756A
- Authority
- CN
- China
- Prior art keywords
- denoising
- image
- noise
- parameter
- preference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000010801 machine learning Methods 0.000 title claims abstract description 21
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 26
- 238000012360 testing method Methods 0.000 claims abstract description 14
- 238000000605 extraction Methods 0.000 claims abstract description 6
- 239000013598 vector Substances 0.000 claims description 15
- 238000012549 training Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000007637 random forest analysis Methods 0.000 claims description 5
- 235000013399 edible fruits Nutrition 0.000 claims description 3
- 101100379079 Emericella variicolor andA gene Proteins 0.000 claims 1
- 238000012545 processing Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 241000208340 Araliaceae Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及一种基于机器学习的区域感知图像去噪方法,包括以下步骤:1、对噪声图像采用加噪标准差σ和k种缩小率缩小后的标准差rj×σ分别作为去噪参数,获得不同去噪结果集;2、将采用σ分别与采用rj×σ的去噪结果相结合,获得最优缩小率和图像块对于采用σ和这两种去噪参数的偏好;3、对噪声图像和采用两种去噪参数的去噪结果进行特征提取;4、将获得的偏好特征集作为机器学习算法的特征集,学习获得图像块的去噪参数偏好模型;5、采用去噪参数偏好模型对测试集中噪声图像进行预测,获得每个图像块预测的偏好概率值;6、通过阈值处理并结合两种去噪参数的去噪结果,获得最终的去噪结果。该方法能够有效提高图像去噪方法的性能。
Description
技术领域
本发明涉及图像和视频处理以及计算机视觉领域,特别是一种基于机器学习的区域感知图像去噪方法。
背景技术
人类依赖感官来接收外界传递的信息。步入数字图像时代,图像信息是人类接触最多的信息种类之一。图像在获取、传输、存储的过程中可能受到各种噪声信号的干扰,例如低亮度导致的传感器噪声、相机传感器中失效的像素等。图像去噪是数字图像处理中的一个重要课题。噪声图像在实际应用中普遍存在。噪声不仅对人眼视觉造成干扰,而且严重影响图像分析、图像理解和图像处理算法的性能,如:图像分割、图像显著性检测、图像识别、图像检索等。
研究者们基于空间位置关系、图像冗余特性、变换域等提出了众多的去噪算法。早期一些简单的去噪方法利用局部空间位置信息,如高斯去噪利用领域像素采取加权平均方式得到去噪结果;双边滤波利用领域几何空间距离和像素差值得到权重函数。
Dabov等人提出一种基于块匹配的三维联合滤波去噪算法(BM3D)。该算法分为两个阶段,第一个阶段通过块匹配得到三维数组,然后利用联合协同滤波处理三维数组,逆变换后得到初始的去噪结果。第二个阶段利用初始的去噪结果,得到更为精准的块匹配结果,利用联合维纳滤波得到最终的去噪结果。BM3D算法是目前公认的最好的去噪算法之一。Kong等人提出一种自动去噪方法,其通过提出无参考的图像质量评估方法,然后使用BM3D算法对噪声图像实现迭代式的计算,以质量评估最佳的去噪结果作为最终的去噪结果。这种算法尽管能实现盲去噪,但其采取的策略是迭代式运行去噪算法的多种去噪参数,再取最好的去噪结果,在时间性能上有较大的影响。Zoran等人利用自然图像块的先验信息,最大化图像块似然概率。Gu等人提出利用加权的核范数最小化提出去噪模型。Xu等人利用高斯混合模型学习算法从自然图像中学习非局部自相似性先验,提出基于块组的先验去噪算法。
图像去噪的目的是将噪声从噪声图像中分离,使恢复的图像尽可能的接近原始图像。目前先进的图像去噪算法大多数不是盲去噪,需要提供噪声图像的噪声幅度估计值(在实验时,一般使用噪声图像的加噪标准差)作为算法的参数。图像信息复杂多样化,一幅图像中的不同区域的图像信息差异大,有些区域包含复杂的纹理,另一些区域则是平滑的区域。目前已有的图像去噪算法都是使用相同参数对整幅图像进行去噪,但使用相同参数无法适用于图像中的全部区域。
发明内容
本发明的目的在于提供一种基于机器学习的区域感知图像去噪方法,该方法能够有效提高图像去噪方法的性能。
为实现上述目的,本发明采用的技术方案是:一种基于机器学习的区域感知图像去噪方法,包括以下步骤:
步骤S1:对训练集中不同噪声幅度下的噪声图像采用加噪标准差σ和k种缩小率缩小后的标准差rj×σ分别作为去噪参数,j=1,2,...,k,获得不同去噪参数的去噪结果集;
步骤S2:将各噪声图像分别划分为互不重叠、n×n大小的图像块,并将每个噪声幅度下采用加噪标准差σ为去噪参数的去噪结果分别与采用缩小率缩小后的标准差rj×σ为去噪参数的去噪结果相结合,获得每个噪声幅度的最优缩小率和图像块对于采用加噪标准差σ和最优缩小率缩小后的标准差这两种去噪参数的偏好;
步骤S3:对噪声图像和采用σ和这两种去噪参数的去噪结果进行特征提取,获得图像块的偏好特征集;
步骤S4:将图像块的偏好特征集作为机器学习算法的特征集,通过机器学习算法,获得图像块的去噪参数偏好模型;
步骤S5:采用图像块的去噪参数偏好模型对测试集中每幅噪声图像进行预测,获得测试集中噪声图像的每个图像块预测的偏好概率值;
步骤S6:对得到的偏好概率值做阈值处理,并结合σ和这两种去噪参数的去噪结果,获得最终的去噪结果。
进一步地,所述步骤S1中,对不同噪声幅度下的噪声图像采用加噪标准差σ和7种缩小率R={0.65,0.7,0.75,0.8,0.85,0.9,0.95}缩小后的标准差rj×σ分别作为去噪参数,其中rj∈R,采用基于块匹配的三维联合滤波去噪算法BM3D获得不同去噪参数的去噪结果集。
进一步地,所述步骤S2中,获得每个噪声幅度的最优缩小率和图像块对于采用加噪标准差σ和最优缩小率缩小后的标准差这两种去噪参数的偏好,包括以下步骤:
步骤S21:将每个噪声幅度下采用加噪标准差σ为去噪参数的去噪结果分别与采用缩小率缩小后的标准差rj×σ为去噪参数的去噪结果相结合,结合过程中以不重叠的大小为n×n的滑动窗口为单位进行:首先将噪声图像分别划分为互不重叠、n×n大小的图像块{Ki|i=1,2,...,m},其中Ki表示第i个图像块,m表示图像块的总数,然后分别计算以σ作为去噪参数的去噪结果中图像块Ki与原始图像相同位置的图像块之间块内所有像素的差值的绝对值之和Δi,以及以rj×σ作为去噪参数的去噪结果中图像块Ki与原始图像相同位置的图像块之间块内所有像素的差值的绝对值之和Δij;对于噪声图像中所有的图像块,取Δi与Δij两者中较小值对应的去噪结果进行结合,组合成一张结合图像,并将该去噪结果对应的去噪参数记录为该图像块的去噪参数偏好;由于j有k种取值,因此对于每一幅噪声图像得到k张结合图像,从而获得每个噪声幅度下采用加噪标准差σ与k种缩小率缩小后的标准差rj×σ作为去噪参数的结合图像和不同的缩小率rj下图像块对于这两种去噪参数的偏好;
步骤S22:对于步骤S21中得到的每幅噪声图像对应的k张结合图像,计算得到k个PSNR值,然后对于训练集中每个噪声幅度分别计算该噪声幅度对应的所有噪声图像的k种结合图像的平均PSNR值,接着取得到的k个平均PSNR值中最大的平均PSNR值对应的结合图像所使用的缩小率作为该噪声幅度的最优的缩小率
进一步地,所述步骤S3中,对噪声图像和采用σ和这两种去噪参数的去噪结果进行特征提取,获得图像块的偏好特征集,具体方法为:
对于噪声图像中每个不重叠的n×n的图像块,通过计算以下三部分构成每个图像块的特征向量:
从去噪参数分别为σ和时BM3D算法得到的去噪结果中获得第一部分:从去噪参数为σ的去噪结果中n×n的滑动窗口的图像块得到n×n个像素值,由此构成Fa={F1,F2,...,Fn×n};相同的,从去噪参数为的去噪结果中,得到Fb={Fn×n+1,Fn×n+2,...,F2×n×n};
从噪声图像和去噪参数分别为σ和的去噪结果的差值图像D和中获得第二部分:对于n×n的滑动窗口,由差值图像D得到n×n个像素值,由此构成Fc={F2×n×n+1,F2×n×n+2,...,F3×n×n};相同的,从差值图像D中,得到Fd={F3×n×n+1,F3×n×n+2,...,F4×n×n};
第三部分是分别计算Fa、Fb、Fc、Fd的方差,得到Fe={F4×n×n+1,F4×n×n+2,F4×n×n+3,F4×n×n+4},最终组成特征向量FV={Fa,Fb,Fc,Fd,Fe};
首先计算去噪参数分别为σ和的去噪结果的差值,然后对每个像素的差值取绝对值,接着对每个图像块计算对应位置的差值绝对值之和,最后选取差值绝对值之和最大的N块作为每幅噪声图像的图像块的偏好特征集,包括去噪参数偏好和特征向量。
进一步地,训练集的图像块的偏好特征集包含两部分,一部分是步骤S2计算得到的去噪参数偏好,另一部分是步骤S3计算得到的特征向量,将每个图像块的特征向量和去噪参数偏好分别作为随机森林分类方法的训练数据和训练标签,学习得到图像块的去噪参数偏好模型。
进一步地,所述步骤S5中,采用图像块的去噪参数偏好模型对测试集中每幅噪声图像进行预测,包括以下步骤:
步骤S51:采用去噪参数偏好模型对测试集的每个图像块进行预测,测试集中每幅噪声图像的任意图像块Ki的偏好概率由所述随机森林分类方法训练得到的去噪参数偏好模型预测得到的投票数量决定,图像块Ki对去噪参数为σ的去噪结果的偏好概率的计算公式如下:
pi=Ai/(Ai+Bi)
其中,pi表示图像块Ki对去噪参数为σ的去噪结果的偏好概率,Ai表示去噪参数偏好模型预测图像块Ki偏好噪声参数为σ的去噪结果的投票数量,Bi表示去噪参数偏好模型预测图像块Ki偏好噪声参数为的去噪结果的投票数量;
图像块Ki对去噪参数为的去噪结果的偏好概率
步骤S52:对于每幅噪声图像,记录该噪声图像中所有图像块对去噪参数为σ和的去噪结果的偏好概率的最大值和最小值,记为pmax、pmin和
进一步地,所述步骤S6中,对得到的偏好概率值做阈值处理,并结合采用σ和这两种去噪参数的去噪结果,获得最终的去噪结果,包括以下步骤:
步骤S61:对每幅噪声图像中图像块对噪声参数为σ的偏好概率P={p1,p2,…,pi,...,pm}做阈值处理,m为图像块的总数,计算公式如下:
其中,λ表示阈值;
相同的,对每幅噪声图像中图像块对噪声参数为的偏好概率做相同的阈值处理;
步骤S62:由偏好概率计算得到最终的去噪结果中的每个图像块,计算公式如下:
其中,Xi为最终的去噪结果中的第i个图像块,α和β分别为采用加噪标准差σ和作为去噪参数进行去噪的去噪结果的第i个图像块。
相较于现有技术,本发明的有益效果是:本发明基于不同图像区域偏好不同去噪参数的发现,在不同的图像区域融合不同去噪参数的去噪结果,通过对图像区域的特征提取,训练的机器学习模型能准确的预测不同的图像区域对去噪参数的偏好,得到的去噪结果比原始方法能够更好地保留图像纹理细节,有效地提高了图像去噪方法的性能,可广泛应用于图像和视频处理、计算机视觉等领域。
附图说明
图1是本发明方法的流程框图。
图2是本发明实施例中步骤S2中的示例图。
图3是本发明实施例中步骤S3中的示例图。
图4是本发明实施例中步骤S4中的示例图。
图5是本发明实施例中步骤S5中的示例图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细说明。
本发明提供一种基于机器学习的区域感知图像去噪方法,如图1所示,包括以下步骤:
步骤S1:对训练集中不同噪声幅度下的噪声图像采用加噪标准差σ和k种缩小率缩小后的标准差rj×σ分别作为去噪参数,j=1,2,...,k,获得不同去噪参数的去噪结果集。
在本实施例中,对不同噪声幅度下的噪声图像采用加噪标准差σ和7种缩小率R={0.65,0.7,0.75,0.8,0.85,0.9,0.95}缩小后的标准差rj×σ分别作为去噪参数,其中rj∈R,采用基于块匹配的三维联合滤波去噪算法BM3D获得不同去噪参数的去噪结果集。
步骤S2:将各噪声图像分别划分为互不重叠、n×n大小的图像块,如图2所示,将每个噪声幅度下采用加噪标准差σ为去噪参数的去噪结果分别与采用缩小率缩小后的标准差rj×σ为去噪参数的去噪结果相结合,获得每个噪声幅度的最优缩小率和图像块对于采用加噪标准差σ和最优缩小率缩小后的标准差这两种去噪参数的偏好。具体包括以下步骤:
步骤S21:将每个噪声幅度下采用加噪标准差σ为去噪参数的去噪结果(如图2(c))分别与采用缩小率缩小后的标准差rj×σ为去噪参数的去噪结果(如图2(d))相结合,结合过程中以不重叠的大小为n×n的滑动窗口为单位进行:首先将噪声图像分别划分为互不重叠、n×n大小的图像块{Ki|i=1,2,...,m},其中Ki表示第i个图像块,m表示图像块的总数,然后分别计算以σ作为去噪参数的去噪结果中图像块Ki与原始图像相同位置的图像块之间块内所有像素的差值的绝对值之和Δi,以及以rj×σ作为去噪参数的去噪结果中图像块Ki与原始图像相同位置的图像块之间块内所有像素的差值的绝对值之和Δij;对于噪声图像中所有的图像块,取Δi与Δij两者中较小值对应的去噪结果进行结合(如图2(e),黑色部分代表偏好去噪参数σ,白色部分代表偏好去噪参数rj×σ),组合成一张结合图像(如图2(f)),并将该去噪结果对应的去噪参数记录为该图像块的去噪参数偏好;由于j有k种取值,因此对于每一幅噪声图像得到k张结合图像,从而获得每个噪声幅度下采用加噪标准差σ与k种缩小率缩小后的标准差rj×σ作为去噪参数的结合图像和不同的缩小率rj下图像块对于这两种去噪参数的偏好。在本实施例中,n的值取3。
步骤S22:对于步骤S21中得到的每幅噪声图像对应的k张结合图像,计算得到k个PSNR值,然后对于训练集中每个噪声幅度分别计算该噪声幅度对应的所有噪声图像的k种结合图像的平均PSNR值,接着取得到的k个平均PSNR值中最大的平均PSNR值对应的结合图像所使用的缩小率作为该噪声幅度的最优的缩小率
步骤S3:对噪声图像和采用σ和这两种去噪参数的去噪结果进行特征提取,获得图像块的偏好特征集。具体方法为:
对于噪声图像中每个不重叠的n×n的图像块,如图3所示,通过计算以下三部分构成每个图像块的特征向量:
从去噪参数分别为σ和时BM3D算法得到的去噪结果(如图3的去噪结果1和2)中获得第一部分:从去噪参数为σ的去噪结果(如图3的去噪结果1)中n×n的滑动窗口的图像块得到n×n个像素值,由此构成Fa={F1,F2,...,Fn×n};相同的,从去噪参数为的去噪结果(如图3的去噪结果2)中,得到Fb={Fn×n+1,Fn×n+2,...,F2×n×n}。由于本实施例中n取3,因此,相应的Fa={F1,F2,...,F9},Fb={F10,F11,...,F18}。
从噪声图像和去噪参数分别为σ和的去噪结果的差值图像D和(如图3的差值图像D和)中获得第二部分:对于n×n的滑动窗口,由差值图像D得到n×n个像素值,由此构成Fc={F2×n×n+1,F2×n×n+2,...,F3×n×n};相同的,从差值图像中,得到Fd={F3×n×n+1,F3×n×n+2,...,F4×n×n}。由于本实施例中n取3,因此,相应的Fc={F19,F20,...,F27},Fd={F28,F29,...,F36}。
第三部分是分别计算Fa、Fb、Fc、Fd的方差,得到Fe={F4×n×n+1,F4×n×n+2,F4×n×n+3,F4×n×n+4},最终组成特征向量FV={Fa,Fb,Fc,Fd,Fe}。由于本实施例中n取3,因此,相应的Fe={F37,F38,F39,F40}。
首先计算去噪参数分别为σ和的去噪结果的差值,然后对每个像素的差值取绝对值,接着对每个图像块计算对应位置的差值绝对值之和,最后选取差值绝对值之和最大的N块(N=200)作为每幅噪声图像的图像块的偏好特征集,包括去噪参数偏好和特征向量。
步骤S4:如图4所示,将图像块的偏好特征集作为机器学习算法的特征集,通过机器学习算法,获得图像块的去噪参数偏好模型。
训练集的图像块的偏好特征集包含两部分,一部分是步骤S2计算得到的去噪参数偏好,另一部分是步骤S3计算得到的特征向量,将每个图像块的特征向量和去噪参数偏好分别作为随机森林分类方法的训练数据和训练标签,学习得到图像块的去噪参数偏好模型。
步骤S5:如图5所示,采用图像块的去噪参数偏好模型对测试集中每幅噪声图像进行预测,获得测试集中噪声图像的每个图像块预测的偏好概率值。具体包括以下步骤:
步骤S51:采用去噪参数偏好模型对测试集的每个图像块进行预测,测试集中每幅噪声图像的任意图像块Ki的偏好概率由所述随机森林分类方法训练得到的去噪参数偏好模型预测得到的投票数量决定,图像块Ki对去噪参数为σ的去噪结果的偏好概率的计算公式如下:
pi=Ai/(Ai+Bi)
其中,pi表示图像块Ki对去噪参数为σ的去噪结果的偏好概率,Ai表示去噪参数偏好模型预测图像块Ki偏好噪声参数为σ的去噪结果的投票数量,Bi表示去噪参数偏好模型预测图像块Ki偏好噪声参数为的去噪结果的投票数量;
图像块Ki对去噪参数为的去噪结果的偏好概率
步骤S52:对于每幅噪声图像,记录该噪声图像中所有图像块对去噪参数为σ和的去噪结果的偏好概率的最大值和最小值,记为pmax、pmin和
步骤S6:对得到的偏好概率值做阈值处理,并结合σ和这两种去噪参数的去噪结果,获得最终的去噪结果。具体包括以下步骤:
步骤S61:为了更好的融合两种去噪结果,对每幅噪声图像中图像块对噪声参数为σ的偏好概率P={p1,p2,...,pi,...,pm}做阈值处理,m为图像块的总数,计算公式如下:
其中,λ表示阈值;在本实施例中,λ=0.8;
相同的,对每幅噪声图像中图像块对噪声参数为的偏好概率做相同的阈值处理;
步骤S62:由偏好概率计算得到最终的去噪结果中的每个图像块,计算公式如下:
其中,Xi为最终的去噪结果中的第i个图像块,α和β分别为采用加噪标准差σ和作为去噪参数进行去噪的去噪结果的第i个图像块。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。
Claims (7)
1.一种基于机器学习的区域感知图像去噪方法,其特征在于,包括以下步骤:
步骤S1:对训练集中不同噪声幅度下的噪声图像采用加噪标准差σ和k种缩小率缩小后的标准差rj×σ分别作为去噪参数,j=1,2,...,k,获得不同去噪参数的去噪结果集;
步骤S2:将各噪声图像分别划分为互不重叠、n×n大小的图像块,并将每个噪声幅度下采用加噪标准差σ为去噪参数的去噪结果分别与采用缩小率缩小后的标准差rj×σ为去噪参数的去噪结果相结合,获得每个噪声幅度的最优缩小率和图像块对于采用加噪标准差σ和最优缩小率缩小后的标准差这两种去噪参数的偏好;
步骤S3:对噪声图像和采用σ和这两种去噪参数的去噪结果进行特征提取,获得图像块的偏好特征集;
步骤S4:将图像块的偏好特征集作为机器学习算法的特征集,通过机器学习算法,获得图像块的去噪参数偏好模型;
步骤S5:采用图像块的去噪参数偏好模型对测试集中每幅噪声图像进行预测,获得测试集中噪声图像的每个图像块预测的偏好概率值;
步骤S6:对得到的偏好概率值做阈值处理,并结合σ和这两种去噪参数的去噪结果,获得最终的去噪结果。
2.根据权利要求1所述的一种基于机器学习的区域感知图像去噪方法,其特征在于,所述步骤S1中,对不同噪声幅度下的噪声图像采用加噪标准差σ和7种缩小率R={0.65,0.7,0.75,0.8,0.85,0.9,0.95}缩小后的标准差rj×σ分别作为去噪参数,其中rj∈R,采用基于块匹配的三维联合滤波去噪算法BM3D获得不同去噪参数的去噪结果集。
3.根据权利要求1或2所述的一种基于机器学习的区域感知图像去噪方法,其特征在于,所述步骤S2中,获得每个噪声幅度的最优缩小率和图像块对于采用加噪标准差σ和最优缩小率缩小后的标准差这两种去噪参数的偏好,包括以下步骤:
步骤S21:将每个噪声幅度下采用加噪标准差σ为去噪参数的去噪结果分别与采用缩小率缩小后的标准差rj×σ为去噪参数的去噪结果相结合,结合过程中以不重叠的大小为n×n的滑动窗口为单位进行:首先将噪声图像分别划分为互不重叠、n×n大小的图像块{Ki|i=1,2,...,m},其中Ki表示第i个图像块,m表示图像块的总数,然后分别计算以σ作为去噪参数的去噪结果中图像块Ki与原始图像相同位置的图像块之间块内所有像素的差值的绝对值之和Δi,以及以rj×σ作为去噪参数的去噪结果中图像块Ki与原始图像相同位置的图像块之间块内所有像素的差值的绝对值之和Δij;对于噪声图像中所有的图像块,取Δi与Δij两者中较小值对应的去噪结果进行结合,组合成一张结合图像,并将该去噪结果对应的去噪参数记录为该图像块的去噪参数偏好;由于j有k种取值,因此对于每一幅噪声图像得到k张结合图像,从而获得每个噪声幅度下采用加噪标准差σ与k种缩小率缩小后的标准差rj×σ作为去噪参数的结合图像和不同的缩小率rj下图像块对于这两种去噪参数的偏好;
步骤S22:对于步骤S21中得到的每幅噪声图像对应的k张结合图像,计算得到k个PSNR值,然后对于训练集中每个噪声幅度分别计算该噪声幅度对应的所有噪声图像的k种结合图像的平均PSNR值,接着取得到的k个平均PSNR值中最大的平均PSNR值对应的结合图像所使用的缩小率作为该噪声幅度的最优的缩小率
4.根据权利要求3所述的一种基于机器学习的区域感知图像去噪方法,其特征在于,所述步骤S3中,对噪声图像和采用σ和这两种去噪参数的去噪结果进行特征提取,获得图像块的偏好特征集,具体方法为:
对于噪声图像中每个不重叠的n×n的图像块,通过计算以下三部分构成每个图像块的特征向量:
从去噪参数分别为σ和时BM3D算法得到的去噪结果中获得第一部分:从去噪参数为σ的去噪结果中n×n的滑动窗口的图像块得到n×n个像素值,由此构成Fa={F1,F2,...,Fn×n};相同的,从去噪参数为的去噪结果中,得到Fb={Fn×n+1,Fn×n+2,...,F2×n×n};
从噪声图像和去噪参数分别为σ和的去噪结果的差值图像D和中获得第二部分:对于n×n的滑动窗口,由差值图像D得到n×n个像素值,由此构成Fc={F2×n×n+1,F2×n×n+2,...,F3×n×n};相同的,从差值图像中,得到Fd={F3×n×n+1,F3×n×n+2,...,F4×n×n};
第三部分是分别计算Fa、Fb、Fc、Fd的方差,得到Fe={F4×n×n+1,F4×n×n+2,F4×n×n+3,F4×n×n+4},最终组成特征向量FV={Fa,Fb,Fc,Fd,Fe};
首先计算去噪参数分别为σ和的去噪结果的差值,然后对每个像素的差值取绝对值,接着对每个图像块计算对应位置的差值绝对值之和,最后选取差值绝对值之和最大的N块作为每幅噪声图像的图像块的偏好特征集,包括去噪参数偏好和特征向量。
5.根据权利要求4所述的一种基于机器学习的区域感知图像去噪方法,其特征在于,训练集的图像块的偏好特征集包含两部分,一部分是步骤S2计算得到的去噪参数偏好,另一部分是步骤S3计算得到的特征向量,将每个图像块的特征向量和去噪参数偏好分别作为随机森林分类方法的训练数据和训练标签,学习得到图像块的去噪参数偏好模型。
6.根据权利要求5所述的一种基于机器学习的区域感知图像去噪方法,其特征在于,所述步骤S5中,采用图像块的去噪参数偏好模型对测试集中每幅噪声图像进行预测,包括以下步骤:
步骤S51:采用去噪参数偏好模型对测试集的每个图像块进行预测,测试集中每幅噪声图像的任意图像块Ki的偏好概率由所述随机森林分类方法训练得到的去噪参数偏好模型预测得到的投票数量决定,图像块Ki对去噪参数为σ的去噪结果的偏好概率的计算公式如下:
pi=Ai/(Ai+Bi)
其中,pi表示图像块Ki对去噪参数为σ的去噪结果的偏好概率,Ai表示去噪参数偏好模型预测图像块Ki偏好噪声参数为σ的去噪结果的投票数量,Bi表示去噪参数偏好模型预测图像块Ki偏好噪声参数为的去噪结果的投票数量;
图像块Ki对去噪参数为的去噪结果的偏好概率
步骤S52:对于每幅噪声图像,记录该噪声图像中所有图像块对去噪参数为σ和的去噪结果的偏好概率的最大值和最小值,记为pmax、pmin和
7.根据权利要求6所述的一种基于机器学习的区域感知图像去噪方法,其特征在于,所述步骤S6中,对得到的偏好概率值做阈值处理,并结合采用σ和这两种去噪参数的去噪结果,获得最终的去噪结果,包括以下步骤:
步骤S61:对每幅噪声图像中图像块对噪声参数为σ的偏好概率P={p1,p2,...,pi,...,pm}做阈值处理,m为图像块的总数,计算公式如下:
其中,λ表示阈值;
相同的,对每幅噪声图像中图像块对噪声参数为的偏好概率做相同的阈值处理;
步骤S62:由偏好概率计算得到最终的去噪结果中的每个图像块,计算公式如下:
其中,Xi为最终的去噪结果中的第i个图像块,α和β分别为采用加噪标准差σ和作为去噪参数进行去噪的去噪结果的第i个图像块。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810255379.9A CN108416756B (zh) | 2018-03-26 | 2018-03-26 | 一种基于机器学习的区域感知图像去噪方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810255379.9A CN108416756B (zh) | 2018-03-26 | 2018-03-26 | 一种基于机器学习的区域感知图像去噪方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108416756A true CN108416756A (zh) | 2018-08-17 |
CN108416756B CN108416756B (zh) | 2021-11-02 |
Family
ID=63133479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810255379.9A Expired - Fee Related CN108416756B (zh) | 2018-03-26 | 2018-03-26 | 一种基于机器学习的区域感知图像去噪方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108416756B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110889803A (zh) * | 2018-09-07 | 2020-03-17 | 松下电器(美国)知识产权公司 | 信息处理方法、信息处理装置及记录介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3580947B2 (ja) * | 1996-05-14 | 2004-10-27 | 大日本スクリーン製造株式会社 | 画像のノイズ量判別装置およびノイズ量判別方法 |
CN103077506A (zh) * | 2013-03-06 | 2013-05-01 | 西安电子科技大学 | 结合局部和非局部的自适应图像去噪方法 |
CN105787892A (zh) * | 2016-02-22 | 2016-07-20 | 浙江传媒学院 | 一种基于机器学习的蒙特卡洛噪声去除方法 |
CN105894469A (zh) * | 2016-03-31 | 2016-08-24 | 福州大学 | 基于外部块自编码学习和内部块聚类的去噪方法 |
CN105913427A (zh) * | 2016-04-12 | 2016-08-31 | 福州大学 | 一种基于机器学习的噪声图像显著性检测方法 |
CN105913383A (zh) * | 2016-03-28 | 2016-08-31 | 河海大学常州校区 | 基于图像块先验估计混合框架的图像降噪方法 |
-
2018
- 2018-03-26 CN CN201810255379.9A patent/CN108416756B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3580947B2 (ja) * | 1996-05-14 | 2004-10-27 | 大日本スクリーン製造株式会社 | 画像のノイズ量判別装置およびノイズ量判別方法 |
CN103077506A (zh) * | 2013-03-06 | 2013-05-01 | 西安电子科技大学 | 结合局部和非局部的自适应图像去噪方法 |
CN105787892A (zh) * | 2016-02-22 | 2016-07-20 | 浙江传媒学院 | 一种基于机器学习的蒙特卡洛噪声去除方法 |
CN105913383A (zh) * | 2016-03-28 | 2016-08-31 | 河海大学常州校区 | 基于图像块先验估计混合框架的图像降噪方法 |
CN105894469A (zh) * | 2016-03-31 | 2016-08-24 | 福州大学 | 基于外部块自编码学习和内部块聚类的去噪方法 |
CN105913427A (zh) * | 2016-04-12 | 2016-08-31 | 福州大学 | 一种基于机器学习的噪声图像显著性检测方法 |
Non-Patent Citations (4)
Title |
---|
ANISH MITTAL ET AL.: "Automatic parameter prediction for image denoising algorithms using perceptual quality feature", 《HUMAN VISION AND ELECTRONIC IMAGING》 * |
HUANJING YUE ET AL.: "Image denoising by exploring external and internal correlations", 《IEEE TRANSACTIONS ON IMAGE PROCESSING》 * |
HUIMING LI: "Deep learning for image denoising", 《INTERNATIONAL JOURNAL OF SIGNAL PROCESSING,IMAGE PROCESSING AND PATTERN RECOGNITION》 * |
方帅等: "基于噪声水平估计的图像盲去噪", 《模式识别与人工智能》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110889803A (zh) * | 2018-09-07 | 2020-03-17 | 松下电器(美国)知识产权公司 | 信息处理方法、信息处理装置及记录介质 |
Also Published As
Publication number | Publication date |
---|---|
CN108416756B (zh) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021217643A1 (zh) | 红外图像处理方法、装置及可移动平台 | |
CN105657402B (zh) | 一种深度图恢复方法 | |
CN110232670B (zh) | 一种基于高低频分离的图像视觉效果增强的方法 | |
CN111260738A (zh) | 基于相关滤波和自适应特征融合的多尺度目标跟踪方法 | |
Jia et al. | Image denoising via sparse representation over grouped dictionaries with adaptive atom size | |
CN105913404A (zh) | 基于帧累积的低照度成像方法 | |
CN103077506A (zh) | 结合局部和非局部的自适应图像去噪方法 | |
CN108830829B (zh) | 联合多种边缘检测算子的无参考质量评价算法 | |
CN110351453A (zh) | 一种计算机视频数据处理方法 | |
CN114897728A (zh) | 图像增强方法、装置、终端设备以及存储介质 | |
CN107944497A (zh) | 基于主成分分析的图像块相似性度量方法 | |
CN102231844A (zh) | 基于结构相似度和人眼视觉的视频图像融合性能评价方法 | |
CN115409872B (zh) | 一种水下摄像机图像优化方法 | |
CN116385281A (zh) | 一种基于真实噪声模型与生成对抗网络的遥感图像去噪方法 | |
CN109978928B (zh) | 一种基于加权投票的双目视觉立体匹配方法及其系统 | |
CN115131229A (zh) | 图像降噪、滤波数据处理方法、装置和计算机设备 | |
CN111539985A (zh) | 一种融合多特征的自适应运动目标跟踪方法 | |
CN107169941A (zh) | 一种视频去噪方法 | |
CN113781375A (zh) | 一种基于多曝光融合的车载视觉增强方法 | |
CN108416756A (zh) | 一种基于机器学习的区域感知图像去噪方法 | |
Wang et al. | Event-guided attention network for low light image enhancement | |
CN115908155A (zh) | Nsst域结合gan及尺度相关系数的低照度图像增强及去噪方法 | |
CN108198140A (zh) | 基于ncsr模型的三维协同滤波去噪方法 | |
CN114519832A (zh) | 基于仿射逆变换模型的视频全局运动补偿方法 | |
CN113628225A (zh) | 基于结构相似度和图像区域块的模糊c均值图像分割方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20211102 |
|
CF01 | Termination of patent right due to non-payment of annual fee |