CN108415064B - A Polarization System of Diamond Color Core Nuclei - Google Patents
A Polarization System of Diamond Color Core Nuclei Download PDFInfo
- Publication number
- CN108415064B CN108415064B CN201810075893.4A CN201810075893A CN108415064B CN 108415064 B CN108415064 B CN 108415064B CN 201810075893 A CN201810075893 A CN 201810075893A CN 108415064 B CN108415064 B CN 108415064B
- Authority
- CN
- China
- Prior art keywords
- diamond
- control system
- microwave
- color center
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/32—Measuring polarisation of particles
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种金刚石色心核子的极化系统,该系统包括光学操控系统、微波操控系统、磁场操控系统、控制与数据采集系统。其中,光学操控系统、微波操控系统及磁场操控系统相互独立,通过控制与数据采集系统及相关元器件连接,组成金刚石色心核子极化系统。通过激光、微波、磁场、射频多物理场按设计时序作用于金刚石的方法,高灵敏、快速地减弱金刚石色心与其周围核子的相互作用,可实现核子高极化效率,提高量子测量用退相干时间,为基于金刚石色心的量子计算、量子传感、量子传输等技术提供支撑。
The invention discloses a polarization system of a diamond color core nucleus. The system includes an optical control system, a microwave control system, a magnetic field control system, and a control and data acquisition system. Among them, the optical control system, the microwave control system and the magnetic field control system are independent of each other, and are connected with the data acquisition system and related components to form a diamond color core nuclear polarization system. Through the method of laser, microwave, magnetic field, and radio frequency multi-physics acting on diamond according to the design sequence, the interaction between the diamond color center and its surrounding nucleons can be highly sensitively and quickly weakened, which can achieve high nuclear polarization efficiency and improve decoherence for quantum measurement. Time provides support for technologies such as quantum computing, quantum sensing, and quantum transmission based on diamond color centers.
Description
技术领域technical field
本发明涉及量子计算、量子精密测量技术领域,具体涉及一种金刚石色心核子的极化系统。The invention relates to the technical fields of quantum computing and quantum precision measurement, in particular to a polarization system of diamond color core nuclei.
背景技术Background technique
金刚石色心核子极化是利用金刚石色心进行量子精密测量的基础。高浓度金刚石材料中,金刚石色心与大量13C原子及NV0、P1等多种色心有着杂乱的耦合现象。已有的金刚石色心核自旋极化系统主要有通过500高斯强磁场状态下色心激发态能级反交叉(ESLAC)极化系统、通过微波射频谐振场及偏置磁场操控的双共振极化系统。ESLAC极化系统体积大、成本高,双共振系统核子极化率低。The nuclear polarization of the diamond color center is the basis of quantum precision measurement using the diamond color center. In high-concentration diamond materials, the diamond color center has a chaotic coupling phenomenon with a large number of 13 C atoms, NV 0 , P 1 and other color centers. Existing diamond color core core spin polarization systems mainly include a color center excited state energy level anti-crossing (ESLAC) polarization system under a strong magnetic field of 500 gauss, a double resonance pole controlled by a microwave radio frequency resonance field and a bias magnetic field. system. The ESLAC polarization system is bulky and expensive, and the nuclear polarizability of the dual resonance system is low.
发明内容SUMMARY OF THE INVENTION
根据本发明的一个实施例,提供了一种金刚石色心核子的极化系统,该系统包括:金刚石样品、光学操控系统,微波操控系统,磁场操控系统,控制与数据采集系统。其中,According to an embodiment of the present invention, a polarization system for diamond color core nuclei is provided. The system includes: a diamond sample, an optical manipulation system, a microwave manipulation system, a magnetic field manipulation system, and a control and data acquisition system. in,
所述金刚石样品经过特殊工艺加工,由固定装置固定于平台;The diamond sample is processed by a special process and fixed on the platform by a fixing device;
所述光学操控系统以金刚石样品为核心,设置于样品前后,将调制好的激光导入样品且收集与样品作用后产生的荧光信号;The optical manipulation system takes the diamond sample as the core, is arranged before and after the sample, introduces the modulated laser into the sample and collects the fluorescent signal generated after interacting with the sample;
所述的微波操控系统以金刚石样品为核心,设置于样品两侧,将调制好的微波信号导入金刚石样品,微波操控系统与光学操控系统相互独立,彼此之间互不影响;The microwave control system takes the diamond sample as the core and is arranged on both sides of the sample, and the modulated microwave signal is introduced into the diamond sample. The microwave control system and the optical control system are independent of each other and do not affect each other;
所述的磁场操控系统将金刚石样品包含在其装置内中心区域,光学操控系统与微波操控系统部分器件包含于磁场操控系统中;The magnetic field manipulation system includes the diamond sample in the central area of the device, and some components of the optical manipulation system and the microwave manipulation system are included in the magnetic field manipulation system;
所述的控制与数据采集系统与上述光学操控系统和微波操控系统均有连接,统一调控上述系统间的运作并导出数据结果。The control and data acquisition system is connected to the optical control system and the microwave control system, and controls the operations between the systems and derives data results.
其中,光学操控系统包括:(1)金刚石色心电子极化光路系统,该光路系统主要组成部分为激光源、光束调制器件与相应光学元器件,其中,各组成部分通过空间光路相连接,光束调制器件与所述的控制与数据采集系统连接,该光路系统主要作用为完成金刚石色心电子量子态极化;(2)金刚石色心相干布局囚禁核自旋解耦光路系统,该光路系统主要组成部分为激光源、光束调制器件与相应光学元器件,其中,各组成部分通过空间光路相连接,光束调制器件与所述的控制与数据采集系统连接,该光路系统主要作用为产生精确对准金刚石色心超精细能级跃迁实现相干布居囚禁完成色心与周围核子的解耦;(3)荧光收集检测光路系统,该光路系统主要组成部分为探测器、光路调节器以及相关元器件,其中,各组成部分通过空间光路相连接,探测器与所述的控制与数据采集系统连接,该光路系统主要作用为对金刚石色心荧光进行光子边带荧光收集检测和零声子线检测,跟踪观测金刚石色心核自旋极化的状况。Among them, the optical control system includes: (1) a diamond color center electronic polarization optical path system, the main components of the optical path system are a laser source, a beam modulation device and corresponding optical components, wherein each component is connected by a spatial optical path, and the light beam The modulation device is connected to the control and data acquisition system, and the optical circuit system is mainly used to complete the polarization of the electron quantum state of the diamond color center; (2) the coherent layout of the diamond color center traps the nuclear spin decoupling optical circuit system, and the optical circuit system mainly The components are a laser source, a beam modulation device and corresponding optical components, wherein each component is connected by a spatial optical path, and the beam modulation device is connected with the control and data acquisition system. The main function of the optical path system is to generate accurate alignment. The ultrafine energy level transition of the diamond color center realizes coherent population and trapping to complete the decoupling of the color center and surrounding nucleons; (3) the optical path system for fluorescence collection and detection, the main components of the optical path system are detectors, optical path regulators and related components, Among them, each component is connected by a spatial optical path, and the detector is connected with the control and data acquisition system. The optical path system is mainly used to collect and detect photon sideband fluorescence and zero-phonon line detection of diamond color center fluorescence, and track Observation of the spin polarization of the diamond color core.
其中,微波操控系统包括:微波源、开关、放大器、传输天线以及负载,微波源及开关与所述的控制与数据采集系统连接,该系统用于产生控制金刚石色心电子在基态量子态间翻转的微波脉冲序列。The microwave control system includes: a microwave source, a switch, an amplifier, a transmission antenna and a load. The microwave source and the switch are connected to the control and data acquisition system. The system is used to generate and control the flipping of diamond color center electrons between ground state quantum states. microwave pulse sequence.
其中,磁场操控系统包括:电源与磁场发生装置,该系统通过调控电源产生精确电流控制磁场发生装置,进而产生稳定的使金刚石色心电子产生塞曼分裂的磁场。Among them, the magnetic field control system includes: a power supply and a magnetic field generating device. The system controls the magnetic field generating device by regulating the power supply to generate a precise current, thereby generating a stable magnetic field that makes the diamond color center electrons generate Zeeman splitting.
其中,控制与数据采集系统包括设计时序对上述三种操控系统进行联调、系统反馈调控以及数据采集处理。Among them, the control and data acquisition system includes the design sequence to carry out joint adjustment of the above three control systems, system feedback control and data acquisition and processing.
本发明与现有技术相比的优点在于:The advantages of the present invention compared with the prior art are:
通过激光、微波、磁场多物理场按设计时序作用于金刚石样品,高灵敏、快速地减弱金刚石色心与其周围核子的相互作用,结合相干布居囚禁极化技术通过囚禁色心量子态的布居数,降低金刚石色心均匀展宽,同时减少金刚石色心14N核自旋系综与杂乱环境的耦合,使超精细能级更加清晰,通过对超精细能级的精准操控,实现14N核自旋系综极化。该系统反应速率快、实验环境简单、鲁棒性好。该系统既可以为稳定极化态提供易于对准的超精细能级高精度,又一定程度上可延长金刚石色心的退相干时间,为稳定14N核自旋系综极化态的解耦过程提供时间保障。在利用金刚石色心进行量子精密测量的实验中,能有效提高量子测量用退相干时间,从而提高基于金刚石色心量子测量的灵敏度。Through the multi-physics of laser, microwave and magnetic field acting on the diamond sample according to the design sequence, the interaction between the diamond color center and its surrounding nucleons is highly sensitively and rapidly weakened. It can reduce the uniform broadening of the diamond color center and reduce the coupling of the 14 N nuclear spin ensemble of the diamond color center and the cluttered environment, so that the hyperfine energy level is clearer. Spin ensemble polarization. The system has fast reaction rate, simple experimental environment and good robustness. The system can not only provide the high precision of hyperfine energy level that is easy to align for the stable polarization state, but also prolong the decoherence time of the diamond color center to a certain extent. The process provides time guarantee. In the experiment of using the diamond color center for quantum precision measurement, the decoherence time for quantum measurement can be effectively improved, thereby improving the sensitivity of quantum measurement based on diamond color center.
附图说明Description of drawings
图1为本发明一个实施例提供的一种金刚石色心核子极化系统的基本结构示意图;1 is a schematic diagram of the basic structure of a diamond color core nuclear polarization system provided by an embodiment of the present invention;
图2为本发明一个实施例提供的光学操控系统中的金刚石色心电子极化光路系统的示意图;2 is a schematic diagram of a diamond color center electron polarization optical path system in an optical manipulation system provided by an embodiment of the present invention;
图3为本发明一个实施例提供的光学操控系统中的金刚石色心相干布局囚禁核自旋解耦光路系统示意图;3 is a schematic diagram of a decoupling optical path system of a diamond color center coherent layout trapped nuclear spin in an optical manipulation system provided by an embodiment of the present invention;
图4为本发明一个实施例提供的光学操控系统中的荧光收集检测光路系统示意图;4 is a schematic diagram of a fluorescence collection and detection optical path system in an optical manipulation system provided by an embodiment of the present invention;
图5为本发明一个实施例提供的微波操控系统示意图;5 is a schematic diagram of a microwave control system provided by an embodiment of the present invention;
图6为本发明一个实施例提供的一种金刚石色心核子的极化系统示意图。FIG. 6 is a schematic diagram of a polarization system of a diamond color core nucleus according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的技术方案以及优点表达的更清楚,下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。In order to express the technical solutions and advantages of the embodiments of the present invention more clearly, the technical solutions of the present invention are further described in detail below through the accompanying drawings and embodiments.
图1为本发明一个实施例提供的一种金刚石色心核子极化系统的基本结构示意图,该系统必要技术核心包括:金刚石样品101、光学操控系统105,微波操控系统104,磁场操控系统103,控制与数据采集系统102。其中,1 is a schematic diagram of the basic structure of a diamond color core nuclear polarization system provided by an embodiment of the present invention. The necessary technical core of the system includes: a
所述金刚石样品101经过特殊工艺加工,由固定装置固定于平台;The
所述光学操控系统105以金刚石样品为核心,设置于样品前后,将调制好的激光导入样品且收集与样品作用后产生的荧光信号;The
所述的微波操控系统104以金刚石样品为核心,设置于样品两侧,将调制好的微波信号导入金刚石样品,微波操控系统与光学操控系统相互独立,彼此之间互不影响;The
所述的磁场操控系统103将金刚石样品包含在其装置内中心区域,光学操控系统与微波操控系统部分器件包含于磁场操控系统中;The magnetic
所述的控制与数据采集系统102与上述光学操控系统和微波操控系统均有连接,统一调控上述系统间的运作并导出数据结果。The control and
控制与数据采集系统通过设计时序控制光学操控系统、微波操控系统、磁场操控系统系统,使系统按上述方法运作,产生激光、微波、磁场的混合脉冲序列作用于金刚石样品,高灵敏度、反应速度快地减弱金刚石色心与其周围核子的相互作用,实现核子极化。提高量子测量用退相干时间,从而提高基于金刚石色心量子测量的灵敏度。The control and data acquisition system controls the optical control system, the microwave control system, and the magnetic field control system by designing the timing sequence, so that the system operates according to the above method, and generates a mixed pulse sequence of laser, microwave and magnetic field to act on the diamond sample, with high sensitivity and fast response speed. The interaction between the diamond color center and its surrounding nucleons is weakened to achieve nuclear polarization. Increase the decoherence time for quantum measurements, thereby improving the sensitivity of quantum measurements based on diamond color centers.
光学操控系统其必要技术核心包括金刚石色心极化系统、金刚石色心相干布局囚禁核自旋解耦光路系统以及荧光收集检测光路系统。光学操控系统的主要特征为:完成金刚石色心的极化准备,在微波和磁场操控系统的协作下完成色心与核子的解耦以及荧光信号的收集与检测。接下来为了阐述的方便,将对每一个分系统的组成及作用予以说明。The necessary technical core of the optical manipulation system includes a diamond color center polarization system, a diamond color center coherent layout trapped nuclear spin decoupling optical path system, and a fluorescence collection and detection optical path system. The main features of the optical manipulation system are: complete the polarization preparation of the diamond color center, complete the decoupling of the color center and the nucleus and the collection and detection of the fluorescence signal under the cooperation of the microwave and magnetic field manipulation system. Next, for the convenience of explanation, the composition and function of each subsystem will be explained.
金刚石色心极化系统主要组成部分为激光源、光束调制器件与相应光学元器件,其中,各组成部分通过空间光路相连接,光束调制器件与控制与数据采集系统连接,该光路系统主要作用为完成金刚石色心电子量子态极化。图2为本发明一个实施例提供的光学操控系统中的金刚石色心极化光路系统的示意图,例如,将激光器201产生的激光依次通过隔离器202、第一声光调制器203、第一二向色镜204和调制波片205调节光路特性,再通过共聚焦物镜206汇聚作用于金刚石样品,利用金刚石色心特殊的能级特性将其制备到特殊的量子态,其中,第一声光调制器203由控制与数据采集系统102操控。金刚石色心极化光路系统反射镜片207将金刚石样品101放出的荧光反射,将荧光导入荧光收集检测光路系统。The main components of the diamond color center polarization system are the laser source, the beam modulation device and the corresponding optical components. Each component is connected by a spatial optical path, and the beam modulation device is connected with the control and data acquisition system. The main function of the optical path system is as follows: Complete the electron quantum state polarization of the diamond color center. 2 is a schematic diagram of a diamond color center polarized optical path system in an optical manipulation system provided by an embodiment of the present invention. For example, the laser light generated by the
作为一种选择,金刚石色心相干布局囚禁核自旋解耦光路系统主要组成部分为激光源、光束调制器件与相应光学元器件,其中,各组成部分通过空间光路相连接,光束调制器件与控制与数据采集系统连接,该光路系统主要作用为产生精确对准金刚石色心超精细能级跃迁实现相干布居囚禁完成色心与周围核子的解耦。图3为本发明一个实施例提供的光学操控的金刚石色心相干布局囚禁核自旋解耦光路系统示意图。使用2个可调谐激光器,即第二可调谐激光器301、第三可调谐激光器305,第二可调谐激光器301经过第二隔离器302后,用第二声光调制器303和频率锁定器304将第二可调激光器301的频率严格锁定在对应色心两个能级间。第三可调激光器305发出的激光,经过第三隔离器306后,再经过第三声光调制器307、第一波导调制器308、第二波导调制器309后与第二可调激光器301发出的激光在第一偏振分光棱镜310聚后一同进入第一检测器311进行排频,再通过反馈差分电路312对第三可调激光器305进行频率精确控制。调制好的两束激光将经过偏振分光棱镜402作用于金刚石样品101进行色心与核子的解耦。其中,第二声光调制器303、第三声光调制器307、第一波导调制器308、第二波导调制器309和第一检测器311均与控制与数据采集系统102相连。As an option, the main components of the decoupling optical circuit system of the trapped nuclear spin in the coherent layout of the diamond color center are the laser source, the beam modulation device and the corresponding optical components. Connected with the data acquisition system, the main function of the optical path system is to generate hyperfine energy level transitions precisely aligned with the diamond color center, realize coherent population and trap, and complete the decoupling of the color center and surrounding nucleons. 3 is a schematic diagram of an optically manipulated diamond color center coherent layout trapped nuclear spin decoupling optical circuit system provided by an embodiment of the present invention. Two tunable lasers are used, namely the second
作为一种选择,荧光收集检测光路系统主要组成部分为探测器、光路调节器以及相关元器件,其中,各组成部分通过空间光路相连接,探测器与控制与数据采集系统连接,该光路系统主要作用为对金刚石色心荧光进行光子边带荧光收集检测和零声子线检测,跟踪观测金刚石色心核自旋极化的状况。图4为本发明一个实施例提供的光学操控的荧光收集检测光路系统示意图。将金刚石样品101经返回的荧光经过第一二向色镜204滤去极化用的激光,再经过第二二向色镜401对光束进行分离,反射的部分荧光进入第二检测器406进行边带荧光检测;穿透的荧光先反向经过第二分光棱镜402,再经过有调制波片和第三偏置分光棱镜403组成的偏振检测装置403进行偏振检测,经过光束调节器404调制之后,再进入第三检测器405进行零声子线检测。将边带荧光检测信号与零声子线检测信号通过差分装置407做差分处理,得到的差分信号输入分析仪408进行信号分析,检测金刚石色心核子极化情况。其中,分析仪408与与控制与数据采集系统102相连。As an option, the main components of the optical path system for fluorescence collection and detection are detectors, optical path regulators and related components. Each component is connected by a spatial optical path, and the detector is connected with the control and data acquisition system. The optical path system is mainly The function is to perform photon sideband fluorescence collection detection and zero-phonon line detection on the diamond color center fluorescence, and track and observe the state of the spin polarization of the diamond color center core. FIG. 4 is a schematic diagram of an optical path system for optically manipulated fluorescence collection and detection provided by an embodiment of the present invention. The returned fluorescence of the
作为一种选择,微波操控系统其必要组成部分包括:微波源、开关、放大器、传输天线以及负载。微波源与开关控制与数据采集系统连接。该系统用于产生控制金刚石色心电子在基态量子态间翻转的微波脉冲序列,实现金刚石色心能级分裂间的量子态操控。图5为本发明一个实施例提供的微波操控方法示意图;微波源501在控制与数据采集系统102的操作下产生微波信号,再由控制与数据采集系统102操控微波开关502开断截取微波源发出的微波形成脉冲序列,经过放大器503后,通过微波天线作用于金刚石样品101,最后微波截止于负载504。通过设计时序控制开关状态可以形成不同的微波序列以提高量子态操控效果。As an option, the necessary components of the microwave control system include: microwave source, switch, amplifier, transmission antenna and load. The microwave source is connected with the switch control and data acquisition system. The system is used to generate a microwave pulse sequence that controls the flipping of diamond color center electrons between ground state quantum states, and realizes quantum state manipulation between diamond color center energy levels. 5 is a schematic diagram of a microwave control method provided by an embodiment of the present invention; the
作为一种选择,磁场操控系统将金刚石样品101包含在其装置内中心区域,光学操控系统与微波操控系统部分器件包含于磁场操控系统中。磁场操控系统必要组成部分为磁场发生装置和电流源。磁场操控方法其必要技术核心包括磁场大小和方向的精确操控。其主要特征为:为金刚石色心周围核子极化提供必要的磁场环境条件。例如,如图6所示,选用三轴赫姆赫兹线圈103通过电流精确控制磁场的大小和方向。As an option, the magnetic field manipulation system includes the
作为一种选择,控制与数据采集系统其必要技术核心包括设计时序对上述三种操控系统进行联调、系统反馈调控以及数据采集处理。其主要特征为:提供时序信号控制上述激光、微波与磁场系统完成核子极化,采集数据并分析。例如,如图6所示,控制与数据采集系统102产生设计时序控制金刚石色心极化系统中的第一声光调制器202;金刚石色心相干布局囚禁核自旋解耦光路系统中的第二声光调制器、第三声光调制器、第一波导调制器308,第二波导调制器309;微波操控系统中的微波源501、微波开关502;并收集第一探测器311、第二探测器406、第三探测器405的信号数据进行分析。As an option, the necessary technical core of the control and data acquisition system includes designing the timing sequence to carry out joint adjustment of the above three control systems, system feedback control and data acquisition and processing. Its main features are: providing timing signals to control the above-mentioned laser, microwave and magnetic field systems to complete nuclear polarization, collecting data and analyzing. For example, as shown in FIG. 6 , the control and
图6为本发明一个实施例提供的一种金刚石色心核子的极化系统示意图。该极化系统包括图2-5所述系统、磁场操控系统。其中,光学、微波及磁场操控系统相互独立,通过控制与数据采集系统及相关元器件连接,组成金刚石色心核子极化系统。通过激光、微波、磁场多物理场按设计时序作用于金刚石,高灵敏度、反应速度快地减弱金刚石色心与其周围核子的相互作用,实现核子极化,提高量子测量用退相干时间,从而提高基于金刚石色心量子测量的灵敏度,增多了检测方式的种类。FIG. 6 is a schematic diagram of a polarization system of a diamond color core nucleus according to an embodiment of the present invention. The polarization system includes the system described in Figures 2-5 and the magnetic field manipulation system. Among them, the optical, microwave and magnetic field control systems are independent of each other, and the diamond color core nuclear polarization system is formed through the connection of the control and data acquisition system and related components. Through the multi-physical fields of laser, microwave and magnetic field acting on the diamond according to the design sequence, the interaction between the diamond color center and its surrounding nucleons is weakened with high sensitivity and fast reaction speed, the nuclear polarization is realized, and the decoherence time for quantum measurement is improved. The sensitivity of quantum measurement of diamond color centers increases the types of detection methods.
本发明未详细公开的部分属于本领域的公知技术。The parts of the present invention that are not disclosed in detail belong to the well-known technology in the art.
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。Although the illustrative specific embodiments of the present invention have been described above to facilitate the understanding of the present invention by those skilled in the art, it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, As long as various changes are within the spirit and scope of the present invention as defined and determined by the appended claims, these changes are obvious, and all inventions and creations utilizing the inventive concept are included in the protection list.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810075893.4A CN108415064B (en) | 2018-01-26 | 2018-01-26 | A Polarization System of Diamond Color Core Nuclei |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810075893.4A CN108415064B (en) | 2018-01-26 | 2018-01-26 | A Polarization System of Diamond Color Core Nuclei |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108415064A CN108415064A (en) | 2018-08-17 |
CN108415064B true CN108415064B (en) | 2021-04-09 |
Family
ID=63126184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810075893.4A Active CN108415064B (en) | 2018-01-26 | 2018-01-26 | A Polarization System of Diamond Color Core Nuclei |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108415064B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109946281A (en) * | 2019-04-11 | 2019-06-28 | 北京航空航天大学 | A quantum sensing device and method of solid defect color center based on transparent material microwave antenna |
CN109916872B (en) * | 2019-04-11 | 2020-09-01 | 北京航空航天大学 | A system and method for detecting color center polarizability of solid defects |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014166883A1 (en) * | 2013-04-08 | 2014-10-16 | Universitaet Ulm | Method for the hyperpolarisation of nuclear spin in a diamond via a long-range interaction |
CN105158709A (en) * | 2015-08-05 | 2015-12-16 | 北京航空航天大学 | Embedded NV-center diamond based magnetic field metering device |
CN105699919A (en) * | 2016-03-01 | 2016-06-22 | 中国科学院武汉物理与数学研究所 | Implementation method for difference detection of coherent population trapping magnetometer |
CN107271456A (en) * | 2017-05-05 | 2017-10-20 | 中北大学 | The solid-state spin assemblage positioning of Microwave Scanning resonance and apparatus for measuring concentration |
EP3242139A1 (en) * | 2016-05-04 | 2017-11-08 | Julius-Maximilians-Universität Würzburg | Method and apparatus for determining a magnetic field |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104704375A (en) * | 2012-08-22 | 2015-06-10 | 哈佛学院院长及董事 | Nanoscale scanning sensors |
CN103743390B (en) * | 2013-12-31 | 2016-08-17 | 北京航空航天大学 | Gyroscope based on NV-colour center diamond MEMS mixed structure and manufacture method |
CN108139454A (en) * | 2015-05-22 | 2018-06-08 | 德国乌尔姆大学 | The method of the hyperpolarization of nuclear spin |
CN105137371B (en) * | 2015-08-11 | 2017-12-05 | 北京航空航天大学 | A kind of chip grade diamond NV‑Colour center magnetic imaging device and imaging method |
-
2018
- 2018-01-26 CN CN201810075893.4A patent/CN108415064B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014166883A1 (en) * | 2013-04-08 | 2014-10-16 | Universitaet Ulm | Method for the hyperpolarisation of nuclear spin in a diamond via a long-range interaction |
CN105158709A (en) * | 2015-08-05 | 2015-12-16 | 北京航空航天大学 | Embedded NV-center diamond based magnetic field metering device |
CN105699919A (en) * | 2016-03-01 | 2016-06-22 | 中国科学院武汉物理与数学研究所 | Implementation method for difference detection of coherent population trapping magnetometer |
EP3242139A1 (en) * | 2016-05-04 | 2017-11-08 | Julius-Maximilians-Universität Würzburg | Method and apparatus for determining a magnetic field |
CN107271456A (en) * | 2017-05-05 | 2017-10-20 | 中北大学 | The solid-state spin assemblage positioning of Microwave Scanning resonance and apparatus for measuring concentration |
Also Published As
Publication number | Publication date |
---|---|
CN108415064A (en) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102513482B1 (en) | Atom-Based Electromagnetic Field Sensing Elements and Measurement Systems | |
US20230400492A1 (en) | Ultrafast detector of rydberg atoms | |
CN112946541B (en) | Alkali metal atomic spin all-optical control system and detection method | |
CN108415064B (en) | A Polarization System of Diamond Color Core Nuclei | |
Endo et al. | Optically-Sampled Superconducting-Nanostrip Photon-Number Resolving Detector for Non-Classical Quantum State Generation | |
Zhou et al. | Symmetry-breaking inelastic wave-mixing atomic magnetometry | |
Jiang et al. | Intracavity cold atomic ensemble with high optical depth | |
Ortegel | State readout of single Rubidium-87 atoms for a loophole-free test of Bell’s inequality | |
CN104882785B (en) | A kind of radiant light detection method and device based on laser intracavity modulation | |
Fitch et al. | Electro-optic measurement of the wake fields of a relativistic electron beam | |
Iacopini et al. | On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field | |
CN107219182A (en) | The particle beams excites VUV visible light wave range magneto-optic to compose method of testing and system | |
Tomschitz | A photoionization scheme to create cold ionic impurities from Rydberg atoms | |
Yoshikawa et al. | High time resolved electron temperature measurements by using the multi-pass Thomson scattering system in GAMMA 10/PDX | |
Bagnato et al. | Laser deceleration and velocity bunching of a neutral sodium beam | |
Pucher | Spectroscopy of the 6S1/25D5/2 electric quadrupole transition of atomic caesium | |
Lannig | Vector solitons and different scenarios of universal dynamics in a spin-1 Bose-Einstein condensate | |
Hemmer | Spin Squeezing and Closed-Loop Magnetometry with a Collective Atomic Spin | |
Aliyu | Trapping Light Alkali Atoms in D1 Magic Wavelength Tweezers for Quantum Simulation | |
Bouchiat et al. | From linear amplification to triggered superradiance: illustrative examples of stimulated emission and polarization spectroscopy for sensitive detection of a pulsed excited forbidden transition | |
Kim et al. | An efficient fluorescent single-particle position tracking system for long-term pulsed measurements of nitrogen-vacancy centers in diamond | |
Schlederer | High resolution imaging of quantum gases: from counting fermions in optical tweezers to tracking imputities in 2D Bose gases | |
Zhukas | Novel Methods in Trapped-Ion Quantum Computing: Single-Photon-Sensitive Time-Resolving Camera, Sympathetic Cooling, and Qutrit | |
Ortegel | Zustandsauslese einzelner Rubidium-87 Atome für einen schlupflochfreien Test der Bell ‘schen Ungleichung/State Readout of Single Rubidium-87 Atoms for a Loophole-Free Test of Bell’s Inequality | |
Foley et al. | Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |