CN108412932A - 基于一维球形颗粒链的冲击能量缓释器 - Google Patents

基于一维球形颗粒链的冲击能量缓释器 Download PDF

Info

Publication number
CN108412932A
CN108412932A CN201810162350.6A CN201810162350A CN108412932A CN 108412932 A CN108412932 A CN 108412932A CN 201810162350 A CN201810162350 A CN 201810162350A CN 108412932 A CN108412932 A CN 108412932A
Authority
CN
China
Prior art keywords
particle
chain
impact energy
lightweight
particle chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810162350.6A
Other languages
English (en)
Inventor
吴斌
王鹤萤
刘秀成
李明智
肖婷
刘宗发
何存富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201810162350.6A priority Critical patent/CN108412932A/zh
Publication of CN108412932A publication Critical patent/CN108412932A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/01Vibration-dampers; Shock-absorbers using friction between loose particles, e.g. sand
    • F16F7/015Vibration-dampers; Shock-absorbers using friction between loose particles, e.g. sand the particles being spherical, cylindrical or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

本发明公开了基于一维球形颗粒链的冲击能量缓释器,放置于冲击源和待保护结构之间,可有效衰减进入待保护结构表面的冲击能量峰值。对于由三段的均匀颗粒链组成的复合颗粒链,其对冲击能量的衰减率可通过改变轻、重质量颗粒的密度比或轻质量颗粒的数量进行调节;对于双原子颗粒链,可通过调整单个周期内两种颗粒的数量比例或密度比,改变进入待保护结构表面的冲击能量峰值。上述一维球形颗粒链可布置于冲击源和待保护结构之间的多个位置,增强结构的抗震、减震能力。

Description

基于一维球形颗粒链的冲击能量缓释器
技术领域
本发明涉及两种一维球形颗粒链式的缓冲器,属于智能材料设计领域。
其作用是通过不同质量的颗粒间的相互作用,使得颗粒链在受到冲击以后对冲击能量进行分解,从而达到缓解冲击的目的。
背景技术
机床底座的振动会影响工作台对零部件的加工精度,一般需采用隔震、减震结构,以减小底座振动的影响;大型建筑地基也要求具备抗震、减震结构。受冲击的一维球形颗粒链中可形成非线性孤波,且非线性孤波的传播特性(幅值、速度、频带等)均与球形颗粒链内颗粒的排列方式、颗粒材料属性参数相关。通过合理的结构和参数设计,可以使得进入颗粒链的高能量冲击波在传播经过颗粒链后,出现冲击波分解、冲击能量降低的物理现象,也即实现冲击能量的缓释。基于上述特性,本发明提供了两种基于一维球形颗粒链的冲击能量缓释器,包括:基于三段式复合颗粒链的冲击能量缓释器以及基于双原子颗粒链的冲击能量缓释器,将这一类基于一维球形颗粒链的冲击能量缓释器放置在冲击源与待保护对象之间,可实现将大幅值的能量脉冲分解为低幅值的多个脉冲。
发明内容
基于一维球形颗粒链的冲击能量缓释器,是由球径一致的颗粒构成的三段式复合颗粒链或双原子颗粒链,其中三段式复合颗粒链由两段重质量颗粒链和一段嵌于两段重质量颗粒链之间的轻质量颗粒链构成,双原子颗粒链由多个排列周期构成,每个排列周期内轻质量颗粒和重质量颗粒的数量比例及排布方式均一致;将颗粒链放置于冲击源和待保护结构之间,对于三段式复合颗粒链可通过改变颗粒链中轻、重质量颗粒的密度比或轻质量颗粒的数量;对于双原子颗粒链可通过调整单个周期内两种颗粒的数量比例或密度比,均可改变传输进入待保护结构表面的冲击能量峰值,改变能量的衰减率。
对于三段式复合颗粒链,其中,首段重质量颗粒链中重质量颗粒个数需大于5;当固定的外界冲击能量经由重质量颗粒链进入轻质量颗粒链后,部分能量将在轻质量颗粒链与重质量颗粒链的两个界面间来回反射,进入轻质颗粒链的冲击能量峰值降低;当首段重质量颗粒链与三段式复合颗粒链的长度不变时,增加轻质量颗粒与重质量颗粒的密度之间的差异,即减小轻质量颗粒与重质量颗粒的密度比β,或增加轻质量颗粒的数量X,均可增大三段式复合颗粒链对外界冲击能量的衰减率。
对于双原子颗粒链,其中,在单个排列周期内轻质量和重质量颗粒的比例固定时,排列周期的数量P越大,进入待保护结构表面的冲击能量幅值越低;在排列周期数量P固定时,单个排列周期内包含的颗粒数越大,双原子颗粒链对外界冲击能量的衰减率越大;当排列周期数量P及其单个周期内包含的颗粒数量均固定时,排列周期内轻质量颗粒数量的增加,会使得双原子颗粒链对外界冲击能量的衰减率增大。
附图说明
图1基于三段式复合颗粒链的冲击能量缓释器结构示意图
图2基于双原子颗粒链的冲击能量缓释器结构示意图
图3轻质量颗粒链中颗粒的质量对一维复合颗粒链缓冲效果的影响
图4轻质量颗粒链中颗粒的数量对一维复合颗粒链缓冲效果的影响
图5单元内粒子个数对一维双原子颗粒链缓冲效果的影响
具体实施方式
基于一维球形颗粒链的冲击能量缓释器,是由球径一致的颗粒构成的三段式复合颗粒链或双原子颗粒链,其中三段式复合颗粒链由两段重质量颗粒链和一段嵌于两段重质量颗粒链之间的轻质量颗粒链构成,双原子颗粒链由多个排列周期构成,每个排列周期内轻质量颗粒和重质量颗粒的数量比例及排布方式均一致。
将三段式复合颗粒链或双原子颗粒链布置与冲击源和待保护结构之间的多个位置处,当冲击源产生冲击能量后,颗粒链在接收到冲击激励会在颗粒链中形成非线性孤波,而这两种颗粒链结构会对冲击能量起到分解并衰减的作用,使得颗粒链末端输出到待保护结构表面的脉冲信号均为多个低幅值脉冲信号。
对于三段式复合颗粒链,其首段重质量颗粒链中重质量颗粒个数需大于5,使得颗粒链在受到冲击激励后可在其中形成稳定的非线性孤波;当固定的外界冲击能量经由重质量颗粒链进入轻质量颗粒链后,部分能量将在轻质量颗粒链与重质量颗粒链的两个界面间来回反射,使得冲击能量被分解,进入轻质颗粒链的冲击能量峰值降低,因此当冲击能量从轻质量颗粒链传播至第三段重质量颗粒链时,脉冲信号的幅值与初始冲击脉冲幅值相比仍有明显衰减;当首段重质量颗粒链与三段式复合颗粒链的长度不变时,降低轻质量颗粒与重质量颗粒的密度比β或增加轻质量颗粒的数量X,可增大三段式复合颗粒链对外界冲击能量的衰减率(见附图3、4)。
对于双原子颗粒链,其中,在单个排列周期内轻质量和重质量颗粒的比例固定时,排列周期数量P越大,进入待保护结构表面的冲击能量幅值越低;在排列周期数量P固定时,单个排列周期内包含的颗粒数量越大,双原子颗粒链对外界冲击能量的衰减率越大;当排列周期数量P及其单个排列周期内包含的颗粒数量均固定时,排列周期内轻质量颗粒数量的增加,会使得双原子颗粒链对外界冲击能量的衰减率增大。

Claims (3)

1.基于一维球形颗粒链的冲击能量缓释器,其特征在于:是由球径一致的颗粒构成的三段式复合颗粒链或双原子颗粒链,其中三段式复合颗粒链由两段重质量颗粒链和一段嵌于两段重质量颗粒链之间的轻质量颗粒链构成;双原子颗粒链由多个排列周期构成,每个排列周期内轻质量颗粒和重质量颗粒的数量比例及排布方式均一致;将颗粒链放置于冲击源和待保护结构之间,对于三段式复合颗粒链通过改变颗粒链中轻、重质量颗粒的密度比或轻质量颗粒的数量;对于双原子颗粒链通过调整单个周期内两种颗粒的数量比例或密度比,均能改变传输进入待保护结构表面的冲击能量峰值,改变能量的衰减率。
2.根据权利要求1所述的基于一维球形颗粒链的冲击能量缓释器,其特征在于:三段式复合颗粒链,首段重质量颗粒链中重质量颗粒个数需大于5;当固定的外界冲击能量经由重质量颗粒链进入轻质量颗粒链后,部分能量将在轻质量颗粒链与重质量颗粒链的两个界面间来回反射,进入轻质颗粒链的冲击能量峰值降低;当首段重质量颗粒链与三段式复合颗粒链的长度不变时,增加轻质量颗粒与重质量颗粒的密度之间的差异,即减小轻质量颗粒与重质量颗粒的密度比β,或增加轻质量颗粒的数量X,均增大三段式复合颗粒链对外界冲击能量的衰减率。
3.根据权利要求1所述的基于一维球形颗粒链的冲击能量缓释器,其特征在于:双原子颗粒链,在单个排列周期内轻质量和重质量颗粒的比例固定时,排列周期的数量P越大,进入待保护结构表面的冲击能量幅值越低;在排列周期数量P固定时,单个排列周期内包含的颗粒数量越大,双原子颗粒链对外界冲击能量的衰减率越大;当排列周期数量P及其单个排列周期内包含的颗粒数量均固定时,排列周期内轻质量颗粒数量的增加,会使得双原子颗粒链对外界冲击能量的衰减率增大。
CN201810162350.6A 2018-02-26 2018-02-26 基于一维球形颗粒链的冲击能量缓释器 Pending CN108412932A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810162350.6A CN108412932A (zh) 2018-02-26 2018-02-26 基于一维球形颗粒链的冲击能量缓释器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810162350.6A CN108412932A (zh) 2018-02-26 2018-02-26 基于一维球形颗粒链的冲击能量缓释器

Publications (1)

Publication Number Publication Date
CN108412932A true CN108412932A (zh) 2018-08-17

Family

ID=63129224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810162350.6A Pending CN108412932A (zh) 2018-02-26 2018-02-26 基于一维球形颗粒链的冲击能量缓释器

Country Status (1)

Country Link
CN (1) CN108412932A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111271401A (zh) * 2019-01-18 2020-06-12 北京交通大学 一种非线性弹性波超材料隔振装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084318A2 (en) * 2006-01-13 2007-07-26 The Regents Of The University Of California Pulse trapping composite granular medium and methods for fabricating such medium
US20140097562A1 (en) * 2012-10-08 2014-04-10 California Institute Of Technology Tunable passive vibration suppressor
CN105136444A (zh) * 2015-09-24 2015-12-09 北京理工大学 颗粒链减震阻尼装置及颗粒链减震阻尼测试方法
CN105489817A (zh) * 2014-10-02 2016-04-13 福特环球技术公司 具有对齐的颗粒的复合材料隔离器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084318A2 (en) * 2006-01-13 2007-07-26 The Regents Of The University Of California Pulse trapping composite granular medium and methods for fabricating such medium
US20140097562A1 (en) * 2012-10-08 2014-04-10 California Institute Of Technology Tunable passive vibration suppressor
CN105489817A (zh) * 2014-10-02 2016-04-13 福特环球技术公司 具有对齐的颗粒的复合材料隔离器
CN105136444A (zh) * 2015-09-24 2015-12-09 北京理工大学 颗粒链减震阻尼装置及颗粒链减震阻尼测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王平建等: "一维复合颗粒链中能量衰减的动力学分析", 《物理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111271401A (zh) * 2019-01-18 2020-06-12 北京交通大学 一种非线性弹性波超材料隔振装置

Similar Documents

Publication Publication Date Title
Deshpande et al. High strain rate compressive behaviour of aluminium alloy foams
Huang et al. Fractal crushing of granular materials under confined compression at different strain rates
Li et al. Dynamic characteristics of granite subjected to intermediate loading rate
Ak et al. The effect of discontinuity frequency on ground vibrations produced from bench blasting: a case study
Daraio et al. Strongly nonlinear wave dynamics in a chain of polymer coated beads
CN108412932A (zh) 基于一维球形颗粒链的冲击能量缓释器
MX2009000341A (es) Un metodo para predecir las propiedades de fractura de un material en particulas cuando se somete a impacto.
Wu et al. Dynamic mechanical properties and failure behaviors of brittle rock materials with a tunnel-shaped opening subjected to impact loads
Jiao et al. Numerical investigation of joint effect on shock wave propagation in jointed rock masses
Mo et al. Dynamic Mechanical Properties and Fractal Characteristics of Polypropylene Fiber‐Reinforced Cement Soil under Impact Loading
CN106522400B (zh) 多阈值控制型调谐质量阻尼器
Sheffield et al. Porous HMX initiation studies—Sugar as an inert simulant
Xiao et al. Testing of mode-I fracture toughness of sandstone based on the fracturing mechanism of an explosion stress wave
CN105136444A (zh) 颗粒链减震阻尼装置及颗粒链减震阻尼测试方法
Hu et al. Mechanical response and energy dissipation characteristics of granite under low velocity cyclic impact
Wang et al. Influence of cracks on the propagation properties of elastic waves in quasi-isotropic cracked rock masses.
Mishra et al. High strain rate characterization of himalayan dolomite
杜妍辰 et al. Elastoplastic normal impact dissipation model of two particles
Kim et al. Comparison of signal powers generated with metal hammer plate and plastic hammer plate
CN111103113A (zh) 多功能复杂多相维碰撞实验仪
Barnouin-Jha et al. Impact into coarse grained spheres
CN113108002A (zh) 一种具有颗粒阻尼特性的立体形式声子晶体隔振降噪装置
Wu Characteristics of rock damage variable under cyclic loading
Wang et al. Computer Simulation of Fracture Damage for Large-Diameter Percussive Drill
Yang et al. Using blast vibration measurements to estimate rock triaxial strains/stresses and dynamic rock strength for blast damage evaluation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180817

WD01 Invention patent application deemed withdrawn after publication