CN108410458A - 一种以硫磺为硫源一步水热制备二硫化钼量子点的方法 - Google Patents

一种以硫磺为硫源一步水热制备二硫化钼量子点的方法 Download PDF

Info

Publication number
CN108410458A
CN108410458A CN201810165322.XA CN201810165322A CN108410458A CN 108410458 A CN108410458 A CN 108410458A CN 201810165322 A CN201810165322 A CN 201810165322A CN 108410458 A CN108410458 A CN 108410458A
Authority
CN
China
Prior art keywords
sulphur
source
molybdenum
quantum dot
molybdenum disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810165322.XA
Other languages
English (en)
Other versions
CN108410458B (zh
Inventor
易涛
钟亚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201810165322.XA priority Critical patent/CN108410458B/zh
Publication of CN108410458A publication Critical patent/CN108410458A/zh
Application granted granted Critical
Publication of CN108410458B publication Critical patent/CN108410458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于纳米材料技术领域,具体为一种以硫磺为硫源一步水热制备二硫化钼量子点的方法。本发明方法包括:硫源的制备:将硫磺溶于水合肼中,在室温下避光搅拌直至硫粉完全溶解,即得到硫磺‑水合肼复合物;将钼源溶于纯水中,搅拌混匀;得到钼源溶液;向钼源溶液中加入硫磺‑水合肼复合物,控制硫源的终浓度为40‑75mM,钼源的终浓度为20‑35mM;混合均匀,然后将混合液转移至水热反应釜中,在180℃‑220℃下水热反应2‑18 h,待其自然冷却至室温,收集滤液即得到二硫化钼量子点。本发明制备的二硫化钼量子点,具有制备成本低、性能稳定、无毒等优点,平均粒径在5 nm以下,可应用于环境分析、生化分析、食品安全、光成像、生物标记、化学传感器等领域。

Description

一种以硫磺为硫源一步水热制备二硫化钼量子点的方法
技术领域
本发明属于纳米材料技术领域,具体涉及一种二硫化钼量子点的制备方法。
背景技术
二硫化钼(MoS2)具有类石墨烯材料的层状结构,由于其层间相对较弱的范德华力而较容易被剥离,其独特的机械性能、电学性能、化学性能以及光学性质使得它被广泛应用于超级电容器、电池、催化剂等方面。当MoS2的尺寸小于10nm时,由于量子限域效应,二硫化钼量子点(MoS2 QDs)表现出独特的光致发光、光化学稳定性和单激发/多发射以及依赖尺寸的荧光发射等光学性质,被广泛应用于生物成像和生物医学等领域。
MoS2 QDs包含从上到下(通过大尺寸二硫化钼剥离)及从下到上(以含硫、含钼的前体分子为原料)两种合成方法。从上到下的合成方法常涉及高功率的超声处理,或使用危险昂贵的剥离剂(如正丁基锂,锂、钠等碱金属),以及对环境污染较大的有机溶剂等,因而应用受限。而从上到下的合成方法,特别是水热法,由于方法简单、硫源和钼源分子种类多、选择范围广、制备成本低而受到广泛的关注。现今水热法中常采用的硫源主要是半胱氨酸、硫脲、硫化钠、二苄基二硫等,而用硫磺为硫源的合成方法还未见报道,这主要是因为硫磺难溶于水,极大的限制了其在水热合成中的应用。因此,开发一种利用硫磺为硫源,由下而上一步水热合成MoS2 QDs的方法是非常有意义的。
发明内容
为了克服上述现有技术的缺点和不足,本发明旨在提供一种可以避免环境污染、且工艺简单的制备二硫化钼量子点的方法。
本发明提供的制备二硫化钼量子点的方法,是以硫磺为硫源,采用一步水热法,具体步骤为:
(1)硫源的制备:将硫磺溶于水合肼中,在室温下避光搅拌直至硫粉完全溶解,即得到硫磺-水合肼复合物,记为S-N2H4·H2O;
(2)将钼源溶于适量的纯水中,搅拌混匀;得到钼源溶液;
(3)向步骤(2)钼源溶液中加入步骤(1)得到的硫磺-水合肼复合物,控制硫源的终浓度为40-75mM,钼源的终浓度为20-35mM;超声,使之混合均匀,然后将混合液转移至水热反应釜中,在180℃-220℃下水热反应2-18 h,待其自然冷却至室温,收集滤液即得到二硫化钼量子点。
步骤(2)中,所用的钼源选自钼酸钠、钼酸铵、二钼酸铵等含钼的小分子。
本发明与现有技术相比具有以下优点:
(1)本发明将硫磺溶于水合肼中形成水溶性的新型硫源,即硫磺-水合肼复合物(S-N2H4·H2O),并利用此新型硫源通过水热法从上而下,成功合成了二硫化钼量子点;
(2)避免了使用N-甲基吡咯烷酮(NMP),碱金属(Li, Na, K)以及正丁基锂等对环境污染较大的有机溶剂和较为危险的剥离剂,大大降低了合成难度和危险性。
本发明制备的二硫化钼量子点,具有制备成本低、性能稳定、无毒等优点,且平均粒径在5 nm以下,可应用于环境分析、生化分析、食品安全、光成像、生物标记、化学传感器等领域。
附图说明
图1:实施例1合成的二硫化钼量子点的最佳荧光激发光谱图(左)和荧光发射光谱图(右)。
图2:实施例1合成的二硫化钼量子点的透射电子显微镜图。
图3:实施例2合成的二硫化钼量子点的最佳荧光激发光谱图(左)和荧光发射光谱图(右)。
图4:实施例2合成的二硫化钼量子点的激发光依赖的荧光发射光谱图。
图5:实施例3合成的二硫化钼量子点的最佳荧光激发光谱图(左)和荧光发射光谱图(右)。
图6:实施例3合成的二硫化钼量子点的紫外吸收光谱图。
具体实施方式
实施例对本发明作进一步说明,本发明的保护内容不限于以下实例。在不背离发明构思的范围内,本领域研究人员能够想到的变化都包括在本发明中,并以权利要求书为保护范围。
实施例1
将96 mg 硫磺溶于10 mL 50%的水合肼中,室温下避光搅拌直至硫粉完全溶解得到0.3M的S-N2H4·H2O(以硫元素的含量计算浓度)。然后将22 mM的二水合钼酸钠(Na2MoO4·H2O)置于超纯水中,加入44 mM的S-N2H4·H2O,随后超声10 min,置于反应釜中于200℃反应8 h。如图1和图2所示,合成的二硫化钼量子点的最佳激发和发射波长分别为362 nm和445 nm,且此方法合成的二硫化钼量子点的平均粒径在5 nm以下。
实施例2
将96 mg硫磺溶于10 mL 50%的水合肼中,室温下避光搅拌直至硫粉完全溶解得到0.3M的S-N2H4·H2O(以硫元素的含量计算浓度)。然后将30 mM的钼酸铵((NH4)2MoO4)置于超纯水中,加入60 mM的S-N2H4·H2O,随后超声5 min,置于反应釜中于200℃反应4 h。如图3和图4所示,此方法合成的二硫化钼量子点具有荧光发射可调谐的性质,在290nm到430 nm光激发下均可发荧光,其荧光最大激发和发射波长分别为350 nm和454 nm。
实施例3
将96 mg硫磺溶于5.88 mL 85%的水合肼中,室温下避光搅拌直至硫粉完全溶解得到0.5 M的S-N2H4·H2O(以硫元素的含量计算浓度)。然后将30 mM的二钼酸铵((NH4)2Mo2O7)置于超纯水中,加入75 mM的S-N2H4·H2O,随后超声10 min,置于反应釜中于220℃反应4 h。如图5和图6所示,此方法合成的二硫化钼量子点的荧光最大激发和发射波长分别为360 nm和460 nm,并且其在228 nm处有一显著的紫外吸收峰,同时在292 nm处有一个不明显的紫外吸收峰。

Claims (2)

1.一种以硫磺为硫源一步水热制备二硫化钼量子点的方法,其特征在于,具体步骤为:
(1)硫源的制备:将硫磺溶于水合肼中,在室温下避光搅拌直至硫粉完全溶解,即得到硫磺-水合肼复合物,记为S-N2H4·H2O;
(2)将钼源溶于纯水中,搅拌混匀;得到钼源溶液;
(3)向步骤(2)钼源溶液中加入步骤(1)得到的硫磺-水合肼复合物,控制硫源的终浓度为40-75mM,钼源的终浓度为20-35mM;超声,使之混合均匀,然后将混合液转移至水热反应釜中,在180℃-220℃下水热反应2-18 h,待其自然冷却至室温,收集滤液即得到二硫化钼量子点。
2.根据权利要求1所述的方法,其特征在于,所用的钼源选自钼酸钠、钼酸铵、二钼酸铵含钼的小分子。
CN201810165322.XA 2018-02-28 2018-02-28 一种以硫磺为硫源一步水热制备二硫化钼量子点的方法 Active CN108410458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810165322.XA CN108410458B (zh) 2018-02-28 2018-02-28 一种以硫磺为硫源一步水热制备二硫化钼量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810165322.XA CN108410458B (zh) 2018-02-28 2018-02-28 一种以硫磺为硫源一步水热制备二硫化钼量子点的方法

Publications (2)

Publication Number Publication Date
CN108410458A true CN108410458A (zh) 2018-08-17
CN108410458B CN108410458B (zh) 2021-01-26

Family

ID=63129191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810165322.XA Active CN108410458B (zh) 2018-02-28 2018-02-28 一种以硫磺为硫源一步水热制备二硫化钼量子点的方法

Country Status (1)

Country Link
CN (1) CN108410458B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079317A (zh) * 2019-04-17 2019-08-02 安徽理工大学 二硫化钼荧光量子点的合成方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692464A (zh) * 2015-03-06 2015-06-10 济宁利特纳米技术有限责任公司 二硫化钼量子点的制备及其在成品润滑油添加剂的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692464A (zh) * 2015-03-06 2015-06-10 济宁利特纳米技术有限责任公司 二硫化钼量子点的制备及其在成品润滑油添加剂的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GU WEI: "One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection", 《ACS APPLIED MATERIALS & INTERFACES》 *
吴会杰: "二硫化钼微/纳米材料的合成及研究进展", 《化工新型材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079317A (zh) * 2019-04-17 2019-08-02 安徽理工大学 二硫化钼荧光量子点的合成方法及应用
CN110079317B (zh) * 2019-04-17 2022-09-16 安徽理工大学 二硫化钼荧光量子点的合成方法及应用

Also Published As

Publication number Publication date
CN108410458B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
Qing et al. Recent progress in copper nanocluster-based fluorescent probing: a review
Qian et al. A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA
Liu et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications
Xia et al. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength
Phang et al. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications
Li et al. Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties
Singh et al. Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H 2 O 2 and glutathione in human blood serum
Yang et al. Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper (II) ions
Wang et al. Synthesis and modification of carbon dots for advanced biosensing application
Reckmeier et al. Luminescent colloidal carbon dots: optical properties and effects of doping
Wang et al. Fluorescent graphene-like carbon nitrides: synthesis, properties and applications
Hou et al. A novel one-pot route for large-scale preparation of highly photoluminescent carbon quantum dots powders
Guo et al. A new class of fluorescent-dots: long luminescent lifetime bio-dots self-assembled from DNA at low temperatures
Zhu et al. Hydrothermal preparation of photoluminescent graphene quantum dots characterized excitation‐independent emission and its application as a bioimaging reagent
EP2428489B1 (en) Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof
Das et al. N-doped carbon dots synthesized from ethylene glycol and β-alanine for detection of Cr (VI) and 4-nitrophenol via photoluminescence quenching
Jana et al. Boron precursor-dependent evolution of differently emitting carbon dots
Sharma et al. Recent progress on graphene quantum dots‐based fluorescence sensors for food safety and quality assessment applications
CN105060262A (zh) 一种水溶性氮化硼量子点及其制备方法
CN109609121A (zh) 一种碳量子点/纳米银复合溶液及其制法和应用
Milosavljevic et al. Microwave preparation of carbon quantum dots with different surface modification
Yoshinaga et al. Glycothermally synthesized carbon dots with narrow-bandwidth and color-tunable solvatochromic fluorescence for wide-color-gamut displays
CN106348281A (zh) 一种水热制备双荧光石墨烯量子点的方法
CN106829920A (zh) 一种绿色荧光碳量子点材料及其制备方法
CN108254343B (zh) 一种检测探针及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant