CN108403094A - Method for identifying pulse wave crest - Google Patents
Method for identifying pulse wave crest Download PDFInfo
- Publication number
- CN108403094A CN108403094A CN201810249214.0A CN201810249214A CN108403094A CN 108403094 A CN108403094 A CN 108403094A CN 201810249214 A CN201810249214 A CN 201810249214A CN 108403094 A CN108403094 A CN 108403094A
- Authority
- CN
- China
- Prior art keywords
- pulse wave
- local maximum
- signal
- maximum value
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000007781 pre-processing Methods 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 210000001765 aortic valve Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009084 cardiovascular function Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002321 radial artery Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/7257—Details of waveform analysis characterised by using transforms using Fourier transforms
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Signal Processing (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Cardiology (AREA)
- Mathematical Physics (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
技术领域technical field
本发明涉及脉搏波波形识别方法,并且更具体地,涉及一种识别脉搏波波峰的方法。The present invention relates to a pulse wave waveform identification method, and more particularly, to a method for identifying pulse wave peaks.
背景技术Background technique
人体脉搏波一般具有6个特征点,如图1所示,a点表示主动脉脉瓣开放点,c点是收缩期压力最高点,d点是主动脉扩张降压点,e点是左心室舒张开始点,f点是重博波波谷,g点是重博波波峰,b点为脉搏波结束点。脉图的特征点分别反映了心血管的不同状态,是具有生理意义的特征点。脉图特征点既可以用于计算心血管功能参数,辅助分析和判断心血管状况,也可以用于判断脉图的类型和脉象。特征点的识别对脉诊自动化存在非常重要的意义,是必不可少的一环。目前脉搏波特征点的识别中,常见的方法有斜率阈值法,小波变换,峰高比和拟合手腕脉搏信号的高斯模型的方法,由于噪声干扰和本身方法的缺陷,这些方法普遍存在偏差,且鲁棒性较差。主波是脉搏波信号中最明显最重要的特征,对于识别脉搏周期是非常关键的,确定主波的位置对周期的准确划分和识别其他特征点具有重要的作用。香农能量包络在ECG信号的R峰检测中有非常好的性能,同样适用于脉搏波信号,如何利用主波的特点进行特征点的精准识别是提高准确性和鲁棒性的重要突破口。The human pulse wave generally has 6 characteristic points. As shown in Figure 1, point a represents the opening point of the aortic valve, point c is the highest point of systolic pressure, point d is the point of aortic dilation and pressure reduction, and point e is the point of left ventricle Diastolic starting point, point f is the trough of the diabolic wave, point g is the crest of the diabolic wave, and point b is the end point of the pulse wave. The characteristic points of the pulse diagram respectively reflect the different states of the cardiovascular system and are characteristic points with physiological significance. The pulse map feature points can be used to calculate cardiovascular function parameters, assist in the analysis and judgment of cardiovascular conditions, and can also be used to judge the type and pulse condition of the pulse map. The identification of feature points is of great significance to the automation of pulse diagnosis and is an indispensable part. At present, in the identification of pulse wave feature points, common methods include slope threshold method, wavelet transform, peak height ratio and Gaussian model fitting wrist pulse signal. Due to noise interference and the defects of the method itself, these methods generally have deviations. And the robustness is poor. The main wave is the most obvious and important feature in the pulse wave signal. It is very critical to identify the pulse cycle. Determining the position of the main wave plays an important role in the accurate division of the cycle and the identification of other feature points. Shannon energy envelope has a very good performance in the R-peak detection of ECG signals, and it is also applicable to pulse wave signals. How to use the characteristics of the main wave to accurately identify feature points is an important breakthrough to improve accuracy and robustness.
发明内容Contents of the invention
为了解决现有技术中存在的上述问题,本发明提供一种识别脉搏波波峰的方法。In order to solve the above-mentioned problems in the prior art, the present invention provides a method for identifying pulse wave peaks.
本发明提供的识别脉搏波波峰的方法包括:The method for identifying the pulse wave peak provided by the invention comprises:
(1)采集脉搏波的波形信号;(1) Gather the waveform signal of the pulse wave;
(2)查看主波频率分布;(2) Check the main wave frequency distribution;
(3)对原始脉搏波信号进行预处理,去除噪声;(3) Preprocessing the original pulse wave signal to remove noise;
(4)基于主波的频率范围选择滤波器,利用选择的滤波器凸显主波,排除其他峰,对处理后的脉搏波信号进行提取香农能量包络,然后提取局部极大值;(4) Select a filter based on the frequency range of the main wave, use the selected filter to highlight the main wave, exclude other peaks, extract the Shannon energy envelope from the processed pulse wave signal, and then extract the local maximum;
(5)利用所述局部极大值在原始脉搏波信号上定位真实的脉搏波峰值点。(5) Using the local maximum value to locate the real pulse wave peak point on the original pulse wave signal.
优选地,查看主波频率分布的方法包括:对原始脉搏波信号进行快速傅里叶变换,得到分化的信号,然后查看主波频谱图频率分布。Preferably, the method for viewing the frequency distribution of the main wave includes: performing fast Fourier transform on the original pulse wave signal to obtain differentiated signals, and then checking the frequency distribution of the main wave spectrogram.
优选地,所述预处理包括利用高通滤波去除原始脉搏波信号的基线漂移,利用低通滤波用来处理波形中由于震动和呼吸产生的毛刺,并在除噪后对脉搏波信号进行归一化。Preferably, the preprocessing includes using high-pass filtering to remove the baseline drift of the original pulse wave signal, using low-pass filtering to process the glitches in the waveform due to vibration and respiration, and normalizing the pulse wave signal after denoising .
优选地,所述归一化的方法为:其中d[n]表示在n点处脉搏波的振幅,a[n]为归一化后的脉搏波。Preferably, the normalized method is: Where d[n] represents the amplitude of the pulse wave at point n, and a[n] is the normalized pulse wave.
优选地,所述香农能量包络的计算方法为:Preferably, the calculation method of the Shannon energy envelope is:
Se[n]=-f12[n]log(f12[n])Se[n]=-f1 2 [n]log(f1 2 [n])
其中,F1[n]是滤波后的信号。Among them, F1[n] is the signal after filtering.
优选地,在提取所述局部极大值时,使用低通滤波器对脉搏波信号进行处理以减小搜索局部极大值的复杂性。Preferably, when extracting the local maximum value, a low-pass filter is used to process the pulse wave signal to reduce the complexity of searching for the local maximum value.
优选地,提取局部极大值的方法选自希尔伯特变换、小波变换和傅里叶变换中的一种。Preferably, the method for extracting the local maximum is selected from one of Hilbert transform, wavelet transform and Fourier transform.
优选地,提取局部极大值的方法为:对脉搏波信号进行希尔伯特变换,然后使用切线逼近方法找到脉搏波峰值点。Preferably, the method for extracting the local maximum value is: performing Hilbert transformation on the pulse wave signal, and then using a tangent approximation method to find the peak point of the pulse wave.
优选地,所述希尔伯特变换的方法为:Preferably, the method of the Hilbert transform is:
优选地,利用所述局部极大值在原始脉搏波信号上定位真实的脉搏波峰值点的方法包括:在主波识别曲线的所述局部极大值的两侧,在原始脉搏波波形上寻找局部最小值,所述局部最小值所在的位置对应脉波周期的起点和终点;Preferably, the method for locating the real pulse wave peak point on the original pulse wave signal by using the local maximum value includes: on both sides of the local maximum value of the main wave identification curve, looking for A local minimum, where the position of the local minimum corresponds to the start and end of the pulse cycle;
在起点和终点之间寻找局部最大值,所述局部最大值对应脉搏波波形信号中主波的波峰。A local maximum value is searched between the start point and the end point, the local maximum value corresponds to the peak of the main wave in the pulse wave waveform signal.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
(1)在处理有高且窄峰的信号的时候,识别精准;(1) Accurate identification when processing signals with high and narrow peaks;
(2)非平稳的信号中,本发明对周期的划分具有更好的稳定性;(2) In the non-stationary signal, the present invention has better stability to the division of period;
(3)对脉搏波信号的抗噪声能力强。(3) Strong anti-noise ability to pulse wave signal.
附图说明Description of drawings
图1为人体脉搏波的波形信号;Fig. 1 is the waveform signal of human body pulse wave;
图2为本发明的方法流程图;Fig. 2 is method flowchart of the present invention;
图3为本发明实施例中采集到的原始脉搏波形信号;Fig. 3 is the original pulse waveform signal collected in the embodiment of the present invention;
图4为本发明实施例中带通滤波后的脉搏波信号;Fig. 4 is the pulse wave signal after bandpass filtering in the embodiment of the present invention;
图5为本发明实施例中提取的香农能量包络。Fig. 5 is the Shannon energy envelope extracted in the embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
如图2所示,本发明的识别脉搏波波峰的方法包括:As shown in Figure 2, the method for identifying pulse wave peak of the present invention comprises:
1.采集脉搏波形信号;1. Collect pulse waveform signal;
由压力可调的传感器置于病人腕部挠动脉处获得脉搏电压信号,分段加压,经由脉象采集电路转换为数字信号,存入计算机,如图3所示。A pressure-adjustable sensor is placed at the radial artery of the patient's wrist to obtain pulse voltage signals, which are pressurized in sections, converted into digital signals by the pulse acquisition circuit, and stored in the computer, as shown in Figure 3.
2.查看主波频率分布2. Check the main wave frequency distribution
对原始脉搏波信号进行快速傅里叶变换(FFT),得到分化的信号,查看主波频谱图频率分布,基于主波的频率范围设计后面的滤波器;Perform fast Fourier transform (FFT) on the original pulse wave signal to obtain the differentiated signal, check the frequency distribution of the main wave spectrogram, and design the following filter based on the frequency range of the main wave;
3.预处理3. Preprocessing
使用高通滤波器和低通滤波器去除相应的噪声,具体包括:使用高通滤波去除原始脉搏波信号的基线漂移,使用30Hz的低通滤波用来处理波形中由于震动和呼吸产生的毛刺。除噪后对脉搏波信号进行归一化:其中d[n]表示在n点处脉搏波的振幅。a[n]为归一化后的脉搏波。Use a high-pass filter and a low-pass filter to remove the corresponding noise, including: use a high-pass filter to remove the baseline drift of the original pulse wave signal, and use a 30Hz low-pass filter to deal with the glitches in the waveform due to vibration and breathing. Normalize the pulse wave signal after denoising: where d[n] represents the amplitude of the pulse wave at point n. a[n] is the normalized pulse wave.
4.寻找峰值点4. Find the peak point
根据主波的频率范围,设计合适的带通滤波器(例如1-4Hz),用于凸显主波,排除其他峰,如图4所示。对处理后的脉搏波信号进行提取香农能量包络,如图5所示,然后提取局部极大值,局部极大值对应着主波的近似位置。使用低通滤波器可以减小搜索局部极大值的复杂性。According to the frequency range of the main wave, design a suitable band-pass filter (for example, 1-4Hz) to highlight the main wave and exclude other peaks, as shown in Figure 4. Extract the Shannon energy envelope from the processed pulse wave signal, as shown in Figure 5, and then extract the local maximum value, which corresponds to the approximate position of the main wave. Using a low-pass filter can reduce the complexity of searching for local maxima.
香农能量包络Se[n]使用Se[n]=-f12[n]log(f12[n])计算,The Shannon energy envelope Se[n] is calculated using Se[n]=-f1 2 [n]log(f1 2 [n]),
其中,F1[n]是滤波后的信号。Among them, F1[n] is the signal after filtering.
找寻包络极大值点的方法有很多不限于希尔伯特变换,小波变换和傅里叶变换等。There are many ways to find the maximum point of the envelope, not limited to Hilbert transform, wavelet transform and Fourier transform.
脉搏波中可以提取时域信号,通过傅里叶变换可以提取频域信号,通过小波变换可以提取时频信号特征点。Time-domain signals can be extracted from the pulse wave, frequency-domain signals can be extracted through Fourier transform, and time-frequency signal feature points can be extracted through wavelet transform.
小波变换在信号处理中重要的应用为检测信号的奇异点。奇异点处信号的上升沿下降沿对应小波变换细节信号的一对局部极值。An important application of wavelet transform in signal processing is to detect singular points of signals. The rising edge and falling edge of the signal at the singular point correspond to a pair of local extreme values of the wavelet transform detail signal.
希尔伯特变换确定局部极大值的步骤为:The steps of Hilbert transform to determine the local maximum value are as follows:
在低通滤波后使用希尔伯特变换,希尔伯特变换的方法为:Use Hilbert transform after low-pass filtering, the method of Hilbert transform is:
希尔伯特变换定义了1/πt和x(t)的卷积。The Hilbert transform defines the convolution of 1/πt and x(t).
在HT之后滑动平均滤波器信号H(n),去除低频漂移,通过正轴到负轴的零交叉点定位SEE信号(提取香农能量包络后的脉搏波信号)的波峰R(k)。对于峰值点的精确的定位滑动平均滤波器长度是非常重要的。主波的真实峰值点是脉搏信号在0.25s内R(k)附近的最大点。基于分化的信号和主波的最大值可以找到每个脉冲周期的开始点。After the HT, the moving average filter signal H(n) removes low-frequency drift, and locates the peak R(k) of the SEE signal (the pulse wave signal after extracting the Shannon energy envelope) through the zero crossing point from the positive axis to the negative axis. For accurate positioning of the peak point the moving average filter length is very important. The real peak point of the main wave is the maximum point of the pulse signal near R(k) within 0.25s. The onset of each pulse period can be found based on the differentiated signal and the maximum of the dominant wave.
使用切线逼近方法找到脉搏波峰值点,在原始脉搏波信号上利用相邻峰值点之间的最小值定位脉搏波周期的开始点,最后将原始脉搏波信号上相邻两个周期开始点之间的最大值确定为真实的脉搏波峰值点。Use the tangent approximation method to find the peak point of the pulse wave, use the minimum value between adjacent peak points on the original pulse wave signal to locate the start point of the pulse wave cycle, and finally place the distance between the two adjacent cycle start points on the original pulse wave signal The maximum value of is determined as the true pulse wave peak point.
其中,在原始脉搏波信号上相邻个的周期开始点之间进行特征域上的局部探测包括:Among them, the local detection on the characteristic domain between the adjacent cycle start points on the original pulse wave signal includes:
在主波识别曲线的局部最大值的两侧,在原始脉搏波波形上寻找局部最小值,所述局部最小值所在的位置对应脉波周期的起点、终点,即脉搏波形信号曲线上本次主波的波谷v1及下一个主波的波谷v2;On both sides of the local maximum value of the main wave identification curve, find the local minimum value on the original pulse wave waveform. The trough v1 of the wave and the trough v2 of the next main wave;
在起点和终点之间寻找局部最大值,所述局部最大值对应脉搏波形信号中主波的波峰k。A local maximum value is searched between the starting point and the end point, the local maximum value corresponds to the peak k of the main wave in the pulse waveform signal.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810249214.0A CN108403094A (en) | 2018-03-23 | 2018-03-23 | Method for identifying pulse wave crest |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810249214.0A CN108403094A (en) | 2018-03-23 | 2018-03-23 | Method for identifying pulse wave crest |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108403094A true CN108403094A (en) | 2018-08-17 |
Family
ID=63132518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810249214.0A Pending CN108403094A (en) | 2018-03-23 | 2018-03-23 | Method for identifying pulse wave crest |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108403094A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110584624A (en) * | 2019-09-18 | 2019-12-20 | 中国科学院微电子研究所 | Pulse wave feature point identification method based on included angle value |
CN111557650A (en) * | 2020-05-13 | 2020-08-21 | 南京邮电大学 | Adam-based fast batch gradient ascent method pulse wave feature extraction method |
CN113080891A (en) * | 2021-03-17 | 2021-07-09 | 浙江大学 | Method for extracting respiration rate and heart rate based on human body micro-motion signal |
CN113520356A (en) * | 2021-07-07 | 2021-10-22 | 浙江大学 | Heart disease early diagnosis system based on Korotkoff sounds |
CN114711733A (en) * | 2022-06-07 | 2022-07-08 | 北京大学深圳研究生院 | Pulse signal extraction method and device, electronic equipment and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1251027A (en) * | 1997-11-20 | 2000-04-19 | 精工爱普生株式会社 | Pulse wave diagnostic apparatus, blood pressure monitor, pulse shape monitor and pharmacologic effect moritor |
US20070060827A1 (en) * | 2005-08-26 | 2007-03-15 | Nihon Kohden Corporation | Apparatus and method for measuring pulse rate |
US20080167564A1 (en) * | 2007-01-10 | 2008-07-10 | Starr Life Sciences Corp. | Techniques for accurately deriving physiologic parameters of a subject from photoplethysmographic measurements |
CN102824166A (en) * | 2012-07-05 | 2012-12-19 | 华东师范大学 | Device for sorting treatment of pulse wave |
CN103284702A (en) * | 2013-06-17 | 2013-09-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | Electrocardiogram and pulse wave relation analysis method and method and device of fusion analysis |
CN104367344A (en) * | 2014-10-10 | 2015-02-25 | 广东工业大学 | Method and device for detecting instant heart rate of fetus on basis of Shanon envelope |
CN107432736A (en) * | 2017-06-06 | 2017-12-05 | 新绎健康科技有限公司 | A kind of method for identifying pulse wave signal |
CN107616786A (en) * | 2017-10-24 | 2018-01-23 | 新绎健康科技有限公司 | Pulse wave recognition methods and pulse wave identification device |
-
2018
- 2018-03-23 CN CN201810249214.0A patent/CN108403094A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1251027A (en) * | 1997-11-20 | 2000-04-19 | 精工爱普生株式会社 | Pulse wave diagnostic apparatus, blood pressure monitor, pulse shape monitor and pharmacologic effect moritor |
US20070060827A1 (en) * | 2005-08-26 | 2007-03-15 | Nihon Kohden Corporation | Apparatus and method for measuring pulse rate |
US20080167564A1 (en) * | 2007-01-10 | 2008-07-10 | Starr Life Sciences Corp. | Techniques for accurately deriving physiologic parameters of a subject from photoplethysmographic measurements |
CN102824166A (en) * | 2012-07-05 | 2012-12-19 | 华东师范大学 | Device for sorting treatment of pulse wave |
CN103284702A (en) * | 2013-06-17 | 2013-09-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | Electrocardiogram and pulse wave relation analysis method and method and device of fusion analysis |
CN104367344A (en) * | 2014-10-10 | 2015-02-25 | 广东工业大学 | Method and device for detecting instant heart rate of fetus on basis of Shanon envelope |
CN107432736A (en) * | 2017-06-06 | 2017-12-05 | 新绎健康科技有限公司 | A kind of method for identifying pulse wave signal |
CN107616786A (en) * | 2017-10-24 | 2018-01-23 | 新绎健康科技有限公司 | Pulse wave recognition methods and pulse wave identification device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110584624A (en) * | 2019-09-18 | 2019-12-20 | 中国科学院微电子研究所 | Pulse wave feature point identification method based on included angle value |
CN111557650A (en) * | 2020-05-13 | 2020-08-21 | 南京邮电大学 | Adam-based fast batch gradient ascent method pulse wave feature extraction method |
CN113080891A (en) * | 2021-03-17 | 2021-07-09 | 浙江大学 | Method for extracting respiration rate and heart rate based on human body micro-motion signal |
CN113520356A (en) * | 2021-07-07 | 2021-10-22 | 浙江大学 | Heart disease early diagnosis system based on Korotkoff sounds |
CN113520356B (en) * | 2021-07-07 | 2024-04-30 | 浙江大学 | Early diagnosis system of heart disease based on Korotkoff sounds |
CN114711733A (en) * | 2022-06-07 | 2022-07-08 | 北京大学深圳研究生院 | Pulse signal extraction method and device, electronic equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108403094A (en) | Method for identifying pulse wave crest | |
Vadrevu et al. | A robust pulse onset and peak detection method for automated PPG signal analysis system | |
Varghees et al. | A novel heart sound activity detection framework for automated heart sound analysis | |
CN103584854B (en) | Extraction method of electrocardiosignal R waves | |
CN106037694A (en) | Continuous blood pressure measuring device based on pulse waves | |
CN109124610B (en) | Anti-interference method and device for non-invasive blood pressure measurement | |
CN102885616A (en) | Method for removing baseline drift from pulse wave signal | |
CN112998690B (en) | A respiratory rate extraction method based on pulse wave multi-feature fusion | |
CN109480783B (en) | Apnea detection method and device and computing equipment | |
Jang et al. | A robust method for pulse peak determination in a digital volume pulse waveform with a wandering baseline | |
CN103284702A (en) | Electrocardiogram and pulse wave relation analysis method and method and device of fusion analysis | |
CN107184187B (en) | Pulse Wave Signal Denoising processing method based on DTCWT-Spline | |
CN101919704B (en) | Heart sound signal positioning and segmenting method | |
CN107693004A (en) | Fetal ECG extraction and fetal heart frequency recognition methods based on hilbert conversion | |
CN104305992B (en) | A kind of interactive fast automatic extracting method of Fetal ECG | |
CN114897011A (en) | Signal separation and denoising method and system for Doppler radar physiological signal detection | |
CN104515905B (en) | The EEG signals adaptive spectrum analysis method of subject based on CQT multiresolution | |
CN113729653A (en) | Human body pulse wave signal acquisition method | |
Wang et al. | Detection of the first and second heart sound using heart sound energy | |
Tan et al. | EMD-based electrocardiogram delineation for a wearable low-power ECG monitoring device | |
Xia et al. | A practical approach to wrist pulse segmentation and single-period average waveform estimation | |
CN113243902B (en) | Feature extraction method based on photoplethysmography | |
CN102755154B (en) | Calculation method for extracting conduction time from pulse wave | |
Sivaranjini et al. | Computationally-efficient pulse rate estimation from compressed ppg measurements for continuous vital signs monitoring | |
CN111839501A (en) | A method and system for denoising ECG signal interference based on frequency domain autocorrelation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180817 |