CN108394956A - 一种降解抗生素盐酸环丙沙星的方法 - Google Patents

一种降解抗生素盐酸环丙沙星的方法 Download PDF

Info

Publication number
CN108394956A
CN108394956A CN201810310964.4A CN201810310964A CN108394956A CN 108394956 A CN108394956 A CN 108394956A CN 201810310964 A CN201810310964 A CN 201810310964A CN 108394956 A CN108394956 A CN 108394956A
Authority
CN
China
Prior art keywords
ciprofloxacin hydrochloride
degradation
cawo
ultrasonotomography
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810310964.4A
Other languages
English (en)
Inventor
何玲玲
李昱
高峰伟
王志新
王新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Chemical Technology
Original Assignee
Shenyang University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Chemical Technology filed Critical Shenyang University of Chemical Technology
Priority to CN201810310964.4A priority Critical patent/CN108394956A/zh
Publication of CN108394956A publication Critical patent/CN108394956A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Water Treatments (AREA)

Abstract

一种降解抗生素盐酸环丙沙星的方法,涉及一种降解抗生素的方法,本发明使用水热合成法制备出钨酸盐半导体材料CaWO4,并与超声技术相配合,用以催化超声降解盐酸环丙沙星模拟的制药废水。超声降解是20世纪90年代初新发展起来的一种高效降解有机污染物的处理方法,其原理是利用超声在溶液介质中产生的空化效应,使有机物降解并达到矿化。因此超声波的空化效应以及由此引发的物理和化学变化才是有机物超声降解的根本原因。本发明把两者结合起来降解盐酸环丙沙星,研究证明该技术的可行性,通过实验证明,该技术在超声降解抗生素废水方面有着很好的效果。

Description

一种降解抗生素盐酸环丙沙星的方法
技术领域
本发明涉及一种降解抗生素的方法,特别是涉及一种降解抗生素盐酸环丙沙星的方法。
背景技术
随着现代工业的飞速发展,怎样有效的处理制药废水成了亟待解决的重要问题。尤其是抗生素废水对人类以及环境都有着极大地威胁,因此本文意在研究钨酸钙作为催化剂对其影响以及在何种条件下能更为高效的处理抗生素废水。纳米半导体材料催化超声降解废水是一种新型的水处理技术,能将有机污染物彻底降解为CO2、H2O以及其他无机盐。利用此种技术解决污染问题将成为未来水污染治理发展的重要方向,它的发展和应用将会给废水处理技术的发展开创新的领域,随着此种水处理技术的应用研究不断深入展开,肯定会在工农业以及环保等领域发挥越来越重要的作用。
抗生素废水的处理是一项困难较大的工作,抗生素废水具有成分复杂、排放量大、毒性大、可生化性差的特点,一直是废水处理中较为棘手的问题。
发明内容
本发明的目的在于提供一种降解抗生素盐酸环丙沙星的方法,本发明利用超声波与催化剂CaWO4联用技术对盐酸环丙沙星模拟的制药废水进行降解;本发明钨酸盐半导体催化剂应用于催化降解废水中的抗生素是一种环保型的水处理方法,具有良好的应用前景。
本发明的目的是通过以下技术方案实现的:
一种降解抗生素盐酸环丙沙星的方法,所述方法将催化剂钨酸钙与超声技术联用;利用超声波与CaWO4联用技术对盐酸环丙沙星模拟的制药废水进行降解,其步骤如下:
称取需求浓度的盐酸环丙沙星溶液于锥形瓶中,加入CaWO4纳米级粉末,平行试验做3组;在避光条件下搅拌后取样进行离心,离心完毕后使用紫外可见分光光度计对上清液进行测定,锥形瓶中剩余溶液在避光条件下进行超声,将超声后的溶液离心取其上清液同样进行紫外可见光谱测定即可。
所述的一种降解抗生素盐酸环丙沙星的方法,所述钨酸盐半导体材料CaWO4的加入量和初始浓度为10mg/L盐酸环丙沙星,其配比为1:1。
所述的一种降解抗生素盐酸环丙沙星的方法,所述将钨酸盐半导体材料CaWO4和抗生素盐酸环丙沙星模拟的制药废水混合放入锥形瓶内,在避光的条件下搅拌30min。
所述的一种降解抗生素盐酸环丙沙星的方法,所述装有混合物的锥形瓶放入数控超声波装置中,超声时间为20-300min;超声温度为10-50℃。
所述的一种降解抗生素盐酸环丙沙星的方法,所述超声功率为80-200W。
所述的一种降解抗生素盐酸环丙沙星的方法,所述溶液pH为2-10。
本发明的优点与效果是:
(1)本发明使用水热法合成钨酸盐(CaWO4)半导体材料。并将所合成的钨酸盐应用于催化超声降解盐酸环丙沙星,然后通过使用紫外—可见分光光度计直接检测盐酸环丙沙星的吸光度的变化,从而判定钨酸盐(CaWO4)的催化性能。本发明通过探究包括催化剂加入量、盐酸环丙沙星溶液的初始浓度、超声时间、超声功率和可重复利用性能的可行性,表明该技术能应用到降解制药废水方面。
(2)纳米半导体材料催化超声降解技术在环保领域特别是在水处理工程中的应用研究已成为热点之一,利用此种技术解决污染问题将成为未来水污染治理发展的重要方向,它的发展和应用将会给废水处理技术的发展开创新的领域,其所具有的巨大潜力已得到人们广泛的认同。
纳米半导体材料催化超声降解废水是一种新型的水处理技术,能将有机污染物彻底降解为CO2、H2O 以及其他无机盐。随着此种水处理技术的应用研究不断深入开展,其必将在工业、农业、环保等领域发挥越来越重要的作用。此应用技术配置造价低、制备工艺简单、能耗少、有机污染物降解率高、降解过程中不产生二次污染、且催化剂可重复利用,适于大规模生产。
附图说明
图1不同实验条件下的盐酸环丙沙星溶液的UV-vis光谱图;
图2 CaWO4加入量对盐酸环丙沙星的降解率的影响;
图3超声功率对催化超声降解盐酸环丙沙星的影响;
图4超声时间对催化超声降解盐酸环丙沙星的影响;
图5 CaWO4催化超声降解盐酸环丙沙星的可重复利用性。
具体实施方式
下面结合实施例对本发明进行详细说明。
本发明是一种环境友好型降解抗生素盐酸环丙沙星的新型应用技术,其使用水热合成法制备出钨酸盐半导体材料CaWO4,并与超声技术相配合,用以催化超声降解盐酸环丙沙星模拟的制药废水。超声降解是20世纪90年代初新发展起来的一种高效降解有机污染物的处理方法,其原理是利用超声在溶液介质中产生的空化效应,使有机物降解并达到矿化。因此超声波的空化效应以及由此引发的物理和化学变化才是有机物超声降解的根本原因。
本发明把两者结合起来降解盐酸环丙沙星,通过实验证明该技术的可行,该技术在超声降解抗生素废水方面效果明显。
实施例1:由图2可知,在CaWO4存在和超声条件下,盐酸环丙沙星的降解率随着加入量从0.5增加到1逐渐增加,再随着加入量1到2增加而逐渐降低,说明CaWO4催化超声降解盐酸环丙沙星与催化剂比为1:1时最佳。
实施例2:改变超声功率来研究降解盐酸环丙沙星的效果,实验中,CaWO4的加入量为1.0 g/L,超声照射时间为120 min,染料溶液的pH为6,盐酸环丙沙星的浓度为10 mg/L,超声装置的输出功率设定在80-200 W范围内。由图3可知,当超声功率逐渐增加时,盐酸环丙沙星的降解率也明显增加。
实施例3:CaWO4对盐酸环丙沙星的降解率的实验是在加入量1 g/L进行的,超声照射时间为120min,盐酸环丙沙星的浓度为10mg/L,溶液的pH为6,超声装置的功率为200 W。取80 mL10mg/L的盐酸环丙沙星溶液,加入准确称取的一定量1 g/L的纳米CaWO4粉末,于暗处磁力搅拌30 min。取悬浮液在经超声照射2h后,取样离心分离后取上清液。盐酸环丙沙星的降解率为70.75%。
实施例4:由图5可知,表明了CaWO4具有良好的可重复利用性,可以重复多次使用。

Claims (6)

1.一种降解抗生素盐酸环丙沙星的方法,其特征在于,所述方法将催化剂钨酸钙与超声技术联用;利用超声波与CaWO4联用技术对盐酸环丙沙星模拟的制药废水进行降解,其步骤如下:
称取需求浓度的盐酸环丙沙星溶液于锥形瓶中,加入CaWO4纳米级粉末,平行试验做3组;在避光条件下搅拌后取样进行离心,离心完毕后使用紫外可见分光光度计对上清液进行测定,锥形瓶中剩余溶液在避光条件下进行超声,将超声后的溶液离心取其上清液同样进行紫外可见光谱测定即可。
2.根据权利要求1所述的一种降解抗生素盐酸环丙沙星的方法,其特征在于,所述钨酸盐半导体材料CaWO4的加入量和初始浓度为10mg/L盐酸环丙沙星,其配比为1:1。
3.根据权利要求1所述的一种降解抗生素盐酸环丙沙星的方法,其特征在于,所述将钨酸盐半导体材料CaWO4和抗生素盐酸环丙沙星模拟的制药废水混合放入锥形瓶内,在避光的条件下搅拌30min。
4.根据权利要求1所述的一种降解抗生素盐酸环丙沙星的方法,其特征在于,所述装有混合物的锥形瓶放入数控超声波装置中,超声时间为20-300min;超声温度为10-50℃。
5.根据权利要求4所述的一种降解抗生素盐酸环丙沙星的方法,其特征在于,所述超声功率为80-200W。
6.根据权利要求1所述的一种降解抗生素盐酸环丙沙星的方法,其特征在于,所述溶液pH为2-10。
CN201810310964.4A 2018-04-09 2018-04-09 一种降解抗生素盐酸环丙沙星的方法 Withdrawn CN108394956A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810310964.4A CN108394956A (zh) 2018-04-09 2018-04-09 一种降解抗生素盐酸环丙沙星的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810310964.4A CN108394956A (zh) 2018-04-09 2018-04-09 一种降解抗生素盐酸环丙沙星的方法

Publications (1)

Publication Number Publication Date
CN108394956A true CN108394956A (zh) 2018-08-14

Family

ID=63099825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810310964.4A Withdrawn CN108394956A (zh) 2018-04-09 2018-04-09 一种降解抗生素盐酸环丙沙星的方法

Country Status (1)

Country Link
CN (1) CN108394956A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016116479A1 (en) * 2015-01-22 2016-07-28 Novamont S.P.A. Process for the recovery of cobalt and tungstic acid and/or its derivatives from aqueous solutions.
CN106495380A (zh) * 2016-12-21 2017-03-15 沈阳化工大学 一种催化降解有机染料及食品添加剂日落黄的方法
CN106630326A (zh) * 2016-12-21 2017-05-10 沈阳化工大学 利用超声波/FeWO4联用降解有机染料偶氮荧光桃红的方法
CN107308957A (zh) * 2017-06-27 2017-11-03 河南师范大学 一种球状Bi2S3/Bi2WO6异质结光催化材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016116479A1 (en) * 2015-01-22 2016-07-28 Novamont S.P.A. Process for the recovery of cobalt and tungstic acid and/or its derivatives from aqueous solutions.
CN106495380A (zh) * 2016-12-21 2017-03-15 沈阳化工大学 一种催化降解有机染料及食品添加剂日落黄的方法
CN106630326A (zh) * 2016-12-21 2017-05-10 沈阳化工大学 利用超声波/FeWO4联用降解有机染料偶氮荧光桃红的方法
CN107308957A (zh) * 2017-06-27 2017-11-03 河南师范大学 一种球状Bi2S3/Bi2WO6异质结光催化材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹丽云等著: "《钨酸盐纳米材料的湿化学合成及光催化性能》", 31 December 2017, 西北工业大学出版社 *

Similar Documents

Publication Publication Date Title
Yi et al. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation
Liu et al. Semi-continuous anaerobic digestion of secondary sludge with free ammonia pretreatment: Focusing on volatile solids destruction, dewaterability, pathogen removal and its implications
Wu et al. Effects of potassium ferrate oxidation on sludge disintegration, dewaterability and anaerobic biodegradation
Dashtian et al. Adsorption of semisoft pollutants onto Bi2S3/Ag2S-AC under the influence of ultrasonic waves as external filed
Dhiman et al. Statistical optimization of process parameters for removal of dyes from wastewater on chitosan cenospheres nanocomposite using response surface methodology
Cesaro et al. Enhanced anaerobic digestion by ultrasonic pretreatment of organic residues for energy production
Zhang et al. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology
Zhang et al. Biodiesel production directly from oils with high acid value by magnetic Na2SiO3@ Fe3O4/C catalyst and ultrasound
Nidheesh et al. Degradation of dyes from aqueous solution by Fenton processes: a review
Nikfar et al. Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide
Wang et al. Hydroxyl radical generation and contaminant removal from water by the collapse of microbubbles under different hydrochemical conditions
Mahendran et al. Degradation of Acid Scarlet 3R dye using oxidation strategies involving photocatalysis based on Fe doped TiO2 photocatalyst, ultrasound and hydrogen peroxide
Chatel et al. A combined approach using sonochemistry and photocatalysis: how to apply sonophotocatalysis for biomass conversion?
CN107233916B (zh) 载铁木质纤维素酯基球形催化剂的制备方法及其应用
Liu et al. Interactions between tetracycline and extracellular polymeric substances in anammox granular sludge
Zhang et al. Excess sludge cell lysis by ultrasound combined with ozone
Zhao et al. MnO2/CeO2 for catalytic ultrasonic decolorization of methyl orange: Process parameters and mechanisms
Dehghani et al. Efficiency of ultrasound for degradation of an anionic surfactant from water: Surfactant determination using methylene blue active substances method
CN106495380A (zh) 一种催化降解有机染料及食品添加剂日落黄的方法
CN109078647A (zh) 一种Mn3O4/g-C3N4光热协同催化复合材料及其制备方法和应用
CN106630326A (zh) 利用超声波/FeWO4联用降解有机染料偶氮荧光桃红的方法
Wang et al. A dye-methylene blue (MB)-degraded by hydrodynamic cavitation (HC) and combined with other oxidants
Wang et al. Enhanced organic matter and nutrient release from waste activated sludge using ultrasound and surfactant synergetic pre-treatment
Li et al. Octopus-like PtCu nanoframe as peroxidase mimic for phenol removal
Şağban et al. Hydrodynamic cavitation of waste-activated sludge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180814

WW01 Invention patent application withdrawn after publication