CN108389238A - 一种彩绘类文物混合颜料的分析方法 - Google Patents

一种彩绘类文物混合颜料的分析方法 Download PDF

Info

Publication number
CN108389238A
CN108389238A CN201810259228.0A CN201810259228A CN108389238A CN 108389238 A CN108389238 A CN 108389238A CN 201810259228 A CN201810259228 A CN 201810259228A CN 108389238 A CN108389238 A CN 108389238A
Authority
CN
China
Prior art keywords
pigment
spectrum
colored drawing
historical relic
end member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810259228.0A
Other languages
English (en)
Inventor
吕书强
侯妙乐
尹琴丽
刘依依
刘冰
董庆豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Civil Engineering and Architecture
Original Assignee
Beijing University of Civil Engineering and Architecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Civil Engineering and Architecture filed Critical Beijing University of Civil Engineering and Architecture
Priority to CN201810259228.0A priority Critical patent/CN108389238A/zh
Publication of CN108389238A publication Critical patent/CN108389238A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10036Multispectral image; Hyperspectral image

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种彩绘类文物混合颜料的分析方法,首先利用高光谱成像和地物光谱仪采集待处理彩绘类文物表面感兴趣区域的宽波段连续反射光谱;然后将该宽波段连续反射光谱视为多源混合信息,利用非负矩阵分解算法实现相同颜色区域的颜料分解,得到不同颜料的反射光谱曲线;再将所述不同颜料的反射光谱曲线与颜料光谱库中的光谱进行匹配,得到混合颜料的种类;利用基于众数的比值导数法来获取各个种类颜料的丰度,进而获得待处理彩绘类文物表面色彩组成颜料的种类和比例。上述方法能够永久留存彩绘类文物的颜料数字化信息,有助于对文物的数字化虚拟修复和实体修复。

Description

一种彩绘类文物混合颜料的分析方法
技术领域
本发明涉及文物保护与鉴定技术领域,尤其涉及一种彩绘类文物混合颜料的分析方法。
背景技术
目前,在文物保护与鉴定技术领域,混合颜料分析是挖掘古书画内在价值,为其正确的评估分析提供科学依据基础的技术。然而纸寿千年,绢寿八百,即使没有环境、人为等因素的影响,古书画出现发霉、虫蛀、污迹、破损等各种情况也非常普遍,为了更好地留存和展示古书画作品的价值,往往需要进行对其进行颜色修复和复制,这就需要确定颜料的种类。
现有技术中有很多科学技术应用于彩绘类文物的颜料类别鉴定,如X射线衍射分析、荧光X射线分析、拉曼光谱分析、电子显微分析、近红外光谱分析等技术,通过测定颜料的元素、结构以及外在形貌等特征确定物质的类别,但现有技术的方法在大多数情况下需要制样才能进行精确测量,而制样本身就是对文物的一个二次损害的过程,由于文物不可再生的特殊性,对于文物分析所采用的技术应当是无损的,而现有技术中也缺乏对混合颜料分析的解决方案。
发明内容
本发明的目的是提供一种彩绘类文物混合颜料的分析方法,该方法能够永久留存彩绘类文物的颜料数字化信息,有助于对文物的数字化虚拟修复,并有效缩短文物实体的修复时间,对彩绘类文物的数字化保护与修复具有较大的经济效益和社会效益。
本发明的目的是通过以下技术方案实现的:
一种彩绘类文物混合颜料的分析方法,所述方法包括:
步骤1、利用高光谱成像和地物光谱仪采集待处理彩绘类文物表面感兴趣区域的宽波段连续反射光谱;
步骤2、将该宽波段连续反射光谱视为多源混合信息,利用非负矩阵分解算法实现相同颜色区域的颜料分解,得到不同颜料的反射光谱曲线;
步骤3、将所述不同颜料的反射光谱曲线与颜料光谱库中的光谱进行匹配,得到混合颜料的种类;
步骤4、再利用基于众数的比值导数法来获取各个种类颜料的丰度,进而获得待处理彩绘类文物表面色彩组成颜料的种类和比例。
由上述本发明提供的技术方案可以看出,上述方法能够永久留存彩绘类文物的颜料数字化信息,有助于对文物的数字化虚拟修复,并有效缩短文物实体的修复时间,对彩绘类文物的数字化保护与修复具有较大的经济效益和社会效益。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的彩绘类文物混合颜料的分析方法流程示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例提供的彩绘类文物混合颜料的分析方法流程示意图,所述方法包括:
步骤1、利用高光谱成像和地物光谱仪采集待处理彩绘类文物表面感兴趣区域的宽波段连续反射光谱;
在该步骤中,宽波段连续反射光谱的覆盖范围为350nm-2500nm,采集环境为暗室,利用仪器自带的光源,测量多次取平均值,对同一种颜色采集至少二处以上浓淡不一区域的反射光谱;该宽波段连续反射光谱是由合成颜色的多种纯净颜料的光谱反射混合而成。
步骤2、将该宽波段连续反射光谱视为多源混合信息,利用非负矩阵分解算法实现相同颜色区域的颜料分解,得到不同颜料的反射光谱曲线;
这里,非负矩阵分解算法要求矩阵中所有元素均为非负,在不考虑误差的情况下,将矩阵表示为两个非负矩阵完全相乘的结果,正是由于分解的结果是非负的特点,因而在实际应用中具有明确的物理意义,由于高光谱数据是对地物反射率数据的一种记载,满足非负性的要求,从而可以将非负矩阵分解算法用来高光谱数据的端元提取中来。
具体实现中,该非负矩阵分解算法NMF采用如下式子来表示:
Xn×m=An×rSr×m+En×m
其中,为待分解的宽波段连续反射光谱的混合光谱矩阵;为分解后的两个端元矩阵;En×m表示为误差矩阵;r值为端元个数;并且||E||尽可能小,这里x∈R+表示x≥0;
在不考虑误差的影响,对于由一个已知量X求解出两个未知量A和S的问题,往往转化为下式来求解,即:
min||X-AS||;
进一步,通过定义目标函数和选择优化准则来求解两个端元矩阵A和S,所定义的目标函数包括最小化欧式距离和K-L散度,其中:
所述最小化欧式距离表示为:
所述K-L散度表示为:
其中i(i=1,2,…n)为混合光谱矩阵X的行号(即光谱通道),其最大值就是n,n是所测量的一条光谱曲线的总的点数,与仪器性能有关,是仪器的总的波段数;j(j=1,2,…m)是混合光谱矩阵X的列号,j的最大值是m,m代表选择几条混合反射光谱参与运算。
结合所述目标函数,不断交替迭代计算端元矩阵A和S的值,直到达到最优解,其迭代公式表示为:
从非负矩阵分解的公式来看,该算法在于寻找到一组基向量,使得目标函数最小化,对于混合颜料光谱分离来说,各个纯净颜料组分光谱就是这样的一组基向量,因而求解出这组基向量,就相当于得到了构成混合光谱的端元光谱。
步骤3、将所述不同颜料的反射光谱曲线与颜料光谱库中的光谱进行匹配,得到混合颜料的种类;
步骤4、再利用基于众数的比值导数法来获取各个种类颜料的丰度,进而获得该待处理彩绘类文物表面色彩组成颜料的种类和比例。
这里,基于众数的比值导数光谱法是建立在原有比值导数法的基础上,又考虑到存在非线性波段的因素,通过改进比值导数光谱法中特征波段的选取方法,引进众数这一统计概念,用来表征其总体特征,进而确定丰度。
具体实现中,上述利用基于众数的比值导数法来获取各个种类颜料的丰度的过程为:
首先根据色差值与颜料丰度之间的关系确定统计区间;
然后将基于比值导数法求解的各个种类颜料的丰度值按照非负且大于1的约束条件剔除异常值之后,计算落在统计区间内的个数,并将其所在区间认定为初步的丰度值范围;
再以步长0.01为比例间隔,构建一系列模拟混合光谱,计算模拟光谱与实测光谱的相关系数,相关系数最高的一组端元比例即为各个种类颜料最终的丰度值。
具体实现中,比值导数解混算法是建立在混合光谱满足线性混合模型的基础上,并满足端元丰度非负并且端元丰度之和为1的约束条件。当混合物仅包含两种矿物组分时,且不考虑误差限项时,该比值导数法的模型表示为:
r(λi)=F1×r1i)+F2×r2i)
其中,i为光谱通道,r(λi)为混合光谱在λi波长位置的反射率,F1、F2为端元的丰度,r1i)、r2i)分别为端元F1、F2所对应的在λi波长位置的反射率;
将端元F2视为干扰组分,上述表达式两侧同时除以F2端元光谱的反射率,得到
再对r(λi)一阶求导,得到
通过该式可以看出,此时导数光谱已经和F2端元的含量无关,然后再两边同时除以即得到F1端元的丰度;
再将F1端元经过二阶求导之后的丰度结果作为各个种类颜料的初始丰度值,具体表达式为:
可以看出,比值导数光谱法求解过程,简单清晰,不需要复杂的迭代运算,能够快速、准确的进行端元光谱丰度的反演。
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
综上所述,本发明实施例所提供的方法能够永久留存文物的颜料数字化信息,有助于对文物的数字化虚拟修复,提高文物的艺术表达效果,有利于文物的线上线下数字化展示;另外,颜料的丰度反演对文物的实体修复,特别是对其全色过程能够提供科学的依据,能够有效缩短文物实体的修复时间,对我国具有大量馆藏彩绘类文物数字化保护与修复具有较大的经济效益和社会效益。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

1.一种彩绘类文物混合颜料的分析方法,其特征在于,所述方法包括:
步骤1、利用高光谱成像和地物光谱仪采集待处理彩绘类文物表面感兴趣区域的宽波段连续反射光谱;
步骤2、将该宽波段连续反射光谱视为多源混合信息,利用非负矩阵分解算法实现相同颜色区域的颜料分解,得到不同颜料的反射光谱曲线;
步骤3、将所述不同颜料的反射光谱曲线与颜料光谱库中的光谱进行匹配,得到混合颜料的种类;
步骤4、再利用基于众数的比值导数法来获取各个种类颜料的丰度,进而获得该待处理彩绘类文物表面色彩组成颜料的种类和比例。
2.根据权利要求1所述彩绘类文物混合颜料的分析方法,其特征在于,在步骤1中,
所述宽波段连续反射光谱的覆盖范围为350nm-2500nm;且该宽波段连续反射光谱是由合成颜色的多种纯净颜料的光谱反射混合而成。
3.根据权利要求1所述彩绘类文物混合颜料的分析方法,其特征在于,在步骤2中,
所述非负矩阵分解算法采用如下式子来表示:
Xn×m=An×rSr×m+En×m
其中,为待分解的宽波段连续反射光谱的混合光谱矩阵;为分解后的两个端元矩阵;En×m表示为误差矩阵;r值为端元个数;
进一步,通过定义目标函数和选择优化准则来求解两个端元矩阵A和S,所定义的目标函数包括最小化欧式距离和K-L散度,其中:
所述最小化欧式距离表示为:
所述K-L散度表示为:
其中i(i=1,2,…n)为混合光谱矩阵X的行号,其最大值是n,n是所测量的一条光谱曲线的总的点数;j(j=1,2,…m)是混合光谱矩阵X的列号,其最大值是m,m代表选择几条混合反射光谱参与运算;
结合所述目标函数,不断交替迭代计算端元矩阵A和S的值,直到达到最优解,其迭代公式表示为:
4.根据权利要求1所述彩绘类文物混合颜料的分析方法,其特征在于,在步骤4中,所述利用基于众数的比值导数法来获取各个种类颜料的丰度,具体包括:
首先根据色差值与颜料丰度之间的关系确定统计区间;
然后将基于比值导数法求解的各个种类颜料的丰度值按照非负且大于1的约束条件剔除异常值之后,计算落在统计区间内的个数,并将其所在区间认定为初步的丰度值范围;
再以步长0.01为比例间隔,构建一系列模拟混合光谱,计算模拟光谱与实测光谱的相关系数,相关系数最高的一组端元比例即为各个种类颜料最终的丰度值。
5.根据权利要求4所述彩绘类文物混合颜料的分析方法,其特征在于,所述比值导数法的模型表示为:
r(λi)=F1×r1i)+F2×r2i)
其中,i为光谱通道,r(λi)为混合光谱在λi波长位置的反射率,F1、F2为端元的丰度,r1i)、r2i)分别为端元F1、F2所对应的在λi波长位置的反射率;
将端元F2视为干扰组分,上述表达式两侧同时除以F2端元光谱的反射率,得到
再对r(λi)一阶求导,得到
然后再两边同时除以得到F1端元的丰度;
将F1端元经过二阶求导之后的丰度结果作为各个种类颜料的初始丰度值,具体表达式为:
CN201810259228.0A 2018-03-27 2018-03-27 一种彩绘类文物混合颜料的分析方法 Pending CN108389238A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810259228.0A CN108389238A (zh) 2018-03-27 2018-03-27 一种彩绘类文物混合颜料的分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810259228.0A CN108389238A (zh) 2018-03-27 2018-03-27 一种彩绘类文物混合颜料的分析方法

Publications (1)

Publication Number Publication Date
CN108389238A true CN108389238A (zh) 2018-08-10

Family

ID=63072671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810259228.0A Pending CN108389238A (zh) 2018-03-27 2018-03-27 一种彩绘类文物混合颜料的分析方法

Country Status (1)

Country Link
CN (1) CN108389238A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297918A (zh) * 2018-08-21 2019-02-01 广西科技大学 一种检测酸性红26的方法
CN109523600A (zh) * 2018-11-09 2019-03-26 广东省博物馆 一种文物保护修复补配色方法
CN110441244A (zh) * 2019-07-26 2019-11-12 北京建筑大学 一种顾及吸收特征的光谱分段矿物颜料识别方法
CN113160077A (zh) * 2021-04-08 2021-07-23 武汉纺织大学 一种褪变色彩色壁画颜色高保真数字化修复方法
CN115128017A (zh) * 2022-08-11 2022-09-30 天津大学 一种彩绘文物照明损伤评估方法及监测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193090A (zh) * 2010-03-19 2011-09-21 复旦大学 一种遥感图像混合像元分解方法
CN105224915A (zh) * 2015-09-07 2016-01-06 河海大学 一种高光谱图像混合像元分解方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193090A (zh) * 2010-03-19 2011-09-21 复旦大学 一种遥感图像混合像元分解方法
CN105224915A (zh) * 2015-09-07 2016-01-06 河海大学 一种高光谱图像混合像元分解方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
侯妙乐 等: "《高光谱成像技术在彩绘文物分析中的研究综述》", 《光谱学与光谱分析》 *
吕书强 等: "《基于众数的比值导数法在混合颜料解混中的研究》", 《光散射学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297918A (zh) * 2018-08-21 2019-02-01 广西科技大学 一种检测酸性红26的方法
CN109523600A (zh) * 2018-11-09 2019-03-26 广东省博物馆 一种文物保护修复补配色方法
CN109523600B (zh) * 2018-11-09 2021-08-31 广东省博物馆 一种文物保护修复补配色方法
CN110441244A (zh) * 2019-07-26 2019-11-12 北京建筑大学 一种顾及吸收特征的光谱分段矿物颜料识别方法
CN113160077A (zh) * 2021-04-08 2021-07-23 武汉纺织大学 一种褪变色彩色壁画颜色高保真数字化修复方法
CN113160077B (zh) * 2021-04-08 2022-05-13 武汉纺织大学 一种褪变色彩色壁画颜色高保真数字化修复方法
CN115128017A (zh) * 2022-08-11 2022-09-30 天津大学 一种彩绘文物照明损伤评估方法及监测方法

Similar Documents

Publication Publication Date Title
CN108389238A (zh) 一种彩绘类文物混合颜料的分析方法
Ho et al. LZIFU: an emission-line fitting toolkit for integral field spectroscopy data
CN107643267B (zh) 一种基于可见光谱成像的古代壁画颜料无损全面识别方法
WO2016000088A1 (zh) 一种基于最佳指数-相关系数法的高光谱波段提取方法
KR101725700B1 (ko) 반사각 데이터를 이용한 도장면의 텍스처 분석
CN105051762B (zh) 用于确定涂料配方的系统和方法
EP3066435B1 (en) Texture analysis of a coated surface using pivot-normalization
US10969952B2 (en) Color and texture match ratings for optimal match selection
CN105069234B (zh) 一种基于视觉感知特征的光谱降维方法及系统
Nidamanuri et al. Use of field reflectance data for crop mapping using airborne hyperspectral image
CN109409350B (zh) 一种基于pca建模反馈式载荷加权的波长选择方法
CN108427934A (zh) 一种高光谱影像混合像元分解方法
CN109946241A (zh) 一种基于高光谱计算成像系统的土壤分类方法
CN104268896B (zh) 基于光谱抽样直方图的超光谱降维匹配方法及系统
CN111141386B (zh) 一种基于近红外光谱的印刷油墨颜色鉴别方法
CN113189021A (zh) 基于光谱识别岩石颜色的方法
González‐Vidal et al. Automatic classification system of Raman spectra applied to pigments analysis
DE102015003947A1 (de) System und Verfahren zum Sortieren von Farbfächerfarben
CN110926608A (zh) 一种基于光源筛选的光谱重建方法
CN115597726A (zh) 色温检测的方法、装置和电子设备
Marchant et al. Spectral invariance under daylight illumination changes
CN115713634A (zh) 一种联合相似性度量与视觉感知的色彩搭配评价方法
CN111750993B (zh) 一种基于成像条件校正的开放测量环境光谱测量方法
Kuntz et al. Karlsruhe optimized and precise radiative transfer algorithm: III. ADDLIN and TRANSF algorithms for modeling spectral transmittance and radiance
CN105190292B (zh) 使用多维几何结构的用于涂敷表面的纹理分析的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180810

RJ01 Rejection of invention patent application after publication