CN108388128A - 基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 - Google Patents
基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 Download PDFInfo
- Publication number
- CN108388128A CN108388128A CN201810212241.0A CN201810212241A CN108388128A CN 108388128 A CN108388128 A CN 108388128A CN 201810212241 A CN201810212241 A CN 201810212241A CN 108388128 A CN108388128 A CN 108388128A
- Authority
- CN
- China
- Prior art keywords
- formula
- rotor aircraft
- derivative
- max
- representing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000013461 design Methods 0.000 claims abstract description 31
- 230000008569 process Effects 0.000 claims abstract description 17
- 230000001133 acceleration Effects 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 6
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical group C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 abstract description 7
- 230000001052 transient effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,针对四旋翼飞行器的动力学系统,选择一种对称时不变反正切型约束李雅普诺夫函数,设计一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法。对称时不变反正切型约束李雅普诺夫函数的设计是为了保证系统的输出能够限制在一定的范围内,避免过大的超调,同时还能减少到达时间。从而改善四旋翼飞行器系统的动态响应性能。本发明提供一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,使系统具有较好的动态响应过程。
Description
技术领域
本发明涉及一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,使四旋翼飞行器系统有较好的动态响应过程。
背景技术
四旋翼飞行器作为旋翼式飞行器的一种,以其体积小、机动性能好、设计简单、制造成本低廉等优点,吸引了国内外大学、研究机构、公司的广泛关注。然而,由于四旋翼飞行器体积小且重量轻,飞行中易受到外部干扰,如何实现对四旋翼飞行器的高性能运动控制已经成为一个热点问题。针对四旋翼飞行器的控制问题,存在很多控制方法,例如PID控制、自抗扰控制、滑模控制、反步控制等。
其中反步控制已经广泛应用于非线性系统,其优点包括响应速度快、实施方便、对系统不确定和外部干扰的鲁棒性等。传统的反步控制,只是考虑了四旋翼飞行器的稳态性能,并没有过多地关注其瞬态响应性能。因此,传统的反步控制方法使得四旋翼飞行器系统在实际情况中的应用有很大阻碍。为解决这一问题,基于约束李雅普诺夫函数的反步控制方法被提出,这种方法在实际情况中能够有效地改善四旋翼飞行器系统的瞬态性能。
发明内容
为了改善四旋翼飞行器系统瞬态性能,本发明提供了一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,减少了超调量和超调时间,使四旋翼飞行器系统具有一个良好的动态响应性能。
为了解决上述技术问题提出的技术方案如下:
一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,包括以下步骤:
步骤1,建立四旋翼飞行器系统的动态模型,设定系统的初始值、采样时间以及控制参数,过程如下:
1.1确定从基于四旋翼飞行器系统的机体坐标系到基于地球的惯性坐标的转移矩阵T:
其中,φ,θ,ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角,表示飞行器依次绕惯性坐标系的各坐标轴旋转的角度;
1.2四旋翼飞行器平动过程中的动态模型如下:
其中,x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,Uf表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度;
将式(1)代入式(2)得:
1.3四旋翼飞行器转动过程中的动态模型为:
其中,τx,τy,τz分别代表机体坐标系上各个轴的力矩分量,Ixx,Iyy,Izz分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ωp表示翻滚角速度,ωq表示俯仰角速度,ωr表示偏航角速度,表示翻滚角加速度,表示俯仰角加速度,表示偏航角加速度;
考虑到飞行器处于低速飞行或者悬停状态,认为
因此式(4)改写为:
联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:
其中,ux=cosφsinθcosψ+sinφsinψ,uy=cosφsinθsinψ-sinφcosψ;
1.4根据式(6),定义φ,θ的期望值为:
其中,φd为φ的期望信号值,θd为θ期望信号值,arcsin为反正弦函数;
步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角跟踪误差及其一阶导数;设计位置和姿态角控制器,过程如下:
2.1定义z跟踪误差及其一阶导数:
e1=z-zd,
其中,zd表示z的期望信号;
2.2设计约束李雅普诺夫函数并求解其一阶导数:
其中,Kb1为e1的边界,满足Kb1>|e1|max,|e1|max为|e1|的最大值,α1为虚拟控制量,其表达式为:
其中,k11为正常数;
将式(10)代入式(9),得:
其中,
2.3设计李雅普诺夫函数V12为:
求解式(12)的一阶导数,得:
其中
将式(14)和式(6)代入式(13),得:
2.4设计Uf:
其中,k12为正常数;
2.5定义x,y跟踪误差分别为e2,e3,则有:
e2=x-xd,e3=y-yd,
其中,xd,yd分别表示x,y的期望信号;
2.6设计约束李雅普诺夫函数
分别求解其一阶导数,得:
其中,kb2为e2的边界,满足Kb2>|e2|max,|e2|max为|e2|的最大值;Kb3为e3的边界,满足Kb3>|e3|max,|e2|max为|e3|的最大值;α2,α3为虚拟控制量,其表达式为:
其中,k21,k31为正常数;
将式(19)代入式(18),得:
其中,
2.7设计李雅普诺夫函数V22,V32
求解式(21)的一阶导数,得:
其中
将式(23),(6)代入式(22),分别得:
2.8通过式(24),(25)分别设计ux,uy:
其中,k22,k32为正常数;
2.9定义姿态角跟踪误差及其一阶导数:
ej=xj-xjd,
其中,j=4,5,6,x4=φ,x5=θ,x6=ψ,x4d表示φ的期望值,x5d表示θ的期望值,x6d表示ψ的期望值,e4表示φ的跟踪误差,e5表示θ的跟踪误差,e6表示ψ的跟踪误差;
2.10设计约束李雅普诺夫函数并求解其一阶导数:
其中,kj为正常数,Kbj为ej的边界,满足Kbj>|ej|max,|ej|max为|ej|的最大值;αj为姿态角的虚拟控制量,其表达式为:
其中,kj1为正常数;
将式(29)代入式(28),得:
其中
2.11设计约束李雅普诺夫函数:
求解式(31)的一阶导数,得:
将式(33)和式(6)代入式(32),分别得:
2.12通过式(34),(35),(36)分别设计τx,τy,τz:
其中,k42,k52,k62为正常数;
步骤3,验证四旋翼飞行器系统的稳定性,过程如下:
3.1将式(16)代入式(15),得:
3.2将式(26)代入式(24)、(25),得:
3.3把式(37)代入式(34)、(35)、(36),得
3.4通过(38),(39),(40)知四旋翼飞行器系统是稳定的。
本发明基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,改善了系统的瞬态性能,减少了超调量和到达时间。
本发明的技术构思为:针对四旋翼飞行器的动力学系统,设计一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法。对称时不变反正切型约束李雅普诺夫函数的设计是为了保证系统的输出能够限制在一定的范围内,避免过大的超调,同时还能减少到达时间。从而改善四旋翼飞行器系统的动态响应性能。
本发明优点为:降低超调量,减少到达时间,改善瞬态性能。
附图说明
图1为本发明的位置跟踪效果示意图。
图2为本发明的姿态角跟踪效果示意图。
图3为本发明的位置控制器输入示意图。
图4为本发明的姿态角控制器输入示意图。
图5为本发明的控制流程示意图。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1-图5,一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,包括以下步骤:
步骤1,建立四旋翼飞行器系统的动态模型,设定系统的初始值、采样时间以及控制参数,过程如下:
1.1确定从基于四旋翼飞行器系统的机体坐标系到基于地球的惯性坐标的转移矩阵T:
其中,φ,θ,ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角,表示飞行器依次绕惯性坐标系的各坐标轴旋转的角度;
1.2四旋翼飞行器平动过程中的动态模型如下:
其中,x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,Uf表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度;
将式(1)代入式(2)得:
1.3四旋翼飞行器转动过程中的动态模型为:
其中,τx,τy,τz分别代表机体坐标系上各个轴的力矩分量,Ixx,Iyy,Izz分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ωp表示翻滚角速度,ωq表示俯仰角速度,ωr表示偏航角速度,表示翻滚角加速度,表示俯仰角加速度,表示偏航角加速度;
考虑到飞行器处于低速飞行或者悬停状态,姿态角变化较小,认为
因此式(4)改写为:
联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:
其中,ux=cosφsinθcosψ+sinφsinψ,uy=cosφsinθsinψ-sinφcosψ;
1.4根据式(6),定义φ,θ的期望值为:
其中,φd为φ的期望信号值,θd为θ期望信号值,arcsin为反正弦函数;
步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角跟踪误差及其一阶导数;设计位置和姿态角控制器,过程如下:
2.1定义z跟踪误差及其一阶导数:
e1=z-zd,
其中,zd表示z的期望信号;
2.2设计约束李雅普诺夫函数并求解其一阶导数:
其中,Kb1为e1的边界,满足Kb1>|e1|max,|e1|max为|e1|的最大值,α1为虚拟控制量,其表达式为:
其中,k11为正常数;
将式(10)代入式(9),得:
其中,
2.3设计李雅普诺夫函数V12为:
求解式(12)的一阶导数,得:
其中
将式(14)和式(6)代入式(13),得:
2.4设计Uf:
其中,k12为正常数;
2.5定义x,y跟踪误差分别为e2,e3,则有:
e2=x-xd,e3=y-yd,
其中,xd,yd分别表示x,y的期望信号;
2.6设计约束李雅普诺夫函数
分别求解其一阶导数,得:
其中,Kb2为e2的边界,满足Kb2>|e2|max,|e2|max为|e2|的最大值;Kb3为e3的边界,满足Kb3>|e3|max,|e3|max为|e3|的最大值;α2,α3为虚拟控制量,其表达式为:
其中,k21,k31为正常数;
将式(19)代入式(18),得:
其中,
2.7设计李雅普诺夫函数V22,V32
求解式(21)的一阶导数,得:
其中
将式(23),(6)代入式(22),分别得:
2.8通过式(24),(25)分别设计ux,uy:
其中,k22,k32为正常数;
2.9定义姿态角跟踪误差及其一阶导数:
ej=xj-xjd,
其中,j=4,5,6,x4=φ,x5=θ,x6=ψ,x4d表示φ的期望值,x5d表示θ的期望值,x6d表示ψ的期望值,e4表示φ的跟踪误差,e5表示θ的跟踪误差,e6表示ψ的跟踪误差;
2.10设计约束李雅普诺夫函数并求解其一阶导数:
其中,kj为正常数,Kbj为ej的边界,满足Kbj>|ej|max,|ej|max为|ej|的最大值;αj为姿态角的虚拟控制量,其表达式为:
其中,kj1为正常数;
将式(29)代入式(28),得:
其中
2.11设计约束李雅普诺夫函数:
求解式(31)的一阶导数,得:
将式(33)和式(6)代入式(32),分别得:
2.12通过式(34),(35),(36)分别设计τx,τy,τz:
其中,k42,k52,k62为正常数;
步骤3,验证四旋翼飞行器系统的稳定性,过程如下:
3.1将式(16)代入式(15),得:
3.2将式(26)代入式(24)、(25),得:
3.3把式(37)代入式(34)、(35)、(36),得
3.4通过(38),(39),(40)知四旋翼飞行器系统是稳定的。
为了验证所提方法的可行性,本发明给出了该控制方法在MATLAB平台上的仿真结果:
参数给定如下:式(2)中m=1.1kg,g=9.81N/kg;式(4)中, Ixx=1.22kg·m2,Iyy=1.22kg·m2,Izz=2.2kg·m2;式(8),式(17)和式 (27)中zd=1,xd=1,yd=1,ψd=0.5;式(10),式(19)和式(29)中 k11=2,k21=2,k31=2,k41=2,k51=2,k61=2;式(16),式(26)和式(37) 中k12=2,k22=2,k32=2,k42=2,k52=2,k62=2;式(9),式(18)和式(28) kb1=1.5,kb2=1.5,kb3=1.5,kb4=2,kb5=2,kb6=2。
从图1和图2可知,系统具有良好的瞬态特性,到达时间为6.24秒,超调量为0。
综上所述,基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法能有效地改善四旋翼飞行器系统的瞬态性能。
以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明不只是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及范围的前提下对其可作种种变形加以实施。
Claims (1)
1.一种基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,其特征在于,包括以下步骤:
步骤1,建立四旋翼飞行器系统的动态模型,设定系统的初始值、采样时间以及控制参数,过程如下:
1.1确定从基于四旋翼飞行器系统的机体坐标系到基于地球的惯性坐标的转移矩阵T:
其中,φ,θ,ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角,表示飞行器依次绕惯性坐标系的各坐标轴旋转的角度;
1.2四旋翼飞行器平动过程中的动态模型如下:
其中,x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,Uf表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度;
将式(1)代入式(2)得:
1.3四旋翼飞行器转动过程中的动态模型为:
其中,τx,τy,τz分别代表机体坐标系上各个轴的力矩分量,Ixx,Iyy,Izz分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ωp表示翻滚角速度,ωq表示俯仰角速度,ωr表示偏航角速度,表示翻滚角加速度,表示俯仰角加速度,表示偏航角加速度;
考虑到飞行器处于低速飞行或者悬停状态,认为
因此式(4)改写为:
联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:
其中,ux=cosφsinθcosψ+sinφsinψ,uy=cosφsinθsinψ-sinφcosψ;
1.4根据式(6),定义φ,θ的期望值为:
其中,φd为φ的期望信号值,θd为θ期望信号值,arcsin为反正弦函数;
步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角跟踪误差及其一阶导数;设计位置和姿态角控制器,过程如下:
2.1定义z跟踪误差及其一阶导数:
其中,zd表示z的期望信号;
2.2设计约束李雅普诺夫函数并求解其一阶导数:
其中,Kb1为e1的边界,满足Kb1>|e1|max,|e1|max为|e1|的最大值,α1为虚拟控制量,其表达式为:
其中,k11为正常数;
将式(10)代入式(9),得:
其中,
2.3设计李雅普诺夫函数V12为:
求解式(12)的一阶导数,得:
其中
将式(14)和式(6)代入式(13),得:
2.4设计Uf:
其中,k12为正常数;
2.5定义x,y跟踪误差分别为e2,e3,则有:
其中,xd,yd分别表示x,y的期望信号;
2.6设计约束李雅普诺夫函数
分别求解其一阶导数,得:
其中,Kb2为e2的边界,满足Kb2>|e2|max,|e2|max为|e2|的最大值;Kb3为e3的边界,满足Kb3>|e3|max,|e3|max为|e3|的最大值;α2,α3为虚拟控制量,其表达式为:
其中,k21,k31为正常数;
将式(19)代入式(18),得:
其中,
2.7设计李雅普诺夫函数V22,V32
求解式(21)的一阶导数,得:
其中
将式(23),(6)代入式(22),分别得:
2.8通过式(24),(25)分别设计ux,uy:
其中,k22,k32为正常数;
2.9定义姿态角跟踪误差及其一阶导数:
其中,j=4,5,6,x4=φ,x5=θ,x6=ψ,x4d表示φ的期望值,x5d表示θ的期望值,x6d表示ψ的期望值,e4表示φ的跟踪误差,e5表示θ的跟踪误差,e6表示ψ的跟踪误差;
2.10设计约束李雅普诺夫函数并求解其一阶导数:
其中,kj为正常数,Kbj为ej的边界,满足Kbj>|ej|max,|ej|max为|ej|的最大值;αj为姿态角的虚拟控制量,其表达式为:
其中,kj1为正常数;
将式(29)代入式(28),得:
其中
2.11设计约束李雅普诺夫函数:
求解式(31)的一阶导数,得:
其中
将式(33)和式(6)代入式(32),分别得:
2.12通过式(34),(35),(36)分别设计τx,τy,τz:
其中,k42,k52,k62为正常数;
步骤3,验证四旋翼飞行器系统的稳定性,过程如下:
3.1将式(16)代入式(15),得:
3.2将式(26)代入式(24)、(25),得:
3.3把式(37)代入式(34)、(35)、(36),得
3.4通过(38),(39),(40)知四旋翼飞行器系统是稳定的。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810212241.0A CN108388128A (zh) | 2018-03-15 | 2018-03-15 | 基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 |
CN201910191619.8A CN109917649A (zh) | 2018-03-15 | 2019-03-14 | 一种飞行器反正切输出约束控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810212241.0A CN108388128A (zh) | 2018-03-15 | 2018-03-15 | 基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108388128A true CN108388128A (zh) | 2018-08-10 |
Family
ID=63067476
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810212241.0A Withdrawn CN108388128A (zh) | 2018-03-15 | 2018-03-15 | 基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 |
CN201910191619.8A Withdrawn CN109917649A (zh) | 2018-03-15 | 2019-03-14 | 一种飞行器反正切输出约束控制方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910191619.8A Withdrawn CN109917649A (zh) | 2018-03-15 | 2019-03-14 | 一种飞行器反正切输出约束控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN108388128A (zh) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106444799B (zh) * | 2016-07-15 | 2019-03-12 | 浙江工业大学 | 基于模糊扩张状态观测器和自适应滑模的四旋翼无人机控制方法 |
CN106094855B (zh) * | 2016-07-27 | 2019-03-12 | 浙江工业大学 | 一种四旋翼无人机的终端协同控制方法 |
CN106873624B (zh) * | 2017-03-26 | 2020-03-03 | 天津大学 | 基于部分反馈线性化四旋翼无人机吊挂飞行控制方法 |
CN107479371B (zh) * | 2017-07-03 | 2019-11-05 | 浙江工业大学 | 一种基于快速非奇异终端滑模的四旋翼无人机有限时间自适应控制方法 |
CN107561931B (zh) * | 2017-07-11 | 2019-12-03 | 浙江工业大学 | 一种基于单指数型函数的四旋翼飞行器非线性滑模位姿控制方法 |
CN108549218A (zh) * | 2018-03-15 | 2018-09-18 | 浙江工业大学 | 基于对称时不变正切余弦复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 |
-
2018
- 2018-03-15 CN CN201810212241.0A patent/CN108388128A/zh not_active Withdrawn
-
2019
- 2019-03-14 CN CN201910191619.8A patent/CN109917649A/zh not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CN109917649A (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108037662A (zh) | 一种基于积分滑模障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法 | |
CN108267961A (zh) | 基于对称时变正切型约束李雅普诺夫函数的四旋翼飞行器全状态受限控制方法 | |
CN107942672B (zh) | 一种基于对称时不变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法 | |
CN109917650A (zh) | 一种非对称时变约束的飞行器姿态控制方法 | |
CN108107726B (zh) | 一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法 | |
CN108388119A (zh) | 基于对称时不变正切型约束李雅普诺夫函数的四旋翼飞行器全状态受限控制方法 | |
CN108388118A (zh) | 基于非对称时变正切型约束李雅普诺夫函数的四旋翼飞行器全状态受限控制方法 | |
CN109917651A (zh) | 一种对称时变输出受限的飞行器姿态控制方法 | |
CN108549218A (zh) | 基于对称时不变正切余弦复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN109870913A (zh) | 一种带有时变指数正切约束的飞行器全状态受限控制方法 | |
CN109870912A (zh) | 一种采用非对称时不变约束函数的飞行器姿态控制方法 | |
CN108427279A (zh) | 基于对称时变指数正切复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN108333950A (zh) | 基于对称时变正切余弦复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN109613829A (zh) | 一种四旋翼飞行器全状态受限控制方法 | |
CN108536162A (zh) | 基于对称时不变指数正切复合型约束李雅普诺夫函数的四旋翼飞行器全状态受限控制方法 | |
CN108303892A (zh) | 基于非对称时变正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN108107900B (zh) | 一种基于对称时不变障碍李雅普诺夫函数的四旋翼飞行器全状态受限反步控制方法 | |
CN108388128A (zh) | 基于对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN108594649A (zh) | 基于对称时不变对数正割复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN108563115A (zh) | 基于对称时不变对数正切复合型约束李雅普诺夫函数的四旋翼飞行器全状态受限控制方法 | |
CN108388131A (zh) | 基于对称时不变对数正切复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN108427275A (zh) | 基于对称时不变指数正切复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN108563116A (zh) | 基于非对称时不变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN108536010A (zh) | 基于非对称时不变对数正切复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 | |
CN108563117A (zh) | 基于对称时变反正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20180810 |
|
WW01 | Invention patent application withdrawn after publication |