CN108387206B - 一种基于地平线与偏振光的载体三维姿态获取方法 - Google Patents

一种基于地平线与偏振光的载体三维姿态获取方法 Download PDF

Info

Publication number
CN108387206B
CN108387206B CN201810062481.7A CN201810062481A CN108387206B CN 108387206 B CN108387206 B CN 108387206B CN 201810062481 A CN201810062481 A CN 201810062481A CN 108387206 B CN108387206 B CN 108387206B
Authority
CN
China
Prior art keywords
coordinate system
carrier
polarization
camera
horizon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810062481.7A
Other languages
English (en)
Other versions
CN108387206A (zh
Inventor
郭雷
吴煜
王岩
杨健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810062481.7A priority Critical patent/CN108387206B/zh
Publication of CN108387206A publication Critical patent/CN108387206A/zh
Application granted granted Critical
Publication of CN108387206B publication Critical patent/CN108387206B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • G06T2207/30208Marker matrix

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于地平线与偏振光的载体三维姿态获取方法。首先,利用载体的前视摄像头检测出地平线,根据地平线在图像中的位置以及相机参数可以推算出载体的横滚角和俯仰角;其次,根据偏振相机得到天空偏振信息图像,从偏振度图像中利用椭圆拟合方法提取出偏振中性点,根据偏振中性点在相机坐标系和地理坐标系的转换关系建立载体三维姿态方程;最后将由地平线导航得到的横滚角和俯仰角带入载体三维姿态方程,解算出载体航向角,从而得到载体的三维姿态。本发明方法具有全自主、无源性等优点。

Description

一种基于地平线与偏振光的载体三维姿态获取方法
技术领域
本发明涉及一种基于地平线与偏振光的载体三维姿态获取方法,可用于载体在整个飞行过程中的三维姿态获取。
背景技术
偏振光是由于太阳光在大气传输过程中受到大气粒子散射而形成的,天空中不同偏振态的偏振光形成了大气偏振模式。仿生偏振光导航就是依靠稳定的大气偏振模式的一种导航方法。偏振光导航有着无源无辐射等优点使其近年来被广泛研究。由于单一的偏振光导航只能获取载体的航向角,因此目前大多用偏振导航与惯性器件组合来获取载体三维姿态。已申请的中国专利“一种双模式仿生偏振/地磁辅助组合导航系统”,申请公开号CN105021188,使用仿生偏振导航、地磁导航与惯性导航结合来获取载体的三维姿态,其中载体的横滚角和俯仰角主要由惯性导航提供,因此可能会有累积误差。基于地平线的导航方法由于其简单、环境适应性强等优点被作为常用的导航方法之一,但是现有方法大多忽略了载体高度对地平线导航精度的影响。已发表的论文“基于直线模型的微型飞行器姿态角计算”,没有建立载体高度模型而是直接忽略高度对姿态角估计的影响,最后得到的导航模型会有相应的误差。地平线导航只能获取载体的横滚角和俯仰角,因此地平线导航多与基于其它标志物的视觉导航方法结合获取载体的三维姿态。已发表的论文“基于跑道的视觉导航信息分析”,利用地平线与跑道线的视觉信息建立了无人机在着陆时的三维姿态解算模型,但是这种方法仅适用于无人机自主着陆场合,不能在无人机自主飞行的时候实时得到载体三维姿态信息。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种基于地平线与偏振光的载体三维姿态获取方法。利用地平线导航得到载体的横滚角和俯仰角,利用偏振光导航建立基于偏振中性点的载体三维姿态方程,通过将由地平线导航得到载体的横滚角和俯仰角带入载体的三维姿态方程,解算出载体航向角,实现载体的三维姿态获取。
本发明的技术方案是:一种基于地平线与偏振光的载体三维姿态获取方法,其实现步骤如下:
步骤(1)利用载体前视摄像机获取地平线信息,并计算出地平线在图像坐标系下的直线方程L,利用直线方程L、载体距地面高度H及相机参数估计出载体横滚角γ和俯仰角θ;
步骤(2)利用载体上视偏振相机获取天空偏振图像,计算出天空偏振度信息p和偏振方位角信息
Figure GDA0002184401260000021
并提取出偏振中性点;
步骤(3)通过相机标定计算出偏振中性点在相机坐标系下的方向向量
Figure GDA0002184401260000022
Figure GDA0002184401260000023
表示偏振中性点在地理坐标系下的方向向量,然后通过相机坐标系与机体坐标系的转换矩阵
Figure GDA0002184401260000024
和机体坐标系和地理坐标系
Figure GDA0002184401260000025
之间的转换关系建立基于偏振中性点的载体三维姿态方程
Figure GDA0002184401260000026
步骤(4)将由地平线导航估计出的横滚角γ和俯仰角θ带入基于偏振中性点的载体三维姿态方程,解出载体航向角ψ,得到载体三维姿态信息。
所述步骤(1)具体实现如下:
用载体前视摄像机获取含地平线的图像,用边缘提取和霍夫变换提取出图像中的地平线,并计算出地平线在图像坐标系下的直线方程L:
L:y=kx+b
其中,x为图像坐标系横轴,y为图像坐标系纵轴,k为直线斜率,b为直线截距。
建立世界坐标系ow-xwywzw与相机坐标系oc-xcyczc,相机中心oc在世界坐标系下的坐标为rw=[0 -h 0]T,也就是相机中心到平面owxwzw的距离为h。owxwzw平面的法向向量为nw=[0 1 0]T,地平线上一点A在世界坐标系下的坐标为dw=[xa 0 d]T,其中d也就是世界坐标系原点到地平线的距离。地平线在世界坐标系下的方向向量为lw=[1 0 0]T,地平线在相机坐标系下的方向向量为lc,相机到点A的向量在世界坐标系下表示为aw,点A在相机坐标系下的坐标为ac。根据载体当前的姿态角可以得到由世界坐标系到相机坐标系的转换矩阵
Figure GDA0002184401260000031
Figure GDA0002184401260000032
其中,γ是载体的横滚角,θ是载体的俯仰角。
相机坐标系到世界坐标系的转换矩阵为
Figure GDA0002184401260000033
其中
Figure GDA0002184401260000034
Figure GDA0002184401260000035
的逆矩阵,由
Figure GDA0002184401260000036
可以得到
Figure GDA0002184401260000037
dw=xw+rw
Figure GDA0002184401260000038
因为dw和lw都与nw垂直,因此有:
Figure GDA0002184401260000039
Figure GDA00021844012600000310
其中,·表示点乘。
通过相机成像模型、地平线在图像坐标系下的直线方程和上述两个等式,可以得到载体的横滚角γ和俯仰角θ的计算表达式:
γ=arctan(-k)
Figure GDA00021844012600000311
其中,f为前视摄像机的焦距,由相机标定可得,世界坐标系原点到地平线的距离d和相机中心到平面owxwzw的距离h与载体离地面的高度有关。
载体距地面的高度H由高度计得出,R为地球平均半径,从而计算出d和h:
Figure GDA0002184401260000041
Figure GDA0002184401260000042
至此得到载体的横滚角γ和俯仰角θ。
所述步骤(3)具体实现如下:
使用载体的上视偏振相机获取一组天空偏振图像,用该组天空偏振图像的光强信息计算出相应的斯托克斯矢量S=(I,Q,U,V),根据斯托克斯矢量解出偏振度p和偏振方位角
Figure GDA0002184401260000043
Figure GDA0002184401260000044
其中I表示天空光总量度,Q表示与参考方向平行的线偏振光,U表示与参考方向成45°角的线偏振光,V表示圆偏振光的强度,其比例很小,一般忽略不计。
由偏振度信息得到偏振度图像并进行图像预处理,平滑偏振度图像。根据偏振中性点处偏振度最低的特点,找到最大的两处低偏振度区域并对其进行椭圆拟合,对两个椭圆区域分别进行提取中心操作,提取的中心即为两个偏振中性点。
所述步骤(4)具体实现如下:
任意选择一个偏振中性点,通过相机标定可得到该偏振中性点在相机坐标系下的方向向量
Figure GDA0002184401260000045
Figure GDA0002184401260000046
其中,
Figure GDA0002184401260000051
Figure GDA0002184401260000052
分别是偏振中性点在相机坐标系下偏振中性点的方位角和高度角。根据天文年历求出太阳在地理坐标系下的高度角
Figure GDA0002184401260000053
和方位角
Figure GDA0002184401260000054
由于偏振中性点位于太阳子午线或者反太阳子午线上,因此偏振中性点在地理坐标系下的方位角为
Figure GDA0002184401260000055
Figure GDA0002184401260000056
通过光强信息判断所选偏振中性点位于太阳子午线上还是反太阳子午线上,并写出该偏振中性点在地理坐标系下的方向向量
Figure GDA0002184401260000057
Figure GDA0002184401260000058
其中,
Figure GDA0002184401260000059
Figure GDA00021844012600000510
分别是偏振中性点在相机坐标系下的方位角和高度角。由偏振中性点在相机坐标系和地理坐标系下的转化关系,可以得到载体的三维姿态方程,如下式:
Figure GDA00021844012600000511
所述步骤(5)具体实现如下:
将由(2)得到的载体横滚角γ和俯仰角θ带入由偏振中性点得到的载体三维姿态方程,解出载体航向角ψ,至此,载体的三个姿态角全部解出。
本发明与现有技术相比的优点在于:
(1)与现有的偏振辅助惯性组合导航方法相比,不依赖其它惯性器件,因此载体的三维姿态角都没有随时间累积的误差。
(2)与现有的基于地平线的姿态测量方法相比,不仅可以获取载体的横滚角和俯仰角信息,还可以获取载体十分重要的航向角信息。与现有的基于地平线和标志物组合的姿态测量方法相比,不需要其他标志物就可以获取载体的三维姿态,可以适用于无任何标志点的单一环境,场景适用范围大大提高,并具有高度自主性。
附图说明
图1为本发明一种基于地平线与偏振光的载体三维姿态获取方法的流程图;
图2为前视摄像机坐标系与世界坐标系示意图;
图3为载体高度示意图。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
如图1所示,本发明一种基于地平线与偏振光的载体三维姿态获取方法的具体实现步骤如下:
步骤(1)利用载体前视摄像机获取地平线信息,并计算出地平线在图像坐标系下的直线方程L,利用直线方程L、载体距地面高度H及相机参数估计出载体横滚角γ和俯仰角θ;
步骤(2)利用载体上视偏振相机获取一组天空偏振图像,计算出天空偏振度信息p和偏振方位角信息
Figure GDA0002184401260000061
并提取出天空偏振图像中的偏振中性点;
步骤(3)通过相机标定计算出偏振中性点相机坐标系下的方向向量
Figure GDA0002184401260000062
Figure GDA0002184401260000063
表示偏振中性点在地理坐标系下的方向向量,然后通过相机坐标系与机体坐标系的转换矩阵
Figure GDA0002184401260000064
和机体坐标系和地理坐标系
Figure GDA0002184401260000065
之间的转换关系建立基于偏振中性点的载体三维姿态方程
Figure GDA0002184401260000066
步骤(4)将由地平线导航估计出的横滚角γ和俯仰角θ带入基于偏振中性点的载体三维姿态方程,解出载体航向角ψ,得到载体三维姿态信息。
所述步骤(1)具体实现如下:
用载体前视摄像机获取含地平线的图像,用边缘提取和霍夫变换提取出图像中的地平线,并计算出地平线在图像坐标系下的直线方程L:
L:y=kx+b
其中,x为图像坐标系横轴,y为图像坐标系纵轴,k为直线斜率,b为直线截距。
建立世界坐标系ow-xwywzw与相机坐标系oc-xcyczc如图2所示,相机中心oc在世界坐标系下的坐标为rw=[0 -h 0]T,也就是相机中心到平面owxwzw的距离为h。owxwzw平面的法向向量为nw=[0 1 0]T,地平线上一点A在世界坐标系下的坐标为dw=[xa 0 d]T,其中d也就是世界坐标系原点到地平线的距离。地平线在世界坐标系下的方向向量为lw=[1 0 0]T,地平线在相机坐标系下的方向向量为lc,相机到点A的向量在世界坐标系下表示为aw,点A在相机坐标系下的坐标为ac。根据载体当前的姿态角可以得到由世界坐标系到相机坐标系的转换矩阵
Figure GDA0002184401260000071
Figure GDA0002184401260000072
其中,γ是载体的横滚角,θ是载体的俯仰角。
相机坐标系到世界坐标系的转换矩阵为
Figure GDA0002184401260000073
其中
Figure GDA0002184401260000074
Figure GDA0002184401260000075
的逆矩阵,由
Figure GDA0002184401260000076
可以得到
Figure GDA0002184401260000077
dw=xw+rw
Figure GDA0002184401260000078
因为dw和lw都与nw垂直,因此有:
Figure GDA0002184401260000079
Figure GDA00021844012600000710
其中,·表示点乘。
通过相机成像模型、地平线在图像坐标系下的直线方程和上述两个等式,可以得到载体的横滚角γ和俯仰角θ的计算表达式:
γ=arctan(-k)
Figure GDA0002184401260000081
其中,f为前视摄像机的焦距,由相机标定可得,d和h与载体离地面的高度有关,如图3所示。
载体距地面的高度H由高度计得出,从而计算出d和h:
Figure GDA0002184401260000082
Figure GDA0002184401260000083
先根据地平线直线方程的斜率k结算出载体横滚角γ,再将相机焦距f、载体横滚角γ、计算出的d和h代入俯仰角θ的表达式中解算出载体俯仰角,至此得到载体的横滚角γ和俯仰角θ。
所述步骤(2)具体实现如下:
使用载体的上视偏振相机获取一组天空偏振图像,其中偏振片的方向相对于参考方向分别为0°、60°和120°,由此得到光强信息分别为I1、I2和I3的三张天空偏振图像;用该组天空偏振图像的光强信息计算出相应的斯托克斯矢量S=(I,Q,U,V),根据斯托克斯矢量解出偏振度p和偏振方位角
Figure GDA0002184401260000084
Figure GDA0002184401260000085
其中I表示天空光总量度,Q表示与参考方向平行的线偏振光,U表示与参考方向成45°角的线偏振光,V表示圆偏振光的强度,其比例很小,一般忽略不计。
由偏振度信息得到偏振度图像并进行图像预处理,平滑偏振度图像。根据偏振中性点处偏振度最低的特点,找到最大的两处低偏振度区域并对其进行椭圆拟合,对两个椭圆区域分别进行提取中心操作,提取的中心即为两个偏振中性点。
所述步骤(3)具体实现如下:
任意选择一个偏振中性点,通过相机标定可得到该偏振中性点在相机坐标系下的方向向量
Figure GDA0002184401260000091
Figure GDA0002184401260000092
其中,
Figure GDA0002184401260000093
Figure GDA0002184401260000094
分别是偏振中性点在相机坐标系下方位角和高度角。根据天文年历求出太阳在地理坐标系下的高度角
Figure GDA0002184401260000095
和方位角
Figure GDA0002184401260000096
由于偏振中性点位于太阳子午线或者反太阳子午线上,因此偏振中性点在地理坐标系下的方位角为
Figure GDA0002184401260000097
Figure GDA0002184401260000098
通过光强信息判断所选偏振中性点位于太阳子午线上还是反太阳子午线上,并写出该偏振中性点在地理坐标系下的方向向量
Figure GDA0002184401260000099
Figure GDA00021844012600000910
其中,
Figure GDA00021844012600000911
Figure GDA00021844012600000912
分别是偏振中性点在相机坐标系下偏振中性点的方位角和高度角。由偏振中性点在相机坐标系和地理坐标系下的转化关系,可以得到载体的三维姿态方程,如下式:
Figure GDA00021844012600000913
假设安装时使得相机坐标系与机体坐标系一致,即
Figure GDA00021844012600000914
可以用载体的三个姿态角表示:
Figure GDA00021844012600000915
Figure GDA00021844012600000916
Figure GDA00021844012600000917
这两个转化矩阵代入
Figure GDA00021844012600000918
则载体的三维姿态方程可表示为:
Figure GDA0002184401260000101
所述步骤(4)具体实现如下:
将由步骤(1)得到的载体横滚角γ和俯仰角θ带入由偏振中性点得到的载体三维姿态方程,解出载体航向角ψ,至此,载体的三个姿态角全部解出。

Claims (5)

1.一种基于地平线与偏振光的载体三维姿态获取方法,其特征在于,实现步骤如下:
步骤(1)利用载体前视摄像机获取地平线信息,并计算出地平线在图像坐标系下的直线方程L,利用直线方程L、载体距地面高度H及相机参数估计出载体横滚角γ和俯仰角θ;
步骤(2)利用载体上视偏振相机获取天空偏振图像,计算出天空偏振度信息p和偏振方位角信息
Figure FDA0002184401250000011
并提取出偏振中性点;
步骤(3)通过相机标定计算出偏振中性点在相机坐标系下的方向向量
Figure FDA0002184401250000012
Figure FDA0002184401250000013
表示偏振中性点在地理坐标系下的方向向量,然后通过相机坐标系与机体坐标系的转换矩阵
Figure FDA0002184401250000014
和机体坐标系和地理坐标系
Figure FDA0002184401250000015
之间的转换关系建立基于偏振中性点的载体三维姿态方程
步骤(4)将由地平线导航估计出的横滚角γ和俯仰角θ带入基于偏振中性点的载体三维姿态方程,解出载体航向角ψ,得到载体三维姿态信息。
2.根据权利要求1所述的基于地平线与偏振光的载体三维姿态获取方法,其特征在于:所述步骤(1)中,用载体前视摄像机获取含地平线的图像,用边缘提取和霍夫变换提取出图像中的地平线,并计算出地平线在图像坐标系下的直线方程L:
L:y=kx+b
其中,x为图像坐标系横轴,y为图像坐标系纵轴,k为直线斜率,b为直线截距;
建立世界坐标系ow-xwywzw与相机坐标系oc-xcyczc,相机中心oc在世界坐标系下的坐标为rw=[0 -h 0]T,也就是相机中心到平面owxwzw的距离为h,owxwzw平面的法向向量为nw=[01 0]T,地平线上一点A在世界坐标系下的坐标为dw=[xa 0 d]T,其中d也就是世界坐标系原点到地平线的距离,地平线在世界坐标系下的方向向量为lw=[1 0 0]T,地平线在相机坐标系下的方向向量为lc,相机到点A的向量在世界坐标系下表示为aw,点A在相机坐标系下的坐标为ac,根据载体当前的姿态角可以得到由世界坐标系到相机坐标系的转换矩阵
Figure FDA0002184401250000021
Figure FDA0002184401250000022
其中,γ是载体的横滚角,θ是载体的俯仰角;
相机坐标系到世界坐标系的转换矩阵为
Figure FDA0002184401250000023
其中
Figure FDA0002184401250000024
Figure FDA0002184401250000025
的逆矩阵,由
Figure FDA0002184401250000026
可以得到
Figure FDA0002184401250000027
dw=xw+rw
Figure FDA0002184401250000028
因为dw和lw都与nw垂直,因此有:
Figure FDA0002184401250000029
Figure FDA00021844012500000210
其中,●表示点乘;
通过相机成像模型、地平线在图像坐标系下的直线方程和上述两个等式,可以解算出载体的横滚角γ和俯仰角θ:
γ=arctan(-k)
Figure FDA00021844012500000211
其中,f为前视摄像机的焦距,由相机标定可得,d和h与载体离地面的高度有关;
载体距地面的高度H由高度计得出,R为地球平均半径,从而计算出世界坐标系原点到地平线的距离d和相机中心到平面owxwzw的距离h:
Figure FDA0002184401250000031
Figure FDA0002184401250000032
至此,得到载体的横滚角γ和俯仰角θ。
3.根据权利要求1所述的基于地平线与偏振光的载体三维姿态获取方法,其特征在于:所述步骤(2)中,使用偏振相机获取一组天空偏振图像,其中包括光强信息分别为I1、I2和I3的三张天空偏振图像;用该组天空偏振图像的光强信息计算出相应的斯托克斯矢量S=(I,Q,U,V),根据斯托克斯矢量解出偏振度p和偏振方位角
Figure FDA0002184401250000033
Figure FDA0002184401250000034
其中I表示天空光总量度,Q表示与参考方向平行的线偏振光,U表示与参考方向成45°角的线偏振光,V表示圆偏振光的强度,其比例很小,一般忽略不计;
由偏振度信息得到偏振度图像并进行图像预处理,平滑偏振度图像,根据偏振中性点处偏振度最低的特点,找到最大的两处低偏振度区域并对其进行椭圆拟合,对两个椭圆区域分别进行提取中心操作,提取的中心即为两个偏振中性点。
4.根据权利要求1所述的基于地平线与偏振光的载体三维姿态获取方法,其特征在于:所述步骤(3)中,任意选择一个偏振中性点,通过相机标定可得到该偏振中性点在相机坐标系下的方向向量
Figure FDA0002184401250000035
Figure FDA0002184401250000036
其中,
Figure FDA0002184401250000037
Figure FDA0002184401250000038
分别是偏振中性点在相机坐标系下的方位角和高度角;
根据天文年历求出太阳在地理坐标系下的高度角
Figure FDA0002184401250000039
和方位角
Figure FDA00021844012500000310
由于偏振中性点位于太阳子午线或者反太阳子午线上,因此偏振中性点在地理坐标系下的方位角为
Figure FDA0002184401250000041
Figure FDA0002184401250000042
通过光强信息判断所选偏振中性点位于太阳子午线上还是反太阳子午线上,并写出该偏振中性点在地理坐标系下的方向向量
Figure FDA0002184401250000043
Figure FDA0002184401250000044
其中,
Figure FDA0002184401250000045
Figure FDA0002184401250000046
分别是偏振中性点在地理坐标系下的方位角和高度角,由偏振中性点在相机坐标系和地理坐标系下的转化关系,可以得到载体的三维姿态方程,如下式:
Figure FDA0002184401250000047
5.根据权利要求1所述的基于地平线与偏振光的载体三维姿态获取方法,其特征在于:所述步骤(4)中,将由地平线导航得到的载体横滚角γ和俯仰角θ带入由偏振中性点得到的载体三维姿态方程,解出载体航向角ψ,至此,载体的三个姿态角全部解出。
CN201810062481.7A 2018-01-23 2018-01-23 一种基于地平线与偏振光的载体三维姿态获取方法 Active CN108387206B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810062481.7A CN108387206B (zh) 2018-01-23 2018-01-23 一种基于地平线与偏振光的载体三维姿态获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810062481.7A CN108387206B (zh) 2018-01-23 2018-01-23 一种基于地平线与偏振光的载体三维姿态获取方法

Publications (2)

Publication Number Publication Date
CN108387206A CN108387206A (zh) 2018-08-10
CN108387206B true CN108387206B (zh) 2020-03-17

Family

ID=63077182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810062481.7A Active CN108387206B (zh) 2018-01-23 2018-01-23 一种基于地平线与偏振光的载体三维姿态获取方法

Country Status (1)

Country Link
CN (1) CN108387206B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459027B (zh) * 2018-11-09 2022-06-10 北京航空航天大学 一种基于偏振-地磁矢量紧组合的导航方法
CN109470237B (zh) * 2018-12-17 2020-07-14 大连理工大学 一种基于偏振光与地磁组合导航姿态测量方法
CN111750850B (zh) * 2019-03-27 2021-12-14 杭州海康威视数字技术股份有限公司 角度信息获取方法、装置和系统
CN111156956B (zh) * 2020-01-13 2021-10-22 中北大学 基于大气偏振e-矢量模式特征的空间姿态参数获取方法
CN111307140B (zh) * 2020-05-11 2020-08-07 中国人民解放军国防科技大学 一种用于多云天气条件下的大气偏振光定向方法
CN111750836A (zh) * 2020-06-10 2020-10-09 南京林业大学 一种多光学介质近景摄影测量方法
CN112444265B (zh) * 2020-11-20 2023-06-09 北京航空航天大学 一种基于多模式的长航时飞行器仿生航向与姿态参考系统
CN112419410B (zh) * 2020-11-20 2021-10-19 北京航空航天大学 一种基于水下斯涅尔窗口边缘辨识的水平姿态确定方法
CN116182855B (zh) * 2023-04-28 2023-07-07 北京航空航天大学 一种弱光强环境下仿复眼偏振视觉无人机组合导航方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789916A (zh) * 2005-11-25 2006-06-21 中国科学院上海光学精密机械研究所 高精度偏振光导航仪
CN102177719A (zh) * 2009-01-06 2011-09-07 松下电器产业株式会社 摄像装置朝向检测装置和具备该装置的移动体
CN103913180A (zh) * 2014-03-26 2014-07-09 中国科学院长春光学精密机械与物理研究所 一种船载大视场高精度星敏感器的安装角标定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069690A1 (fr) * 2006-12-06 2008-06-12 Sergey Vladimirovich Lokhotkin Système anti-éblouissement
CN102113021B (zh) * 2008-12-25 2013-11-27 松下电器产业株式会社 图像处理装置和模拟立体图像生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789916A (zh) * 2005-11-25 2006-06-21 中国科学院上海光学精密机械研究所 高精度偏振光导航仪
CN102177719A (zh) * 2009-01-06 2011-09-07 松下电器产业株式会社 摄像装置朝向检测装置和具备该装置的移动体
CN103913180A (zh) * 2014-03-26 2014-07-09 中国科学院长春光学精密机械与物理研究所 一种船载大视场高精度星敏感器的安装角标定方法

Also Published As

Publication number Publication date
CN108387206A (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
CN108387206B (zh) 一种基于地平线与偏振光的载体三维姿态获取方法
CN107451593B (zh) 一种基于图像特征点的高精度gps定位方法
CN104200086A (zh) 宽基线可见光相机位姿估计方法
CN111412916B (zh) 一种基于大气偏振光场的天文航海船位计算方法
CN102538783A (zh) 基于遥感天空偏振模式图的仿生导航方法及导航定位系统
CN107490364A (zh) 一种大角度倾斜成像航空相机对地目标定位方法
CN104655135B (zh) 一种基于地标识别的飞行器视觉导航方法
CN109540113B (zh) 一种全站仪及其星图识别方法
CN104154919A (zh) 一种非合作航天器上太阳能帆板三角架结构的位姿自主测量方法
CN112710311B (zh) 一种地形自适应无人机三维实景重建航摄点自动规划方法
CN113624231B (zh) 基于异源图像匹配的惯性视觉组合导航定位方法及飞行器
CN104729482B (zh) 一种基于飞艇的地面微小目标侦测系统及方法
CN110542407A (zh) 一种航拍图像任意像素点定位信息获取方法
CN110706273B (zh) 一种基于无人机的实时塌方区域面积的测量方法
CN113538595A (zh) 利用激光测高数据辅助提升遥感立体影像几何精度的方法
CN101685100A (zh) 检测被摄物移动速度的摄像装置及其方法
CN111307140B (zh) 一种用于多云天气条件下的大气偏振光定向方法
CN113296133B (zh) 一种基于双目视觉测量与高精度定位融合技术实现位置标定的装置及方法
CN107784633B (zh) 适用于平面测量的无人机航拍图像校准方法
CN111145262B (zh) 一种基于车载的单目标定方法
CN112461204B (zh) 卫星对动态飞行目标多视角成像联合计算航行高度的方法
CN109146936B (zh) 一种图像匹配方法、装置、定位方法及系统
CN113340272B (zh) 一种基于无人机微群的地面目标实时定位方法
CN111145260A (zh) 一种基于车载的双目标定方法
Savoy et al. Geo-referencing and stereo calibration of ground-based whole sky imagers using the sun trajectory

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant