CN108380183B - 一种基于羧基化改性的表面巯基化碳纤维制备方法 - Google Patents

一种基于羧基化改性的表面巯基化碳纤维制备方法 Download PDF

Info

Publication number
CN108380183B
CN108380183B CN201810218113.7A CN201810218113A CN108380183B CN 108380183 B CN108380183 B CN 108380183B CN 201810218113 A CN201810218113 A CN 201810218113A CN 108380183 B CN108380183 B CN 108380183B
Authority
CN
China
Prior art keywords
carbon fiber
carbon fibers
oven
sulfhydrylation
weighing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810218113.7A
Other languages
English (en)
Other versions
CN108380183A (zh
Inventor
兰平
吕佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN201810218113.7A priority Critical patent/CN108380183B/zh
Publication of CN108380183A publication Critical patent/CN108380183A/zh
Application granted granted Critical
Publication of CN108380183B publication Critical patent/CN108380183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种基于羧基化改性的表面巯基化碳纤维制备方法,涉及环保材料技术领域。本发明提供的方法以碳纤维为基材,将碳纤维经浓硝酸处理得到富集羧基的碳纤维表面,再以EDC/NHS为催化剂,在PBS缓冲溶液中与半胱胺酸等巯基化试剂反应得到巯基化碳纤维表面,通过先采用浓硝酸对碳纤维表面进行羧基化改性,产物再与巯基化试剂进一步反应得到巯基化碳纤维表面,利用巯基基团的配合能力来提高其对重金属的吸附性能,成功制备出相较碳纤维吸附能力更强的巯基化改性碳纤维,解决了碳纤维对污染物的吸附能力不足和结合能力不强的技术问题,达到增强碳纤维对污染物吸附能力的技术效果,且表面巯基化改性碳纤维的制备过程简单,成本较低,便于产业化生产。

Description

一种基于羧基化改性的表面巯基化碳纤维制备方法
技术领域
本发明涉及环保材料技术领域,特别涉及一种基于羧基化改性的表面巯基化碳纤维制备方法。
背景技术
环境污染问题已成为人们关注的焦点问题,而水中重金属污染是一个极为重要的环境保护问题。重金属是环境中的一类重要污染物,由于其具有毒性大,不能被生物降解,易累积等特征,因此一旦进入水体及土壤环境,就很难从环境中去除。其既可造成生态环境的恶化,还可进入食物链,对人体造成巨大危害。但常常由于某些主观原因或客观原因使其未经处理达标就被排入河流、湖泊或海洋,或者进入了土壤中,导致水环境和土壤环境受到污染。水中重金属元素的来源包括矿山开采过程产生的废水、选冶生产过程产生的废水、金属加工过程产生的废水以及电镀过程产生的废水。通常去除水中重金属的方法很多,吸附法是常用的有效方法之一。因此,近些年来,开发新型、高效的重金属吸附材料一直是环保领域研究的热点之一。
碳纤维是有机纤维在1000℃以上的高温下炭化,且含碳量在90%以上的高性能纤维,碳纤维材料具有发达的表面微孔结构和较大的比表面积,碳纤维孔径分布狭窄且均匀,可以通过吸附作用去除对水溶液的污染物,对水溶液中的有机物和重金属离子等有较大的吸附容量和较快的吸附速率,对低浓度吸附质仍保持有较高的吸附量。因此,碳纤维在水处理中的应用具有较为广泛的前景。
然而,现有使用碳纤维进行水溶液去污染的过程中,由于碳纤维对有机物和重金属离子等污染物质的吸附能力有限,碳纤维的使用量往往较大,使用碳纤维对水污染进行处理的成本较高。
发明内容
针对现有技术存在的上述问题,本发明提供了一种基于羧基化改性的表面巯基化碳纤维制备方法,采用浓硝酸对碳纤维进行了巯基化表面改性,利用巯基化试剂含有的氨基与碳纤维表面的羧基发生酰胺化反应,从而引入巯基,利用巯基基团的配合能力来提高碳纤维对重金属的吸附性能。
根据本发明实施例的一个方面,提供一种基于羧基化改性的表面巯基化碳纤维制备方法,其特征在于,所述方法包括:
将碳纤维置于体积比1:1的乙醇/丙酮溶液中回流48h后,取出浸泡后的所述碳纤维并置于80℃的烘箱内进行烘干;
每隔预设时间段将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值未在第一预设合格数值范围内,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值在第一预设合格数值范围内,则将所述碳纤维送入装有回流管的通风橱中;
在所述通风橱中,将所述碳纤维用质量百分比浓度为40%~80%的浓硝酸溶液在恒温条件下超声处理1~3h,其中,超声处理温度为40~105℃,超声处理功率为250W、超声处理频率为40kHz,所述浓硝酸溶液中的硝酸质量与所述碳纤维质量的比值为40:1~60:1;
将超声处理后的所述碳纤维用蒸馏水清洗至中性,继续置于所述烘箱内进行烘干;
每隔预设时间段将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值未在第二预设合格数值范围内,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值在第二预设合格数值范围内,则将所述碳纤维送入含巯基化试剂和EDC/NHS的PBS缓冲溶液中,在25~30℃的反应温度下震荡24h后进行过滤得到滤渣,用PBS溶液对所述滤渣清洗3次,再用去离子水对所述滤渣进行洗涤后,将所述滤渣置于60℃的真空干燥箱进行烘干,制备得到基于羧基化改性的表面巯基化碳纤维,其中,所述PBS缓冲溶液用0.5mol/L的HCL和0.5mol/L的NaOH调节至PH=7.5,所述PBS缓冲溶液中巯基化试剂和EDC的浓度为3~8mg/ml,EDC与NHS的摩尔比为1:1。
在一个优选的实施例中,所述巯基化试剂为含有巯基基团的氨基酸中的至少一种。
在一个优选的实施例中,所述第一预设合格数值范围为0,所述第二预设合格数值范围为0。
在一个优选的实施例中,所述浓硝酸溶液的质量百分比浓度为70%。
在一个优选的实施例中,所述浓硝酸溶液在恒温条件下的超声处理时长为2h。
在一个优选的实施例中,所述浓硝酸溶液在恒温条件下的超声处理温度为100℃。
在一个优选的实施例中,所述浓硝酸溶液中的硝酸质量与所述碳纤维质量的比值为50:1。
在一个优选的实施例中,所述PBS缓冲溶液中巯基化试剂和EDC的浓度为5mg/ml。
与现有技术相比,本发明提供的一种基于羧基化改性的表面巯基化碳纤维制备方法具有以下优点:
本发明提供的基于羧基化改性的表面巯基化碳纤维制备方法,通过以碳纤维为基材,将碳纤维经浓硝酸处理得到富集羧基的碳纤维表面,再以EDC/NHS为催化剂,在PBS缓冲溶液中与半胱胺酸等巯基化试剂反应得到巯基化碳纤维表面,通过先采用浓硝酸对碳纤维表面进行羧基化改性,产物再与巯基化试剂进一步反应得到巯基化碳纤维表面,利用巯基基团的配合能力来提高其对重金属的吸附性能,成功制备出相较碳纤维吸附能力更强的巯基化改性碳纤维,从而解决了碳纤维对污染物的吸附能力不足的技术问题,达到了增强碳纤维对污染物的吸附能力的技术效果,且表面巯基化改性碳纤维的制备过程简单,成本较低,便于产业化生产。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种基于羧基化改性的表面巯基化碳纤维制备方法的方法流程图。
具体实施方式
以下结合具体实施例(但不限于所举实施例)详细描述本发明,本实施例的具体方法仅供说明本发明,本发明的范围不受实施例的限制,本发明在应用中可以作各种形态与结构的修改与变动,这些基于本发明基础上的等价形式同样处于本发明申请权利要求保护范围。
实施例1
图1是根据一示例性实施例示出的一种基于羧基化改性的表面巯基化碳纤维制备方法的方法流程图,如图1所示,该方法包括:
步骤101,将碳纤维置于体积比1:1的乙醇/丙酮溶液中回流48h后,取出浸泡后的所述碳纤维并置于80℃的烘箱内进行烘干。
该步骤用于脱除碳纤维表面的上浆剂。
步骤102,每隔预设时间段将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值未在第一预设合格数值范围内,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值在第一预设合格数值范围内,则将所述碳纤维送入装有回流管的通风橱中。
步骤103,在所述通风橱中,将所述碳纤维用质量百分比浓度为40%~80%的浓硝酸溶液在恒温条件下超声处理1~3h,其中,超声处理温度为40~105℃,超声处理功率为250W、超声处理频率为40kHz,所述浓硝酸溶液中的硝酸质量与所述碳纤维质量的比值为40:1~60:1。
步骤104,将超声处理后的所述碳纤维用蒸馏水清洗至中性,继续置于所述烘箱内进行烘干。
步骤105,每隔预设时间段将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值未在第二预设合格数值范围内,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值在第二预设合格数值范围内,则将所述碳纤维送入含巯基化试剂和EDC/NHS的PBS缓冲溶液中,在25~30℃的反应温度下震荡24h后进行过滤得到滤渣,用PBS溶液对所述滤渣清洗3次,再用去离子水对所述滤渣进行洗涤后,将所述滤渣置于60℃的真空干燥箱进行烘干,制备得到基于羧基化改性的表面巯基化碳纤维。
其中,所述PBS缓冲溶液用0.5mol/L的HCL和0.5mol/L的NaOH调节至PH=7.5,所述PBS缓冲溶液中巯基化试剂和EDC的浓度为3~8mg/ml,EDC与NHS的摩尔比为1:1。
EDC/NHS作为催化剂,全称为1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)/N-羟基琥珀酰亚胺(NHS)。
在一个优选的实施例中,所述巯基化试剂为含有巯基基团的氨基酸中的至少一种。
比如,该巯基化试剂为半胱胺酸。
在一个优选的实施例中,所述第一预设合格数值范围为0,所述第二预设合格数值范围为0。
在一个优选的实施例中,所述浓硝酸溶液的质量百分比浓度为70%。
在一个优选的实施例中,所述浓硝酸溶液在恒温条件下的超声处理时长为2h。
在一个优选的实施例中,所述浓硝酸溶液在恒温条件下的超声处理温度为100℃。
在一个优选的实施例中,所述浓硝酸溶液中的硝酸质量与所述碳纤维质量的比值为50:1。
在一个优选的实施例中,所述PBS缓冲溶液中巯基化试剂和EDC的浓度为5mg/ml。
综上所述,本发明提供的基于羧基化改性的表面巯基化碳纤维制备方法,通过以碳纤维为基材,将碳纤维经浓硝酸处理得到富集羧基的碳纤维表面,再以EDC/NHS为催化剂,在PBS缓冲溶液中与半胱胺酸等巯基化试剂反应得到巯基化碳纤维表面,通过先采用浓硝酸对碳纤维表面进行羧基化改性,产物再与巯基化试剂进一步反应得到巯基化碳纤维表面,利用巯基基团的配合能力来提高其对重金属的吸附性能,成功制备出相较碳纤维吸附能力更强的巯基化改性碳纤维,从而解决了碳纤维对污染物的吸附能力不足的技术问题,达到了增强碳纤维对污染物的吸附能力的技术效果,且表面巯基化改性碳纤维的制备过程简单,成本较低,便于产业化生产。
实施例2
(1)将碳纤维置于体积比1:1的乙醇/丙酮溶液中回流48h后,取出浸泡后的所述碳纤维并置于80℃的烘箱内进行烘干。
(2)每隔1h将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值不为0,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值为0,则将所述碳纤维送入装有回流管的通风橱中。
比如,对碳纤维从所述烘箱取出进行的称重次数为2次,其中,首次将所述碳纤维从所述烘箱取出进行称重的称重重量为100kg,第二次将所述碳纤维从所述烘箱取出进行称重的称重重量为90kg,则100kg为前次称重重量,90kg为当前称重重量,计算得到的差值为10kg不为0,则将所述碳纤维继续送入所述烘箱内进行烘干;1h后将所述碳纤维从烘箱取出进行第三次称重得到的称重重量为90kg,此时,该第三次称重得到的称重重量90kg为当前称重重量,第二次称重得到的称重重量90kg为前次称重重量,计算得到的差值为0,则将所述碳纤维送入装有回流管的通风橱中。
(3)在所述通风橱中,将所述碳纤维用质量百分比浓度为70%的浓硝酸溶液在恒温条件下超声处理2h,其中,超声处理温度为100℃,超声处理功率为250W、超声处理频率为40kHz,所述浓硝酸溶液中的硝酸质量与所述碳纤维质量的比值为50:1。
(4)将超声处理后的所述碳纤维用蒸馏水清洗至中性,继续置于所述烘箱内进行烘干。
(5)每隔1h将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值不为0,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值为0,则将所述碳纤维送入含半胱氨酸和EDC/NHS的PBS缓冲溶液中,在25℃的反应温度下震荡24h后进行过滤得到滤渣,用PBS溶液对所述滤渣清洗3次,再用去离子水对所述滤渣进行洗涤后,将所述滤渣置于60℃的真空干燥箱进行烘干,制备得到基于羧基化改性的表面巯基化碳纤维,其中,所述PBS缓冲溶液用0.5mol/L的HCL和0.5mol/L的NaOH调节至PH=7.5,所述PBS缓冲溶液中半胱氨酸和EDC的浓度为5mg/ml,EDC与NHS的摩尔比为1:1。
比如,对碳纤维从所述烘箱取出进行的称重次数为2次,其中,首次将所述碳纤维从所述烘箱取出进行称重的称重重量为100kg,第二次将所述碳纤维从所述烘箱取出进行称重的称重重量为90kg,则100kg为前次称重重量,90kg为当前称重重量,计算得到的差值为10kg不为0,则将所述碳纤维继续送入所述烘箱内进行烘干;1h后将所述碳纤维从烘箱取出进行第三次称重得到的称重重量为90kg,此时,该第三次称重得到的称重重量90kg为当前称重重量,第二次称重得到的称重重量90kg为前次称重重量,计算得到的差值为0,则将所述碳纤维送入含半胱氨酸和EDC/NHS的PBS缓冲溶液中。
实施例3
(1)将碳纤维置于体积比1:1的乙醇/丙酮溶液中回流48h后,取出浸泡后的所述碳纤维并置于80℃的烘箱内进行烘干。
(2)每隔1h将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值不为0,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值为0,则将所述碳纤维送入装有回流管的通风橱中。
比如,对碳纤维从所述烘箱取出进行的称重次数为2次,其中,首次将所述碳纤维从所述烘箱取出进行称重的称重重量为100kg,第二次将所述碳纤维从所述烘箱取出进行称重的称重重量为90kg,则100kg为前次称重重量,90kg为当前称重重量,计算得到的差值为10kg不为0,则将所述碳纤维继续送入所述烘箱内进行烘干;1h后将所述碳纤维从烘箱取出进行第三次称重得到的称重重量为90kg,此时,该第三次称重得到的称重重量90kg为当前称重重量,第二次称重得到的称重重量90kg为前次称重重量,计算得到的差值为0,则将所述碳纤维送入装有回流管的通风橱中。
(3)在所述通风橱中,将所述碳纤维用质量百分比浓度为40%的浓硝酸溶液在恒温条件下超声处理1h,其中,超声处理温度为40℃,超声处理功率为250W、超声处理频率为40kHz,所述浓硝酸溶液中的硝酸质量与所述碳纤维质量的比值为40:1。
(4)将超声处理后的所述碳纤维用蒸馏水清洗至中性,继续置于所述烘箱内进行烘干。
(5)每隔1h将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值不为0,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值为0,则将所述碳纤维送入含半胱氨酸和EDC/NHS的PBS缓冲溶液中,在28℃的反应温度下震荡24h后进行过滤得到滤渣,用PBS溶液对所述滤渣清洗3次,再用去离子水对所述滤渣进行洗涤后,将所述滤渣置于60℃的真空干燥箱进行烘干,制备得到基于羧基化改性的表面巯基化碳纤维,其中,所述PBS缓冲溶液用0.5mol/L的HCL和0.5mol/L的NaOH调节至PH=7.5,所述PBS缓冲溶液中半胱氨酸和EDC的浓度为3mg/ml,EDC与NHS的摩尔比为1:1。
比如,对碳纤维从所述烘箱取出进行的称重次数为2次,其中,首次将所述碳纤维从所述烘箱取出进行称重的称重重量为100kg,第二次将所述碳纤维从所述烘箱取出进行称重的称重重量为90kg,则100kg为前次称重重量,90kg为当前称重重量,计算得到的差值为10kg不为0,则将所述碳纤维继续送入所述烘箱内进行烘干;1h后将所述碳纤维从烘箱取出进行第三次称重得到的称重重量为90kg,此时,该第三次称重得到的称重重量90kg为当前称重重量,第二次称重得到的称重重量90kg为前次称重重量,计算得到的差值为0,则将所述碳纤维送入含半胱氨酸和EDC/NHS的PBS缓冲溶液中。
实施例4
(1)将碳纤维置于体积比1:1的乙醇/丙酮溶液中回流48h后,取出浸泡后的所述碳纤维并置于80℃的烘箱内进行烘干。
(2)每隔1h将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值不为0,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值为0,则将所述碳纤维送入装有回流管的通风橱中。
比如,对碳纤维从所述烘箱取出进行的称重次数为2次,其中,首次将所述碳纤维从所述烘箱取出进行称重的称重重量为100kg,第二次将所述碳纤维从所述烘箱取出进行称重的称重重量为90kg,则100kg为前次称重重量,90kg为当前称重重量,计算得到的差值为10kg不为0,则将所述碳纤维继续送入所述烘箱内进行烘干;1h后将所述碳纤维从烘箱取出进行第三次称重得到的称重重量为90kg,此时,该第三次称重得到的称重重量90kg为当前称重重量,第二次称重得到的称重重量90kg为前次称重重量,计算得到的差值为0,则将所述碳纤维送入装有回流管的通风橱中。
(3)在所述通风橱中,将所述碳纤维用质量百分比浓度为80%的浓硝酸溶液在恒温条件下超声处理3h,其中,超声处理温度为105℃,超声处理功率为250W、超声处理频率为40kHz,所述浓硝酸溶液中的硝酸质量与所述碳纤维质量的比值为60:1。
(4)将超声处理后的所述碳纤维用蒸馏水清洗至中性,继续置于所述烘箱内进行烘干。
(5)每隔1h将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值不为0,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值为0,则将所述碳纤维送入含半胱氨酸和EDC/NHS的PBS缓冲溶液中,在28℃的反应温度下震荡24h后进行过滤得到滤渣,用PBS溶液对所述滤渣清洗3次,再用去离子水对所述滤渣进行洗涤后,将所述滤渣置于60℃的真空干燥箱进行烘干,制备得到基于羧基化改性的表面巯基化碳纤维,其中,所述PBS缓冲溶液用0.5mol/L的HCL和0.5mol/L的NaOH调节至PH=7.5,所述PBS缓冲溶液中半胱氨酸和EDC的浓度为8mg/ml,EDC与NHS的摩尔比为1:1。
比如,对碳纤维从所述烘箱取出进行的称重次数为2次,其中,首次将所述碳纤维从所述烘箱取出进行称重的称重重量为100kg,第二次将所述碳纤维从所述烘箱取出进行称重的称重重量为90kg,则100kg为前次称重重量,90kg为当前称重重量,计算得到的差值为10kg不为0,则将所述碳纤维继续送入所述烘箱内进行烘干;1h后将所述碳纤维从烘箱取出进行第三次称重得到的称重重量为90kg,此时,该第三次称重得到的称重重量90kg为当前称重重量,第二次称重得到的称重重量90kg为前次称重重量,计算得到的差值为0,则将所述碳纤维送入含半胱氨酸和EDC/NHS的PBS缓冲溶液中。
效果测试
1. 测试标准
1)对上述实施例2-4进行性能测试,测试项目为对Pb、Cd、Cr、Cu这些重金属离子的吸附效果,具体测试方法如下:
将各个实施例制备得到的表面巯基化碳纤维与现有碳纤维分别置于相同水体环境中12小时后取出,测试计算各实施例对Pb、Cd、Cr、Cu这些重金属离子的吸附效果。
测试结果分析
表1为上述实施例2-4制备的表面巯基化碳纤维以及对比例对Pb、Cd、Cr、Cu的重金属离子吸附效果的测试结果。
表1 表面巯基化碳纤维的性能测试结果
Figure DEST_PATH_IMAGE001
从表1可以看出,实施例2-4所制备的表面巯基化碳纤维在对Pb、Cd、Cr、Cu这些重金属离子的吸附效果均优于对比例,其中,实施例2所制备得到的表面巯基化碳纤维对Pb、Cd、Cr、Cu等重金属离子的吸附效果相较其他实施例更佳。从实验结果可见,本发明实施例提供的基于羧基化改性的表面巯基化碳纤维制备方法采用浓硝酸对碳纤维进行了巯基化表面改性,利用巯基化试剂含有的氨基与碳纤维表面的羧基发生酰胺化反应,从而引入巯基,利用巯基基团的配合能力来提高碳纤维对重金属的吸附性能。
本发明提供的一种基于羧基化改性的表面巯基化碳纤维制备方法,利用半胱氨酸等巯基化试剂含有的氨基与碳纤维表面的羧基发生酰胺化反应,从而引入巯基,制备得到吸附能力极强的表面巯基化碳纤维。
虽然,前文已经用一般性说明、具体实施方式及试验,对本发明做了详尽的描述,但在本发明基础上,可以对之进行修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
本领域技术人员在考虑说明书及实践这里的发明后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。

Claims (4)

1.一种基于羧基化改性的表面巯基化碳纤维制备方法,其特征在于,所述方法包括:
将碳纤维置于体积比1:1的乙醇/丙酮溶液中回流48h后,取出浸泡后的所述碳纤维并置于80℃的烘箱内进行烘干;
每隔预设时间段将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值未在第一预设合格数值范围内,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值在第一预设合格数值范围内,则将所述碳纤维送入装有回流管的通风橱中;
在所述通风橱中,将所述碳纤维用质量百分比浓度为70%的浓硝酸溶液在恒温条件下超声处理2h,其中,超声处理温度为100℃,超声处理功率为250W、超声处理频率为40kHz,所述浓硝酸溶液中的硝酸质量与所述碳纤维质量的比值为50:1;
将超声处理后的所述碳纤维用蒸馏水清洗至中性,继续置于所述烘箱内进行烘干;
每隔预设时间段将所述碳纤维从所述烘箱取出进行称重,若所述碳纤维的前次称重重量与当前称重重量的差值未在第二预设合格数值范围内,则将所述碳纤维继续送入所述烘箱内进行烘干,若所述碳纤维的前次称重重量与当前称重重量的差值在第二预设合格数值范围内,则将所述碳纤维送入含巯基化试剂和EDC/NHS的PBS缓冲溶液中,在25~30℃的反应温度下震荡24h后进行过滤得到滤渣,用PBS溶液对所述滤渣清洗3次,再用去离子水对所述滤渣进行洗涤后,将所述滤渣置于60℃的真空干燥箱进行烘干,制备得到基于羧基化改性的表面巯基化碳纤维,其中,所述PBS缓冲溶液用0.5mol/L的HCL和0.5mol/L的NaOH调节至pH=7.5,所述PBS缓冲溶液中巯基化试剂和EDC的浓度为3~8mg/ml,EDC与NHS的摩尔比为1:1。
2.根据权利要求1所述的方法,其特征在于,所述巯基化试剂为含有巯基基团的氨基酸中的至少一种。
3.根据权利要求1所述的方法,其特征在于,所述第一预设合格数值范围为0,所述第二预设合格数值范围为0。
4.根据权利要求1所述的方法,其特征在于,所述PBS缓冲溶液中巯基化试剂和EDC的浓度为5mg/ml。
CN201810218113.7A 2018-03-16 2018-03-16 一种基于羧基化改性的表面巯基化碳纤维制备方法 Active CN108380183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810218113.7A CN108380183B (zh) 2018-03-16 2018-03-16 一种基于羧基化改性的表面巯基化碳纤维制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810218113.7A CN108380183B (zh) 2018-03-16 2018-03-16 一种基于羧基化改性的表面巯基化碳纤维制备方法

Publications (2)

Publication Number Publication Date
CN108380183A CN108380183A (zh) 2018-08-10
CN108380183B true CN108380183B (zh) 2021-02-02

Family

ID=63066539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810218113.7A Active CN108380183B (zh) 2018-03-16 2018-03-16 一种基于羧基化改性的表面巯基化碳纤维制备方法

Country Status (1)

Country Link
CN (1) CN108380183B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429577B (zh) * 2021-06-13 2022-08-09 西北工业大学 一种有机光电材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439241C (zh) * 2006-08-25 2008-12-03 昆明贵金属研究所 一种巯基化碳纳米管的制备方法
CN101804330A (zh) * 2010-05-25 2010-08-18 中南大学 一种重金属离子的吸附剂及其制备和应用方法
CN103272568A (zh) * 2013-05-29 2013-09-04 浙江大学宁波理工学院 利用花生壳制备双功能改性纤维素吸附剂的方法及其应用
CN105133317A (zh) * 2015-08-16 2015-12-09 哈尔滨工业大学宜兴环保研究院 一种金属有机框架改性碳纤维表面的方法
CN105803562A (zh) * 2016-04-19 2016-07-27 陕西科技大学 一种聚酰胺纤维表面巯基化改性的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439241C (zh) * 2006-08-25 2008-12-03 昆明贵金属研究所 一种巯基化碳纳米管的制备方法
CN101804330A (zh) * 2010-05-25 2010-08-18 中南大学 一种重金属离子的吸附剂及其制备和应用方法
CN103272568A (zh) * 2013-05-29 2013-09-04 浙江大学宁波理工学院 利用花生壳制备双功能改性纤维素吸附剂的方法及其应用
CN105133317A (zh) * 2015-08-16 2015-12-09 哈尔滨工业大学宜兴环保研究院 一种金属有机框架改性碳纤维表面的方法
CN105803562A (zh) * 2016-04-19 2016-07-27 陕西科技大学 一种聚酰胺纤维表面巯基化改性的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes";Narasimha Murthy Bandarua et.al;《Journal of Hazardous Materials》;20130808;第261卷;第535页右栏第3-4段以及图1 *
Adsorption of mercury ions from synthetic and real wastewater aqueous;Mojtaba Hadavifar等;《Chemical Engineering Journal》;20141017;全文 *
巯基/氧化纤维素的制备及氯化体系中;张莹莹等;《应用化学》;20170131;第34卷;全文 *

Also Published As

Publication number Publication date
CN108380183A (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
Li et al. Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues
Perumal et al. Spherical chitosan/gelatin hydrogel particles for removal of multiple heavy metal ions from wastewater
Maatar et al. Poly (methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent
Cataldo et al. Pb (II) adsorption by a novel activated carbon⿿ alginate composite material. A kinetic and equilibrium study
Yuan et al. Studies on biosorption equilibrium and kinetics of Cd2+ by Streptomyces sp. K33 and HL-12
Ahalya et al. Biosorption of iron (III) from aqueous solutions using the husk of Cicer arientinum
CN107376849B (zh) 一种乙二胺四乙酸改性的硅藻土吸附剂及其制备方法和处理废水中重金属离子的应用
Li et al. Equilibrium and kinetic studies of copper (II) removal by three species of dead fungal biomasses
CN108554389B (zh) 一种edta改性的细菌纤维素膜吸附剂及其制备方法与应用
CN106179202A (zh) 一种铁基‑氨基复合改性生物炭材料及制备与应用
He Cr (VI) removal from aqueous solution by chitosan/carboxylmethyl cellulose/silica hybrid membrane
CN108380183B (zh) 一种基于羧基化改性的表面巯基化碳纤维制备方法
Yiğitoğlu et al. Adsorption of hexavalent chromium from aqueous solutions using 4-vinyl pyridine grafted poly (ethylene terephthalate) fibers
Shroff et al. Effect of pre‐treatments on biosorption of Ni (II) by dead biomass of Mucor hiemalis
CN107324616A (zh) 一种重金属污水的处理工艺
Gao et al. Biosorption of chromium (VI) ions by deposits produced from chicken feathers after soluble keratin extraction
CN110801814A (zh) 一种磁性氨基核桃壳生物炭新型吸附剂的制备方法
CN105645392A (zh) 一种氨基化石墨烯的制备方法及应用
Deng et al. Adsorption of Cr (VI) onto hybrid membrane of carboxymethyl chitosan and silicon dioxide
Leung et al. Ethylenediamine-modified amyloid fibrils of hen lysozyme with stronger adsorption capacity as rapid nano-biosorbents for removal of chromium (VI) ions
jaafar Al-atabi A novel approach for adsorption of copper (II) ions from wastewater using cane papyrus
Guo et al. Removal of Pb (II) from aqueous solution by cross-linked starch phosphate carbamate
CN115414919B (zh) 一种功能化共价有机框架材料及其制备方法、应用
CN106268702A (zh) 一种基于噻唑衍生物功能化超细纤维快速选择性吸附水中汞离子的方法
CN108277635B (zh) 基于低温等离子体技术的表面巯基化蚕丝纤维制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant