CN108376189B - 碎屑岩储层埋藏过程中成岩相演化的恢复方法 - Google Patents

碎屑岩储层埋藏过程中成岩相演化的恢复方法 Download PDF

Info

Publication number
CN108376189B
CN108376189B CN201810116782.3A CN201810116782A CN108376189B CN 108376189 B CN108376189 B CN 108376189B CN 201810116782 A CN201810116782 A CN 201810116782A CN 108376189 B CN108376189 B CN 108376189B
Authority
CN
China
Prior art keywords
phase
facies
delta
porosity
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810116782.3A
Other languages
English (en)
Other versions
CN108376189A (zh
Inventor
张昌民
钱文蹈
尹太举
侯国伟
何苗
冯文杰
夏敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze University
Original Assignee
Yangtze University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze University filed Critical Yangtze University
Priority to CN201810116782.3A priority Critical patent/CN108376189B/zh
Publication of CN108376189A publication Critical patent/CN108376189A/zh
Application granted granted Critical
Publication of CN108376189B publication Critical patent/CN108376189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

本发明提供了一种碎屑岩储层埋藏过程中成岩相演化的恢复方法,该方法确定不同类型成岩相的空间分布,定量预测有利成岩相的分布区域,进而确定有利储集层分布。通过对研究区目标层沉积相研究、原始组构研究、成岩环境研究以及埋藏史研究,进而恢复碎屑岩储层在埋藏过程中不同阶段成岩相类型以及展布。

Description

碎屑岩储层埋藏过程中成岩相演化的恢复方法
技术领域
本发明涉及油气勘探开发技术领域,具体地指一种碎屑岩储层埋藏过程中成岩相演化的恢复方法。
背景技术
成岩相是指在成岩环境控制下,由各种成岩作用形成并具有一定几何形态和特定成岩组构、特定成岩矿物组合的地质体。与沉积相、测井相中相的概念类似,成岩相所反映的意义是构造、流体、温度、压力等多个因素共同作用下一个储集层最终状态的集合,其核心内容是现今的矿物成分和组构面貌,主要是表征储集体性质、类型和优劣的成因性标志,可借以研究储集体形成机理、空间分布与定量评价。预测有利孔渗性成岩相是储集层研究和油气勘探的重点。成岩相反映成岩环境的岩石学特征、地球化学特征和岩石物理特征的总和。成岩相的研究内容主要是某一时段、某一区域的地质体内现今成岩相的类型、孔渗条件和分布特征,研究方法和流程通常是以单井成岩相为基础,结合地震、测井等资料。
发明内容
本发明针对上述存在的问题,提供了一种碎屑岩储层埋藏过程中成岩相演化的恢复方法,该方法确定不同类型成岩相的空间分布,定量预测有利成岩相的分布区域,进而确定有利储集层分布。通过对研究区目标层沉积相研究、原始组构研究、成岩环境研究以及埋藏史研究,进而恢复碎屑岩储层在埋藏过程中不同阶段成岩相类型以及展布。
为了实现上述目的,本发明提供了一种碎屑岩储层埋藏过程中成岩相演化的恢复方法,包括以下步骤:
1)原始资料数据库建立
原始资料数据库包括以下数据库:
(1)沉积相类型数据库Fi
沉积相决定储层原始物质分布,按碎屑岩沉积时沉积环境建立沉积相类型数据库Fi,
(2)矿物类型数据库Mi
碎屑成岩过程中,以矿物类型分类并建立数据库,得到矿物类型数据库Mi;
(3)成岩相类型数据库Di
成岩相类型数据库Di包括压实相数据库D1、胶结相数据库D2和溶蚀相数据库D3
(4)刚性颗粒强度数据库Vi
碎屑岩刚性颗粒主要由长石、石英组成,岩石中的刚性颗粒具有很好的抗压性,在埋藏过程中,有利于原生孔隙的保存。根据岩石的刚性颗粒比大小将岩石的刚性强度分类并建立刚性颗粒强度数据库Vi:超强刚性颗粒V1(刚性颗粒比例>75)、强刚性颗粒V2(刚性颗粒比例>60且≤75)、中刚性颗粒V3(刚性颗粒比例>45且≤60)、弱刚性颗粒V4(刚性颗粒比例≤45)。
2)建立基础模型
(1)沉积相与碎屑岩原始组构模型
基于不同沉积环境下不同碎屑岩原始组成,建立“沉积相—碎屑岩原始物质”模型;
沉积相决定储层原始物质分布,建立“沉积相—原始物质”模式,为地质历史时期成岩相演化提供基础资料;
f(Sedimentary facies)=f(Vi,Mi)
其中:Vi刚性颗粒,Mi矿物类型;
(2)压实相模型
a.根据地质参数的强弱大小即刚性颗粒强度、胶结作用强度、溶蚀类型强度与压实之间关系,建立压实级别系数Gi模型:强溶蚀作用Y1,Gi=-3;中溶蚀作用Y2,Gi=-2;弱溶蚀作用Y3,Gi=-1;强胶结作用Y4,Gi=5;中胶结作用Y5,Gi=3;弱胶结作用Y6,Gi=1;异常低压Y7,Gi=1;正常压力Y8,Gi=3;异常高压Y9,Gi=5;超强刚性V1,Gi=-2;强刚性V2,Gi=-1;中刚性V3,Gi=-0.5;弱刚性V4,Gi=0;
b.根据储层在埋藏过程中,压实作用的强度与地质参数刚性颗粒、胶结作用、溶蚀类型有密切的关系,通过计算压实级别系数总和来判断碎屑岩储层压实作用的强弱;
压实级别系数总和计算公式:
Figure BDA0001570843780000031
其中,Gi为不同地质参数R的压实级别系数,EI为碎屑岩储层压实级别系数;
当10≥EI>5,Di=机械弱压实相D1-3;
当5≥EI>2,Di=机械中压实相D1-2
当2≥EI,Di=机械强压实相D1-1;
(3)胶结相模型B
根据流体的条件和温度,确定胶结相模型B;
a.淡水-半咸水条件下
当25<T≤65℃,
Figure BDA0001570843780000032
当65<T≤85℃,
Figure BDA0001570843780000033
当85<T≤140℃,Di∈(D12-2,D13-2,D14-2,D15-2);
当140<T≤175℃,
Figure BDA0001570843780000034
当175<T≤200℃,
Figure BDA0001570843780000035
b.酸性水条件下
当25<T≤65℃,
Figure BDA0001570843780000036
当65<T≤85℃,
Figure BDA0001570843780000037
当85<T≤140℃,Di∈(D12-2,D13-2,D14-2);
当140<T≤175℃,
Figure BDA0001570843780000038
当175<T≤200℃,
Figure BDA0001570843780000039
c.碱性水条件下
当25<T≤65℃,Di=D11-2;
当65<T≤85℃,Di∈(D11-2,D13-3,D14-3,D15-1);
当85<T≤140℃,Di∈(D12-3,D13-2,D14-2,D15-2);
当140<T≤175℃,Di∈(D12-2,D13-2,D14-2);
当175<T≤200℃,Di=D12-2;
(4)溶蚀相模型E
根据流体的条件和温度,确定溶蚀相模型E;
a.淡水-半咸水条件下
当25<T≤65℃,Di=D5-3;
当65<T≤85℃,Di∈D3-1,D4-1,D5-2,D7,D8,D11-2,D15-3);
当85<T≤140℃,Di∈(D3-2,D4-2,D5-2,D6,D7,D8,D9,D11-2,D15-2);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D8,D9,D11-1,D15-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D5-2,D6,D9,D11-1,D15-2);
b.酸性水条件下
当25<T≤65℃,Di=D5-3;
当65<T≤85℃,Di∈(D5-2,D7,D8,D11-2);
当85<T≤140℃,Di∈(D3-2,D4-2,D5-2,D6,D7,D8,D9,D11-2,D15-2);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D8,D9,D11-1,D15-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D6,D9,D11-1,D15-2);
c.碱性水条件下
当25<T≤65℃,Di∈(D4-2,D5-3,D6,D15-2);
当65<T≤85℃,Di∈(D4-2,D5-2,D6,D15-3);
当85<T≤140℃,Di∈(D3-3,D4-2,D5-2,D6,D11-2,D15-3);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D11-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D5-2,D6,D11-2);
(5)地层埋深模型
(a)确定演化期次
根据目的层上覆地层发育情况划分目标层在地质历史时期所经历的演化阶段,目的层L上覆地层有i层,即从上到下依次标记为:L1、L2、L3……Li-1、Li,则目的层在地质历史时期演化阶段共有i个,按照时间演化的目的层L演化期次先后顺序依次计为Li、Li-1、Li-2……L2、L1;
(b)确定不同期次埋深
在(a)的基础下,计算目的层L不同演化期次的埋深,其计算公式如下:
Dep(Li)=H(L)-H(Li);
Dep(Li-1)=H(L)-H(Li-1);
Dep(Li-2)=H(L)-H(Li-2);
……
Dep(L2)=H(L)-H2;
Dep(L1)=H(L)-H1;
其中:H(L)为目的层L顶界面,H(Li)为上覆层Li顶界面,Dep(Li)为目的层Li阶段埋深;
(6)地层温度模型
地质体在埋藏的过程中,温度的大小表示为与深度的线性函数关系,通过该模型,计算目的层L在不同时期、不同深度、不同位置地层温度;
温度计算模型公式:
T=T0+c*(D(Ti)-H0)
其中T0为常温带温度,c为常数,Dep(Ti)为目的层Ti阶段埋深,H0为恒温带埋深,为常数,T为目标层古地温;
(7)压力模型
a.地层压力
地质体在埋藏的过程中,地层压力大小表示为深度的非线性函数关系;通过该模型,计算目的层L在不同时期、不同深度、不同位置的地层压力;
地层压力计算模型公式:
Pf=a*Dep(Li)^2+b*Dep(Li)+c
其中a、b、c为常数,通过井上实测地层压力数据进行数据拟合得到,Dep(Li)为目的层Li阶段埋深;Pf为地层压力
b.静水压力
大小与液体的密度和液柱的高度有关,而与液体的形状和大小无关;
PH=h*PW*g
其中,PH为静水压力,h为静水柱高度,PW为水的密度,g为重力加速度。
c.异常压力
当压力系数小于0.8时,为异常低压Y7;当压力系数介于0.8~1.2时,为正常压力Y8;当压力系数大于1.2时,为异常高压Y9。
压力系数αp计算公式如下:
Figure BDA0001570843780000061
其中,Pf为地层压力,PH为静水压力。
4)确定成岩相
(1)储层网格化
将研究区储层进行网格化,研究区储层的每个网格用Wi(X,Y)表示;
储层网格化是将空间上不均匀分布的数据按一定方法(如滑动平均法、克里格法或其他适当的数值推算方法)归算成规则网格中的代表值(趋势值)的过程;
(2)确定沉积相
根据研究区地质资料建立起每个网格的沉积相属性W(x,y)=f(Sedimentaryfacies);
(3)确定原始组构
根据研究区已知井沉积相与原始组构关系,确定每个空间网格原始组构数据,即:
f(Sedimentary facies)=f(V0,Mi)W(x,y)=f(V0,Mi)
(4)确定演化期次
根据目的层上覆地层发育情况划分目标层在地质历史时期所经历的演化阶段,如果目的层(L)上覆地层有i层(从上到下依次标记为:L1、L2、L3……Li-1、Li),则目的层在地质历史时期演化阶段共有i个,按照时间演化的先后顺序依次计为Li、Li-1、Li-2……L2、L1;
(5)确定不同期次埋深
根据确定研究区储层的每个网格的演化期次,确定不同期次的地层埋深。埋深计算公式如下:
Dep(Li)=H(L)-H(Li);
Dep(Li-1)=H(L)-H(Li-1);
Dep(Li-2)=H(L)-H(Li-2);
……
Dep(L2)=H(L)-H2;
Dep(L1)=H(L)-H1;
其中:H(L)为目的层L顶界面,H(Li)为上覆层Li顶界面,Dep(Li)为目的层Li阶段埋深;
(6)确定不同期次温度
将研究区目的层L的每个网格W(x,y)的参数代入温度计算模型公式中:
T=T0+c*(Dep(Ti)-H0)
计算得到目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度;
(7)确定不同期次压力
将研究区目的层L的每个网格W(x,y)的参数代入地层压力计算模型公式:
(Pf=a*Dep(Li)^2+b*Dep(Li)+c
PH=h*PW*g
Figure BDA0001570843780000071
计算得到目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置异常压力,其中压力包括静水压力、地层压力、异常压力;
(8)计算溶蚀相
将目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度代入上述溶蚀相模型E中,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置溶蚀相;
(9)计算胶结相
将目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度代入上述胶结相模型B中,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置胶结相;
(10)计算压实相
a.根据步骤4)第(8)小步的溶蚀相确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的溶蚀相;
b.根据步骤4)第(9)小步的胶结相确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的胶结相;
c.确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的压力地质参数;
压力系数αp计算公式如下:
Figure BDA0001570843780000081
其中,Pf为地层压力,PH为静水压力;
d.确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的刚性地质参数;
刚性地质参数根据研究区“沉积相—原始物质”来确定;
f(Sedimentary facies)=f(Vi,Mi)
其中:Vi刚性颗粒,Mi矿物类型;
e.根据a、b、c、d确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的压实相;
压实级别系数总和计算公式:
Figure BDA0001570843780000082
其中,Gi为不同地质参数R的压实级别系数,EI为碎屑岩储层压实级别系数;
当10≥EI>5,Di=机械弱压实相D1-3;
当5≥EI>2,Di=机械中压实相D1-2
当2≥EI,Di=机械强压实相D1-1;
(11)确定成岩相
根据上述计算的压实相、胶结相和溶蚀相,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的成岩相。
成岩相=压实相+胶结相+溶蚀相。
进一步地,所述步骤1)中第(1)小步中,沉积相类型为:
冲积扇-旱扇-扇根(Ⅰ-A-a)、冲积扇-旱扇-扇中(Ⅰ-A-b)、冲积扇-旱扇-扇缘(Ⅰ-A-c)、冲积扇-湿扇-扇根(Ⅰ-B-a)、冲积扇-湿扇-扇中(Ⅰ-B-b)、冲积扇-湿扇-扇缘(Ⅰ-B-c)、河流相-曲流河-河床亚相-河床滞留(Ⅱ-A-a-1)、河流相-曲流河-河床亚相-边滩(Ⅱ-A-a-2)、河流相-曲流河-堤岸亚相-天然堤(Ⅱ-A-b-1)、河流相-曲流河-堤岸亚相-决口扇(Ⅱ-A-b-2)、河流相-曲流河-河漫亚相-河漫滩(Ⅱ-A-c-1)、河流相-曲流河-泛滥盆地-河漫湖泊(Ⅱ-A-d-1)、河流相-曲流河-河漫沼泽(Ⅱ-A-e)、河流相-辫状河-牛轭湖(Ⅱ-B-a)、河流相-辫状河-河床滞留(Ⅱ-B-b)、河流相-辫状河-心滩、河道(Ⅱ-B-c)、河流相-辫状河-泛滥平原(Ⅱ-B-d)、湖泊相-断陷型-湖成三角洲(Ⅲ-A-a)、湖泊相-断陷型-滨湖(Ⅲ-A-b)、湖泊相-断陷型-浅湖(Ⅲ-A-c)、湖泊相-断陷型-半深湖(Ⅲ-A-d)、湖泊相-断陷型-深湖(Ⅲ-A-e)、湖泊相-断陷型-湖湾(Ⅲ-A-f)、湖泊相-坳陷型-湖成三角洲(Ⅲ-B-a)、湖泊相-坳陷型-滨湖(Ⅲ-B-b)、湖泊相-坳陷型-浅湖(Ⅲ-B-c)、湖泊相-坳陷型-半深湖(Ⅲ-B-d)、湖泊相-坳陷型-深湖(Ⅲ-B-e)、湖泊相-坳陷型-湖湾(Ⅲ-B-f)、湖泊相-前陆型-湖成三角洲(Ⅲ-C-a)、湖泊相-前陆型-滨湖(Ⅲ-C-b)、湖泊相-前陆型-浅湖(Ⅲ-C-c)、湖泊相-前陆型-半深湖(Ⅲ-C-d)、湖泊相-前陆型-深湖(Ⅲ-C-e)、湖泊相-前陆型-湖湾(Ⅲ-C-f)、三角洲相-辫状河三角洲-三角洲平原-分支(Ⅳ-A-a-1)、三角洲相-辫状河三角洲-三角洲平原-河道(Ⅳ-A-a-2)、三角洲相-辫状河三角洲-三角洲平原-陆上天然堤(Ⅳ-A-a-3)、三角洲相-辫状河三角洲-三角洲平原-决口扇(Ⅳ-A-a-4)、三角洲相-辫状河三角洲-三角洲平原-沼泽(Ⅳ-A-a-5)、三角洲相-辫状河三角洲-三角洲平原-淡水湖泊(Ⅳ-A-a-6)、三角洲相-辫状河三角洲-三角洲前缘-水下分支河道(Ⅳ-A-b-1)、三角洲相-辫状河三角洲-三角洲前缘-水下天然堤(Ⅳ-A-b-2)、三角洲相-辫状河三角洲-三角洲前缘-支流间湾(Ⅳ-A-b-3)、三角洲相-辫状河三角洲-三角洲前缘-分支河口砂坝(Ⅳ-A-b-4)、三角洲相-辫状河三角洲-三角洲前缘-远砂坝(Ⅳ-A-b-5)、三角洲相-辫状河三角洲-三角洲前缘-前缘席状砂(Ⅳ-A-b-6)、三角洲相-辫状河三角洲-前三角洲(Ⅳ-A-c)、三角洲相-扇三角洲-扇三角洲平原-泥石流(Ⅳ-B-a-1)、三角洲相-扇三角洲-扇三角洲平原-河道充填(Ⅳ-B-a-2)、三角洲相-扇三角洲-扇三角洲平原-漫滩(Ⅳ-B-a-3)、三角洲相-扇三角洲-扇三角洲前缘-碎屑流(Ⅳ-B-b-1)、三角洲相-扇三角洲-扇三角洲前缘-水下分流河道(Ⅳ-B-b-2)、三角洲相-扇三角洲-扇三角洲前缘-支流间湾(Ⅳ-B-b-3)、三角洲相-扇三角洲-扇三角洲前缘-河口砂坝(Ⅳ-B-b-4)、三角洲相-扇三角洲-扇三角洲前缘-远砂坝(Ⅳ-B-b-5)、三角洲相-扇三角洲-前扇三角洲(Ⅳ-B-c);
再进一步地,所述步骤1)中第(2)小步中,
矿物类型包括:石英M1、长石M2、白云石M3、方解石M4、伊利石M5、高岭石M6、蒙脱石M7、绿泥石M8、沸石M9、白云母M10、黑云母M11;
再进一步地,所述步骤1)中第(3)小步中,成岩相类型数据库Di包括压实相数据库D1、胶结相数据库D2和溶蚀相数据库D3
a.压实相数据库
根据碎屑岩在成岩过程中压实强弱,即压实作用下孔隙改变量,建立压实相数据库D1,压实相类型包括:
强机械压实相D1-1:其孔隙改变量为
Figure BDA0001570843780000101
中机械压实相D1-2:其孔隙改变量为
Figure BDA0001570843780000102
弱机械压实相D1-3:其孔隙改变量
Figure BDA0001570843780000103
b.胶结相数据库D2
根据发生胶结作用的矿石类型和胶结强度共同建立胶结相数据库D2,胶结相类型包括:
石英强胶结相D2-1:其孔隙改变量为
Figure BDA0001570843780000104
石英中胶结相D2-2:其孔隙改变量为
Figure BDA0001570843780000105
石英弱胶结相D2-3:其孔隙改变量
Figure BDA0001570843780000106
长石强胶结相D3-1:孔隙改变量
Figure BDA0001570843780000107
长石中胶结相D3-2:其孔隙改变量
Figure BDA0001570843780000108
长石弱胶结相D3-3:其孔隙改变量
Figure BDA0001570843780000109
白云石强胶结相D4-1:其孔隙改变量
Figure BDA00015708437800001010
白云石中胶结相D4-2:其孔隙改变量
Figure BDA00015708437800001011
白云石弱胶结相D4-3:其孔隙改变量
Figure BDA0001570843780000111
方解石强胶结相D5-1:其孔隙改变量
Figure BDA0001570843780000112
方解石中胶结相D5-2:其孔隙改变量
Figure BDA0001570843780000113
方解石弱胶结相D5-3:其孔隙改变量
Figure BDA0001570843780000114
伊利石胶结相D6-1:其孔隙改变量
Figure BDA0001570843780000115
伊利石胶结相D6-2:其孔隙改变量
Figure BDA0001570843780000116
伊利石胶结相D6-3:其孔隙改变量
Figure BDA0001570843780000117
高岭石胶结相D7-1:其孔隙改变量
Figure BDA0001570843780000118
高岭石胶结相D7-2:其孔隙改变量
Figure BDA0001570843780000119
高岭石胶结相D7-3:其孔隙改变量
Figure BDA00015708437800001110
蒙脱石胶结相D8-1:其孔隙改变量
Figure BDA00015708437800001111
蒙脱石胶结相D8-2:其孔隙改变量
Figure BDA00015708437800001112
蒙脱石胶结相D8-3:其孔隙改变量
Figure BDA00015708437800001113
绿泥石胶结相D9-1:其孔隙改变量
Figure BDA00015708437800001114
绿泥石胶结相D9-2:其孔隙改变量
Figure BDA00015708437800001115
绿泥石胶结相D9-3:其孔隙改变量
Figure BDA00015708437800001116
沸石强胶结相D10-1:其孔隙改变量
Figure BDA00015708437800001117
沸石中胶结相D10-2:其孔隙改变量
Figure BDA00015708437800001118
沸石弱胶结相D10-3:其孔隙改变量
Figure BDA00015708437800001119
c.溶蚀相数据库D3
根据发生溶蚀作用的矿石类型和溶蚀强度共同建立胶结相数据库D3,溶蚀相类型包括:
石英强溶蚀相D11-1:其孔隙改变量
Figure BDA00015708437800001120
石英中溶蚀相D11-2、其孔隙改变量
Figure BDA00015708437800001121
石英弱溶蚀相D11-3、其孔隙改变量
Figure BDA00015708437800001122
长石强溶蚀相D12-1:其孔隙改变量
Figure BDA00015708437800001123
长石中溶蚀相D12-2:其孔隙改变量
Figure BDA00015708437800001124
长石弱溶蚀相D12-3:其孔隙改变量
Figure BDA00015708437800001125
白云石强溶蚀相D13-1:其孔隙改变量
Figure BDA00015708437800001126
白云石中溶蚀相D13-2:其孔隙改变量
Figure BDA00015708437800001127
白云石弱溶蚀相D13-3:其孔隙改变量
Figure BDA00015708437800001128
方解石强溶蚀相D14-1:其孔隙改变量
Figure BDA0001570843780000121
方解石中溶蚀相D14-2:其孔隙改变量
Figure BDA0001570843780000122
方解石弱溶蚀相D14-3:其孔隙改变量
Figure BDA0001570843780000123
沸石强溶蚀相D15-1:其孔隙改变量
Figure BDA0001570843780000124
沸石中溶蚀相D15-2:其孔隙改变量
Figure BDA0001570843780000125
沸石弱溶蚀相D15-3:其孔隙改变量
Figure BDA0001570843780000126
再进一步地,所述步骤1)中第(4)小步中,刚性颗粒强度数据库Vi包括超强刚性颗粒V1,刚性颗粒比例>75;强刚性颗粒V2,刚性颗粒比例>60且≤75;中刚性颗粒V3刚性颗粒比例>45且≤60;弱刚性颗粒V4,刚性颗粒比例≤45。
本发明的有益效果在于:
本发明提供了一种碎屑岩储层埋藏过程中成岩相演化的恢复方法,该方法用以确定不同类型成岩相的空间分布,定量预测有利成岩相的分布区域,进而确定有利储集层分布,弥补了前人在成岩相演化方面研究的空白。
附图说明
图1为研究区网格剖分图;
图2为研究区沉积相—原始组构模型图
图中,军绿色--石英、伊利石、长石、白云石、强刚性;橘黄色--石英、长石、云母、石膏、中刚性;褐红色--长石、粘土、方解石、刚性;青色—石英、长石、黑云母、粘土、刚性;
图3为须家河组与上覆层叠置关系图;
图4为目标层位Y在地质历史不同演化时期顶面埋深模型;
图5为须家河组不同时刻地层压力图;
图6为须家河组不同时刻温度模型图;
图7为须家河组不同时刻pH模型图;
图8为目标层(Y)不同埋藏阶段成岩相图
图中,黄绿—压实相;红色-压实-钙质胶结相;紫色--压实-钙质胶结相;蓝色—强压实-钙质胶结相;橙色—压实-绿泥石胶结-溶蚀相;褐色--早成岩B阶段;绿色--中成岩A阶段;蓝色—中成岩B阶段;橙绿—钙质胶结-溶蚀相;黄色—压实-强溶蚀相。
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
实施例1
碎屑岩储层埋藏过程中成岩相演化的恢复方法,包括以下步骤:
1)原始资料数据库建立
原始资料数据库包括以下数据库:
(1)沉积相类型数据库Fi
沉积相决定储层原始物质分布,按碎屑岩沉积时沉积环境建立沉积相类型数据库Fi,其中,沉积相类型为:
冲积扇-旱扇-扇根(Ⅰ-A-a)、冲积扇-旱扇-扇中(Ⅰ-A-b)、冲积扇-旱扇-扇缘(Ⅰ-A-c)、冲积扇-湿扇-扇根(Ⅰ-B-a)、冲积扇-湿扇-扇中(Ⅰ-B-b)、冲积扇-湿扇-扇缘(Ⅰ-B-c)、河流相-曲流河-河床亚相-河床滞留(Ⅱ-A-a-1)、河流相-曲流河-河床亚相-边滩(Ⅱ-A-a-2)、河流相-曲流河-堤岸亚相-天然堤(Ⅱ-A-b-1)、河流相-曲流河-堤岸亚相-决口扇(Ⅱ-A-b-2)、河流相-曲流河-河漫亚相-河漫滩(Ⅱ-A-c-1)、河流相-曲流河-泛滥盆地-河漫湖泊(Ⅱ-A-d-1)、河流相-曲流河-河漫沼泽(Ⅱ-A-e)、河流相-辫状河-牛轭湖(Ⅱ-B-a)、河流相-辫状河-河床滞留(Ⅱ-B-b)、河流相-辫状河-心滩、河道(Ⅱ-B-c)、河流相-辫状河-泛滥平原(Ⅱ-B-d)、湖泊相-断陷型-湖成三角洲(Ⅲ-A-a)、湖泊相-断陷型-滨湖(Ⅲ-A-b)、湖泊相-断陷型-浅湖(Ⅲ-A-c)、湖泊相-断陷型-半深湖(Ⅲ-A-d)、湖泊相-断陷型-深湖(Ⅲ-A-e)、湖泊相-断陷型-湖湾(Ⅲ-A-f)、湖泊相-坳陷型-湖成三角洲(Ⅲ-B-a)、湖泊相-坳陷型-滨湖(Ⅲ-B-b)、湖泊相-坳陷型-浅湖(Ⅲ-B-c)、湖泊相-坳陷型-半深湖(Ⅲ-B-d)、湖泊相-坳陷型-深湖(Ⅲ-B-e)、湖泊相-坳陷型-湖湾(Ⅲ-B-f)、湖泊相-前陆型-湖成三角洲(Ⅲ-C-a)、湖泊相-前陆型-滨湖(Ⅲ-C-b)、湖泊相-前陆型-浅湖(Ⅲ-C-c)、湖泊相-前陆型-半深湖(Ⅲ-C-d)、湖泊相-前陆型-深湖(Ⅲ-C-e)、湖泊相-前陆型-湖湾(Ⅲ-C-f)、三角洲相-辫状河三角洲-三角洲平原-分支(Ⅳ-A-a-1)、三角洲相-辫状河三角洲-三角洲平原-河道(Ⅳ-A-a-2)、三角洲相-辫状河三角洲-三角洲平原-陆上天然堤(Ⅳ-A-a-3)、三角洲相-辫状河三角洲-三角洲平原-决口扇(Ⅳ-A-a-4)、三角洲相-辫状河三角洲-三角洲平原-沼泽(Ⅳ-A-a-5)、三角洲相-辫状河三角洲-三角洲平原-淡水湖泊(Ⅳ-A-a-6)、三角洲相-辫状河三角洲-三角洲前缘-水下分支河道(Ⅳ-A-b-1)、三角洲相-辫状河三角洲-三角洲前缘-水下天然堤(Ⅳ-A-b-2)、三角洲相-辫状河三角洲-三角洲前缘-支流间湾(Ⅳ-A-b-3)、三角洲相-辫状河三角洲-三角洲前缘-分支河口砂坝(Ⅳ-A-b-4)、三角洲相-辫状河三角洲-三角洲前缘-远砂坝(Ⅳ-A-b-5)、三角洲相-辫状河三角洲-三角洲前缘-前缘席状砂(Ⅳ-A-b-6)、三角洲相-辫状河三角洲-前三角洲(Ⅳ-A-c)、三角洲相-扇三角洲-扇三角洲平原-泥石流(Ⅳ-B-a-1)、三角洲相-扇三角洲-扇三角洲平原-河道充填(Ⅳ-B-a-2)、三角洲相-扇三角洲-扇三角洲平原-漫滩(Ⅳ-B-a-3)、三角洲相-扇三角洲-扇三角洲前缘-碎屑流(Ⅳ-B-b-1)、三角洲相-扇三角洲-扇三角洲前缘-水下分流河道(Ⅳ-B-b-2)、三角洲相-扇三角洲-扇三角洲前缘-支流间湾(Ⅳ-B-b-3)、三角洲相-扇三角洲-扇三角洲前缘-河口砂坝(Ⅳ-B-b-4)、三角洲相-扇三角洲-扇三角洲前缘-远砂坝(Ⅳ-B-b-5)、三角洲相-扇三角洲-前扇三角洲(Ⅳ-B-c);
(2)矿物类型数据库Mi
碎屑成岩过程中,以矿物类型分类并建立数据库,得到矿物类型数据库Mi;
矿物类型包括:石英M1、长石M2、白云石M3、方解石M4、伊利石M5、高岭石M6、蒙脱石M7、绿泥石M8、沸石M9、白云母M10、黑云母M11;
(3)成岩相类型数据库Di
成岩相类型数据库Di包括压实相数据库D1、胶结相数据库D2和溶蚀相数据库D3
a.压实相数据库
根据碎屑岩在成岩过程中压实强弱,即压实作用下孔隙改变量,建立压实相数据库D1,压实相类型包括:
强机械压实相D1-1:其孔隙改变量为
Figure BDA0001570843780000141
中机械压实相D1-2:其孔隙改变量为
Figure BDA0001570843780000142
弱机械压实相D1-3:其孔隙改变量
Figure BDA0001570843780000143
b.胶结相数据库D2
根据发生胶结作用的矿石类型和胶结强度共同建立胶结相数据库D2,胶结相类型包括:
石英强胶结相D2-1:其孔隙改变量为
Figure BDA0001570843780000151
石英中胶结相D2-2:其孔隙改变量为
Figure BDA0001570843780000152
石英弱胶结相D2-3:其孔隙改变量
Figure BDA0001570843780000153
长石强胶结相D3-1:孔隙改变量
Figure BDA0001570843780000154
长石中胶结相D3-2:其孔隙改变量
Figure BDA0001570843780000155
长石弱胶结相D3-3:其孔隙改变量
Figure BDA0001570843780000156
白云石强胶结相D4-1:其孔隙改变量
Figure BDA0001570843780000157
白云石中胶结相D4-2:其孔隙改变量
Figure BDA0001570843780000158
白云石弱胶结相D4-3:其孔隙改变量
Figure BDA0001570843780000159
方解石强胶结相D5-1:其孔隙改变量
Figure BDA00015708437800001510
方解石中胶结相D5-2:其孔隙改变量
Figure BDA00015708437800001511
方解石弱胶结相D5-3:其孔隙改变量
Figure BDA00015708437800001512
伊利石胶结相D6-1:其孔隙改变量
Figure BDA00015708437800001513
伊利石胶结相D6-2:其孔隙改变量
Figure BDA00015708437800001514
伊利石胶结相D6-3:其孔隙改变量
Figure BDA00015708437800001515
高岭石胶结相D7-1:其孔隙改变量
Figure BDA00015708437800001516
高岭石胶结相D7-2:其孔隙改变量
Figure BDA00015708437800001517
高岭石胶结相D7-3:其孔隙改变量
Figure BDA00015708437800001518
蒙脱石胶结相D8-1:其孔隙改变量
Figure BDA00015708437800001519
蒙脱石胶结相D8-2:其孔隙改变量
Figure BDA00015708437800001520
蒙脱石胶结相D8-3:其孔隙改变量
Figure BDA00015708437800001521
绿泥石胶结相D9-1:其孔隙改变量
Figure BDA00015708437800001522
绿泥石胶结相D9-2:其孔隙改变量
Figure BDA00015708437800001523
绿泥石胶结相D9-3:其孔隙改变量
Figure BDA00015708437800001524
沸石强胶结相D10-1:其孔隙改变量
Figure BDA00015708437800001525
沸石中胶结相D10-2:其孔隙改变量
Figure BDA00015708437800001526
沸石弱胶结相D10-3:其孔隙改变量
Figure BDA00015708437800001527
c.溶蚀相数据库D3
根据发生溶蚀作用的矿石类型和溶蚀强度共同建立胶结相数据库D3,溶蚀相类型包括:
石英强溶蚀相D11-1:其孔隙改变量
Figure BDA0001570843780000161
石英中溶蚀相D11-2、其孔隙改变量
Figure BDA0001570843780000162
石英弱溶蚀相D11-3、其孔隙改变量
Figure BDA0001570843780000163
长石强溶蚀相D12-1:其孔隙改变量
Figure BDA0001570843780000164
长石中溶蚀相D12-2:其孔隙改变量
Figure BDA0001570843780000165
长石弱溶蚀相D12-3:其孔隙改变量
Figure BDA0001570843780000166
白云石强溶蚀相D13-1:其孔隙改变量
Figure BDA0001570843780000167
白云石中溶蚀相D13-2:其孔隙改变量
Figure BDA0001570843780000168
白云石弱溶蚀相D13-3:其孔隙改变量
Figure BDA0001570843780000169
方解石强溶蚀相D14-1:其孔隙改变量
Figure BDA00015708437800001610
方解石中溶蚀相D14-2:其孔隙改变量
Figure BDA00015708437800001611
方解石弱溶蚀相D14-3:其孔隙改变量
Figure BDA00015708437800001612
沸石强溶蚀相D15-1:其孔隙改变量
Figure BDA00015708437800001613
沸石中溶蚀相D15-2:其孔隙改变量
Figure BDA00015708437800001614
沸石弱溶蚀相D15-3:其孔隙改变量
Figure BDA00015708437800001615
(4)刚性颗粒强度数据库Vi
碎屑岩刚性颗粒主要由长石、石英组成,岩石中的刚性颗粒具有很好的抗压性,在埋藏过程中,有利于原生孔隙的保存。根据岩石的刚性颗粒比大小将岩石的刚性强度分类并建立刚性颗粒强度数据库Vi:超强刚性颗粒V1(刚性颗粒比例>75)、强刚性颗粒V2(刚性颗粒比例>60且≤75)、中刚性颗粒V3(刚性颗粒比例>45且≤60)、弱刚性颗粒V4(刚性颗粒比例≤45)。
2)建立基础模型
(1)沉积相与碎屑岩原始组构模型
基于不同沉积环境下不同碎屑岩原始组成,建立“沉积相—碎屑岩原始物质”模型;
沉积相决定储层原始物质分布,建立“沉积相—原始物质”模式,为地质历史时期成岩相演化提供基础资料;
f(Sedimentary facies)=f(Vi,Mi)
其中:Vi刚性颗粒,Mi矿物类型;
(2)压实相模型
a.根据地质参数的强弱大小即刚性颗粒强度、胶结作用强度、溶蚀类型强度与压实之间关系,建立压实级别系数Gi模型:强溶蚀作用Y1,Gi=-3;中溶蚀作用Y2,Gi=-2;弱溶蚀作用Y3,Gi=-1;强胶结作用Y4,Gi=5;中胶结作用Y5,Gi=3;弱胶结作用Y6,Gi=1;异常低压Y7,Gi=1;正常压力Y8,Gi=3;异常高压Y9,Gi=5;超强刚性V1,Gi=-2;强刚性V2,Gi=-1;中刚性V3,Gi=-0.5;弱刚性V4,Gi=0;
b.根据储层在埋藏过程中,压实作用的强度与地质参数刚性颗粒、胶结作用、溶蚀类型有密切的关系,通过计算压实级别系数总和来判断碎屑岩储层压实作用的强弱;
压实级别系数总和计算公式:
Figure BDA0001570843780000171
其中,Gi为不同地质参数R的压实级别系数,EI为碎屑岩储层压实级别系数;
当10≥EI>5,Di=机械弱压实相D1-3;
当5≥EI>2,Di=机械中压实相D1-2
当2≥EI,Di=机械强压实相D1-1;
(3)胶结相模型B
根据流体的条件和温度,确定胶结相模型B;
a.淡水-半咸水条件下
当25<T≤65℃,
Figure BDA0001570843780000172
当65<T≤85℃,
Figure BDA0001570843780000173
当85<T≤140℃,Di∈(D12-2,D13-2,D14-2,D15-2);
当140<T≤175℃,
Figure BDA0001570843780000174
当175<T≤200℃,
Figure BDA0001570843780000175
b.酸性水条件下
当25<T≤65℃,
Figure BDA0001570843780000176
当65<T≤85℃,
Figure BDA0001570843780000177
当85<T≤140℃,Di∈(D12-2,D13-2,D14-2);
当140<T≤175℃,
Figure BDA0001570843780000182
当175<T≤200℃,
Figure BDA0001570843780000181
c.碱性水条件下
当25<T≤65℃,Di=D11-2;
当65<T≤85℃,Di∈(D11-2,D13-3,D14-3,D15-1);
当85<T≤140℃,Di∈(D12-3,D13-2,D14-2,D15-2);
当140<T≤175℃,Di∈(D12-2,D13-2,D14-2);
当175<T≤200℃,Di=D12-2;
(4)溶蚀相模型E
根据流体的条件和温度,确定溶蚀相模型E;
a.淡水-半咸水条件下
当25<T≤65℃,Di=D5-3;
当65<T≤85℃,Di∈D3-1,D4-1,D5-2,D7,D8,D11-2,D15-3);
当85<T≤140℃,Di∈(D3-2,D4-2,D5-2,D6,D7,D8,D9,D11-2,D15-2);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D8,D9,D11-1,D15-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D5-2,D6,D9,D11-1,D15-2);
b.酸性水条件下
当25<T≤65℃,Di=D5-3;
当65<T≤85℃,Di∈(D5-2,D7,D8,D11-2);
当85<T≤140℃,Di∈(D3-2,D4-2,D5-2,D6,D7,D8,D9,D11-2,D15-2);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D8,D9,D11-1,D15-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D6,D9,D11-1,D15-2);
c.碱性水条件下
当25<T≤65℃,Di∈(D4-2,D5-3,D6,D15-2);
当65<T≤85℃,Di∈(D4-2,D5-2,D6,D15-3);
当85<T≤140℃,Di∈(D3-3,D4-2,D5-2,D6,D11-2,D15-3);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D11-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D5-2,D6,D11-2);
(5)地层埋深模型
(a)确定演化期次
根据目的层上覆地层发育情况划分目标层在地质历史时期所经历的演化阶段,目的层L上覆地层有i层,即从上到下依次标记为:L1、L2、L3……Li-1、Li,则目的层在地质历史时期演化阶段共有i个,按照时间演化的目的层L演化期次先后顺序依次计为Li、Li-1、Li-2……L2、L1;
(b)确定不同期次埋深
在(a)的基础下,计算目的层L不同演化期次的埋深,其计算公式如下:
Dep(Li)=H(L)-H(Li);
Dep(Li-1)=H(L)-H(Li-1);
Dep(Li-2)=H(L)-H(Li-2);
……
Dep(L2)=H(L)-H2;
Dep(L1)=H(L)-H1;
其中:H(L)为目的层L顶界面,H(Li)为上覆层Li顶界面,Dep(Li)为目的层Li阶段埋深;
(6)地层温度模型
地质体在埋藏的过程中,温度的大小表示为与深度的线性函数关系,通过该模型,计算目的层L在不同时期、不同深度、不同位置地层温度;
温度计算模型公式:
T=T0+c*(D(Ti)-H0)
其中T0为常温带温度,c为常数,Dep(Ti)为目的层Ti阶段埋深,H0为恒温带埋深,为常数,T为目标层古地温;
(7)压力模型
a.地层压力
地质体在埋藏的过程中,地层压力大小表示为深度的非线性函数关系;通过该模型,计算目的层L在不同时期、不同深度、不同位置的地层压力;
地层压力计算模型公式:
Pf=a*Dep(Li)^2+b*Dep(Li)+c
其中a、b、c为常数,通过井上实测地层压力数据进行数据拟合得到,Dep(Li)为目的层Li阶段埋深;Pf为地层压力
b.静水压力
大小与液体的密度和液柱的高度有关,而与液体的形状和大小无关;
PH=h*PW*g
其中,PH为静水压力,h为静水柱高度,PW为水的密度,g为重力加速度。
c.异常压力
当压力系数αp小于0.8时,为异常低压Y7;当压力系数αp介于0.8~1.2时,为正常压力Y8;当压力系数αp大于1.2时,为异常高压Y9。
压力系数αp计算公式如下:
Figure BDA0001570843780000201
其中,Pf为地层压力,PH为静水压力;
4)确定成岩相
(1)储层网格化
将研究区储层进行网格化,研究区储层的每个网格用Wi(X,Y)表示;
储层网格化是将空间上不均匀分布的数据按一定方法(如滑动平均法、克里格法或其他适当的数值推算方法)归算成规则网格中的代表值(趋势值)的过程;
(2)确定沉积相
根据研究区地质资料建立起每个网格的沉积相属性W(x,y)=f(Sedimentaryfacies);
(3)确定原始组构
根据研究区已知井沉积相与原始组构关系,确定每个空间网格原始组构数据,即:
f(Sedimentary facies)=f(V0,Mi)W(x,y)=f(V0,Mi)
(4)确定演化期次
根据目的层上覆地层发育情况划分目标层在地质历史时期所经历的演化阶段,如果目的层(L)上覆地层有i层(从上到下依次标记为:L1、L2、L3……Li-1、Li),则目的层在地质历史时期演化阶段共有i个,按照时间演化的先后顺序依次计为Li、Li-1、Li-2……L2、L1;
(5)确定不同期次埋深
根据确定研究区储层的每个网格的演化期次,确定不同期次的地层埋深。埋深计算公式如下:
Dep(Li)=H(L)-H(Li);
Dep(Li-1)=H(L)-H(Li-1);
Dep(Li-2)=H(L)-H(Li-2);
……
Dep(L2)=H(L)-H2;
Dep(L1)=H(L)-H1;
其中:H(L)为目的层L顶界面,H(Li)为上覆层Li顶界面,Dep(Li)为目的层Li阶段埋深;
(6)确定不同期次温度
将研究区目的层L的每个网格W(x,y)的参数代入温度计算模型公式中:
T=T0+c*(Dep(Ti)-H0)
计算得到目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度;
(7)确定不同期次压力
将研究区目的层L的每个网格W(x,y)的参数代入地层压力计算模型公式:
Pf=a*Dep(Li)^2+b*Dep(Li)+c
PH=h*PW*g
Figure BDA0001570843780000221
其中,Pf为地层压力,PH为静水压力;
计算得到目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置异常压力,其中压力包括静水压力、地层压力、异常压力;
(8)计算溶蚀相
将目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度代入上述溶蚀相模型E中,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置溶蚀相;
(9)计算胶结相
将目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度代入上述胶结相模型B中,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置胶结相;
(10)计算压实相
a.根据4-(8)溶蚀相确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的溶蚀相;
b.根据4-(9)胶结相确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的胶结相;
c.确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的压力地质参数;
压力系数αp计算公式如下:
Figure BDA0001570843780000222
其中,Pf为地层压力,PH为静水压力;
d.确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的刚性地质参数;
刚性地质参数根据研究区“沉积相—原始物质”来确定;
f(Sedimentary facies)=f(Vi,Mi)
其中:Vi刚性颗粒,Mi矿物类型;
e.根据a、b、c、d确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的压实相;
压实级别系数总和计算公式:
Figure BDA0001570843780000231
其中,Gi为不同地质参数R的压实级别系数,EI为碎屑岩储层压实级别系数;
当10≥EI>5,Di=机械弱压实相D1-3;
当5≥EI>2,Di=机械中压实相D1-2
当2≥EI,Di=机械强压实相D1-1;
11)确定成岩相
根据上述计算的压实相、胶结相和溶蚀相,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的成岩相。
成岩相=压实相+胶结相+溶蚀相。
实施例2
如图所示:以碎屑岩储层埋藏过程中成岩相演化的恢复方法对某盆地须家河组进行分析,具体步骤如下:
(1)对工区目标层须家河组进行网格化
将目标层位进行网格划分,网格划分的目的就是把模型离散成很多小的单元。
(2)根据沉积相确定须家河组原始组构模型
根据研究区已知井确定不同沉积相控制下矿物类型及刚性颗粒类型。
表1研究区不同沉积相下原始组构模型
Figure BDA0001570843780000232
Figure BDA0001570843780000241
(3)确定目标层须家河组演化期次及埋深
根据目标层上覆地层划分目标层在地质历史时期所经历的演化阶段,如图4所示,目标层Y上覆地层由老到新依次是古近系(E)、新近系(N)、第四系(Q),目标层在各个演化阶段埋深由公式(1)、(2)、(3)求得。
Y(E)=H4-H3;(1)
Y(N)=H4-H2;(2)
Y(Q)=H4-H1;(3)
其中:H1、H2、H3分别为目标体上覆地层Q、N、E顶面埋深;H4为现今目标体Y顶面埋深;
(4)确定目标层须家河组地层压力
通常情况下,压力大小是深度非线性函数关系,根据不同函数关系式子来计算不同埋藏时期、不同深度位置、不同位置区域须家河组地层压力大小。其中上覆地层压力、地层压力、静水压力计算公式如下:
上覆岩层压力(MPa):y=4E-06x2+0.0177x+0.0374;
地层压力(MPa):y=2E-05x2+0.001x+0.4424;
静水压力(MPa):y=-6E-09x2+0.0102x+0.0983;式中,x深度,y压力;
(5)确定目标层须家河组在埋藏过程中温度
在正常压实区,温度大小是深度的线性函数关系,根据公式P=15+0.03*(H-20)来计算不同埋藏时期、不同深度位置、不同位置区域目标层位岩石的骨架温度。
(6)确定目标层在埋藏过程中PH值
成岩环境酸碱性和转换对成岩作用发生和储层物性好坏起着重要控制作用,通过石英溶解、长石次生加大、流体包裹体等的研究能很好界定不同演化时期储层外部流体环境。
(7)目标层须家河组成岩相模拟计算;
1)确定胶结相B
根据目标层每个网格不同时间的流体条件和温度,确定目标层不同演化阶段胶结相模型B;胶结类型确定方法如下:
a.淡水-半咸水条件下
当25<T≤65℃,Di=空集;
当65<T≤85℃,Di=空集;
当85<T≤140℃,Di∈(D12-2,D13-2,D14-2,D15-2);
当140<T≤175℃,Di=空集;
当175<T≤200℃,Di=空集;
b.酸性水条件下
当25<T≤65℃,Di=空集;
当65<T≤85℃,Di=空集;
当85<T≤140℃,Di∈(D12-2,D13-2,D14-2);
当140<T≤175℃,Di=空集;
当175<T≤200℃,Di=空集;
c.碱性水条件下
当25<T≤65℃,Di=D11-2;
当65<T≤85℃,Di∈(D11-2,D13-3,D14-3,D15-1);
当85<T≤140℃,Di∈(D12-3,D13-2,D14-2,D15-2);
当140<T≤175℃,Di∈(D12-2,D13-2,D14-2);
当175<T≤200℃,Di=D12-2;
2)确定溶蚀相C
根据目标层每个网格不同时间的流体条件和温度,确定目标层不同演化阶段溶蚀相模型C;溶蚀类型确定方法如下:
a.淡水-半咸水条件下
当25<T≤65℃,Di=D5-3;
当65<T≤85℃,Di∈D3-1,D4-1,D5-2,D7,D8,D11-2,D15-3);
当85<T≤140℃,Di∈(D3-2,D4-2,D5-2,D6,D7,D8,D9,D11-2,D15-2);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D8,D9,D11-1,D15-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D5-2,D6,D9,D11-1,D15-2);
b.酸性水条件下
当25<T≤65℃,Di=D5-3;
当65<T≤85℃,Di∈(D5-2,D7,D8,D11-2);
当85<T≤140℃,Di∈(D3-2,D4-2,D5-2,D6,D7,D8,D9,D11-2,D15-2);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D8,D9,D11-1,D15-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D6,D9,D11-1,D15-2);
c.碱性水条件下
当25<T≤65℃,Di∈(D4-2,D5-3,D6,D15-2);
当65<T≤85℃,Di∈(D4-2,D5-2,D6,D15-3);
当85<T≤140℃,Di∈(D3-3,D4-2,D5-2,D6,D11-2,D15-3);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D11-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D5-2,D6,D11-2);
3)确定压实相A
a.确定须家河组每个网格胶结地质参数;根据(7)-1)确定目标层须家河组每个网格胶结地质参数;
b.确定须家河组每个网格溶蚀地质参数;根据(7)-2)确定目标层须家河组每个网格溶蚀地质参数;
c.确定须家河组每个网格压力地质参数;根据步骤(4)确定目标层须家河组每个网格压力地质参数;当压力系数小于0.8时,为异常低压Y7;当压力系数介于0.8~1.2时,为正常压力Y8;当压力系数大于1.2时,为异常高压Y9。
压力系数αp计算公式如下:
Figure BDA0001570843780000261
其中,Pf为地层压力,PH为静水压力;
d.确定须家河组每个网格刚性地质参数;根据步骤(2)确定目标层须家河组每个网格刚性地质参数;
e.根据步骤a、b、c、d确定目标层L的每个网格W(x,y)在不同时期、不同深度、不同位置的压实相;每个网格压实相的计算方法如下:
Figure BDA0001570843780000271
其中,Gi为不同地质参数R的压实级别系数,EI为碎屑岩储层压实级别系数;
当10≥EI>5,Di=机械弱压实相D1-3;
当5≥EI>2,Di=机械中压实相D1-2
当2≥EI,Di=机械强压实相D1-1;
f.根据上述计算的压实相A、胶结相B和溶蚀相C,确定目标层L的每个网格W(x,y)在不同时期、不同深度、不同位置的成岩相。成岩相=压实相+胶结相+溶蚀相。
根据不同阶段单个网格的属性值(埋深、温度、压力、PH值、矿物组合),即F(X,Y,L)=f(H,P,L,PH,Mi),获取目标层不同埋藏阶段成岩相类型以及展布。
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (4)

1.一种碎屑岩储层埋藏过程中成岩相演化的恢复方法,其特征在于:包括以下步骤:
1)原始资料数据库建立
原始资料数据库包括以下数据库:
(1)沉积相类型数据库Fi
沉积相决定储层原始物质分布,按碎屑岩沉积时沉积环境建立沉积相类型数据库Fi,
(2)矿物类型数据库Mi
碎屑成岩过程中,以矿物类型分类并建立数据库,得到矿物类型数据库Mi;
(3)成岩相类型数据库Di
成岩相类型数据库Di包括压实相数据库D1、胶结相数据库D2和溶蚀相数据库D3
(4)刚性颗粒强度数据库Vi
根据岩石的刚性颗粒比大小将岩石的刚性强度分类并建立刚性颗粒强度数据库Vi
2)建立基础模型
(1)沉积相与碎屑岩原始组构模型
基于不同沉积环境下不同碎屑岩原始组成,建立“沉积相—碎屑岩原始物质”模型;
沉积相决定储层原始物质分布,建立“沉积相—原始物质”模型,为地质历史时期成岩相演化提供基础资料;
f(Sedimentary facies)=f(Vi,Mi)
其中:Sedimentary facies为沉积相,指沉积环境及其在该环境中形成的沉积岩特征的综合;Vi为刚性颗粒强度数据库,Mi为矿物类型数据库;
(2)压实相模型
a.根据地质参数R的强弱大小即刚性颗粒强度、胶结作用强度、溶蚀类型强度与压实之间关系,建立压实级别系数Gi模型:强溶蚀作用Y1,Gi=-3;中溶蚀作用Y2,Gi=-2;弱溶蚀作用Y3,Gi=-1;强胶结作用Y4,Gi=5;中胶结作用Y5,Gi=3;弱胶结作用Y6,Gi=1;异常低压Y7,Gi=1;正常压力Y8,Gi=3;异常高压Y9,Gi=5;超强刚性V1,Gi=-2;强刚性V2,Gi=-1;中刚性V3,Gi=-0.5;弱刚性V4,Gi=0;
b.根据储层在埋藏过程中,压实作用的强度与地质参数刚性颗粒、胶结作用、溶蚀类型有密切的关系,通过计算压实级别系数总和来判断碎屑岩储层压实作用的强弱;
压实级别系数总和计算公式:
Figure FDA0003314532440000021
其中,Gi为不同地质参数R的压实级别系数,EI为碎屑岩储层压实级别系数;
当10≥EI>5,压实相类型为机械弱压实相D1-3;
当5≥EI>2,压实相类型为机械中压实相D1-2;
当2≥EI,压实相类型为机械强压实相D1-1;
(3)胶结相模型B
根据流体的条件和温度,确定胶结相模型B;
a.淡水-半咸水条件下
当25<T≤65℃,
Figure FDA0003314532440000022
当65<T≤85℃,
Figure FDA0003314532440000023
当85<T≤140℃,Di∈(D12-2,D13-2,D14-2,D15-2);
当140<T≤175℃,
Figure FDA0003314532440000024
当175<T≤200℃,
Figure FDA0003314532440000025
b.酸性水条件下
当25<T≤65℃,
Figure FDA0003314532440000026
当65<T≤85℃,
Figure FDA0003314532440000027
当85<T≤140℃,Di∈(D12-2,D13-2,D14-2);
当140<T≤175℃,
Figure FDA0003314532440000028
当175<T≤200℃,
Figure FDA0003314532440000029
c.碱性水条件下
当25<T≤65℃,Di=D11-2;
当65<T≤85℃,Di∈(D11-2,D13-3,D14-3,D15-1);
当85<T≤140℃,Di∈(D12-3,D13-2,D14-2,D15-2);
当140<T≤175℃,Di∈(D12-2,D13-2,D14-2);
当175<T≤200℃,Di=D12-2;
(4)溶蚀相模型E
根据流体的条件和温度,确定溶蚀相模型E;
a.淡水-半咸水条件下
当25<T≤65℃,Di=D5-3;
当65<T≤85℃,Di∈D3-1,D4-1,D5-2,D7,D8,D11-2,D15-3);
当85<T≤140℃,Di∈(D3-2,D4-2,D5-2,D6,D7,D8,D9,D11-2,D15-2);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D8,D9,D11-1,D15-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D5-2,D6,D9,D11-1,D15-2);
b.酸性水条件下
当25<T≤65℃,Di=D5-3;
当65<T≤85℃,Di∈(D5-2,D7,D8,D11-2);
当85<T≤140℃,Di∈(D3-2,D4-2,D5-2,D6,D7,D8,D9,D11-2,D15-2);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D8,D9,D11-1,D15-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D6,D9,D11-1,D15-2);
c.碱性水条件下
当25<T≤65℃,Di∈(D4-2,D5-3,D6,D15-2);
当65<T≤85℃,Di∈(D4-2,D5-2,D6,D15-3);
当85<T≤140℃,Di∈(D3-3,D4-2,D5-2,D6,D11-2,D15-3);
当140<T≤175℃,Di∈(D3-2,D4-2,D5-2,D6,D11-2);
当175<T≤200℃,Di∈(D3-2,D4-2,D5-2,D6,D11-2);
其中,成岩相类型数据库Di包括压实相数据库D1、胶结相数据库D2和溶蚀相数据库D3
a.压实相数据库
根据碎屑岩在成岩过程中压实强弱,即压实作用下孔隙改变量,建立压实相数据库D1,压实相类型包括:
强机械压实相D1-1:其孔隙改变量为
Figure FDA0003314532440000041
中机械压实相D1-2:其孔隙改变量为
Figure FDA0003314532440000042
弱机械压实相D1-3:其孔隙改变量
Figure FDA0003314532440000043
b.胶结相数据库D2
根据发生胶结作用的矿石类型和胶结强度共同建立胶结相数据库D2,胶结相类型包括:
石英强胶结相D2-1:其孔隙改变量为
Figure FDA0003314532440000044
石英中胶结相D2-2:其孔隙改变量为
Figure FDA0003314532440000045
石英弱胶结相D2-3:其孔隙改变量
Figure FDA0003314532440000046
长石强胶结相D3-1:孔隙改变量
Figure FDA0003314532440000047
长石中胶结相D3-2:其孔隙改变量
Figure FDA0003314532440000048
长石弱胶结相D3-3:其孔隙改变量
Figure FDA0003314532440000049
白云石强胶结相D4-1:其孔隙改变量
Figure FDA00033145324400000410
白云石中胶结相D4-2:其孔隙改变量
Figure FDA00033145324400000411
白云石弱胶结相D4-3:其孔隙改变量
Figure FDA00033145324400000412
方解石强胶结相D5-1:其孔隙改变量
Figure FDA00033145324400000413
方解石中胶结相D5-2:其孔隙改变量
Figure FDA00033145324400000414
方解石弱胶结相D5-3:其孔隙改变量
Figure FDA00033145324400000415
伊利石胶结相D6-1:其孔隙改变量
Figure FDA00033145324400000416
伊利石胶结相D6-2:其孔隙改变量
Figure FDA00033145324400000417
伊利石胶结相D6-3:其孔隙改变量
Figure FDA00033145324400000418
高岭石胶结相D7-1:其孔隙改变量
Figure FDA00033145324400000419
高岭石胶结相D7-2:其孔隙改变量
Figure FDA00033145324400000420
高岭石胶结相D7-3:其孔隙改变量
Figure FDA00033145324400000421
蒙脱石胶结相D8-1:其孔隙改变量
Figure FDA00033145324400000422
蒙脱石胶结相D8-2:其孔隙改变量
Figure FDA00033145324400000423
蒙脱石胶结相D8-3:其孔隙改变量
Figure FDA00033145324400000424
绿泥石胶结相D9-1:其孔隙改变量
Figure FDA00033145324400000425
绿泥石胶结相D9-2:其孔隙改变量
Figure FDA0003314532440000051
绿泥石胶结相D9-3:其孔隙改变量
Figure FDA0003314532440000052
沸石强胶结相D10-1:其孔隙改变量
Figure FDA0003314532440000053
沸石中胶结相D10-2:其孔隙改变量
Figure FDA0003314532440000054
沸石弱胶结相D10-3:其孔隙改变量
Figure FDA0003314532440000055
c.溶蚀相数据库D3
根据发生溶蚀作用的矿石类型和溶蚀强度共同建立胶结相数据库D3,溶蚀相类型包括:
石英强溶蚀相D11-1:其孔隙改变量
Figure FDA0003314532440000056
石英中溶蚀相D11-2、其孔隙改变量
Figure FDA0003314532440000057
石英弱溶蚀相D11-3、其孔隙改变量
Figure FDA0003314532440000058
长石强溶蚀相D12-1:其孔隙改变量
Figure FDA0003314532440000059
长石中溶蚀相D12-2:其孔隙改变量
Figure FDA00033145324400000510
长石弱溶蚀相D12-3:其孔隙改变量
Figure FDA00033145324400000511
白云石强溶蚀相D13-1:其孔隙改变量
Figure FDA00033145324400000512
白云石中溶蚀相D13-2:其孔隙改变量
Figure FDA00033145324400000513
白云石弱溶蚀相D13-3:其孔隙改变量
Figure FDA00033145324400000514
方解石强溶蚀相D14-1:其孔隙改变量
Figure FDA00033145324400000515
方解石中溶蚀相D14-2:其孔隙改变量
Figure FDA00033145324400000516
方解石弱溶蚀相D14-3:其孔隙改变量
Figure FDA00033145324400000517
沸石强溶蚀相D15-1:其孔隙改变量
Figure FDA00033145324400000518
沸石中溶蚀相D15-2:其孔隙改变量
Figure FDA00033145324400000519
沸石弱溶蚀相D15-3:其孔隙改变量
Figure FDA00033145324400000520
(5)地层埋深模型
(a)确定演化期次
根据目的层上覆地层发育情况划分目标层在地质历史时期所经历的演化阶段,目的层L上覆地层有i层,即从上到下依次标记为:L1、L2、L3……Li-1、Li,则目的层在地质历史时期演化阶段共有i个,按照时间演化的目的层L演化期次先后顺序依次计为Li、Li-1、Li-2……L2、L1;
(b)确定不同期次埋深
在(a)的基础下,计算目的层L不同演化期次的埋深,其计算公式如下:
Dep(Li)=H(L)-H(Li);
Dep(Li-1)=H(L)-H(Li-1);
Dep(Li-2)=H(L)-H(Li-2);
……
Dep(L2)=H(L)-H2;
Dep(L1)=H(L)-H1;
其中:H(L)为目的层L顶界面,H(Li)为上覆层Li顶界面,Dep(Li)为目的层Li阶段埋深;
(6)地层温度模型
地质体在埋藏的过程中,温度的大小表示为与深度的线性函数关系,通过该模型,计算目的层L在不同时期、不同深度、不同位置地层温度;
温度计算模型公式:
T=T0+c*(Dep(Ti)-H0)
其中T0为常温带温度,c为常数,Dep(Ti)为目的层Ti阶段埋深,H0为恒温带埋深,为常数,T为目标层古地温;
(7)压力模型
a.地层压力
地质体在埋藏的过程中,地层压力大小表示为深度的非线性函数关系;通过该模型,计算目的层L在不同时期、不同深度、不同位置的地层压力;
地层压力计算模型公式:
Pf=a*Dep(Li)^2+b*Dep(Li)+c
其中a、b、c为常数,通过井上实测地层压力数据进行数据拟合得到,Dep(Li)为目的层Li阶段埋深;Pf为地层压力
b.静水压力
大小与液体的密度和液柱的高度有关,而与液体的形状和大小无关;
PH=h*PW*g
其中,PH为静水压力,h为静水柱高度,PW为水的密度,g为重力加速度;
c.异常压力
当压力系数小于0.8时,为异常低压Y7;
当压力系数介于0.8~1.2时,为正常压力Y8;当压力系数大于1.2时,为异常高压Y9;
压力系数αp计算公式如下:
Figure FDA0003314532440000071
其中,Pf为地层压力,PH为静水压力;
3)确定成岩相
(1)储层网格化
将研究区储层进行网格化,研究区储层的每个网格用Wi(X,Y)表示;
(2)确定沉积相
根据研究区地质资料建立起每个网格的沉积相属性即为:
W(x,y)=f(Sedimentary facies);
(3)确定原始组构
根据研究区已知井沉积相与原始组构关系,确定每个空间网格原始组构数据,即:
f(Sedimentary facies)=f(V1,Mi),W(x,y)=f(V1,Mi)
其中:Sedimentary facies为沉积相,指沉积环境及其在该环境中形成的沉积岩特征的综合;Vi为刚性颗粒强度数据库,Mi为矿物类型数据库;
(4)确定演化期次
根据目的层上覆地层发育情况划分目标层在地质历史时期所经历的演化阶段,如果目的层L上覆地层有i层(,则目的层在地质历史时期演化阶段共有i个,按照时间演化的先后顺序依次计为Li、Li-1、Li-2……L2、L1;
(5)确定不同期次埋深
根据确定研究区储层的每个网格的演化期次,确定不同期次的地层埋深;埋深计算公式如下:
Dep(Li)=H(L)-H(Li);
Dep(Li-1)=H(L)-H(Li-1);
Dep(Li-2)=H(L)-H(Li-2);
……
Dep(L2)=H(L)-H2;
Dep(L1)=H(L)-H1;
其中:H(L)为目的层L顶界面,H(Li)为上覆层Li顶界面,Dep(Li)为目的层Li阶段埋深;
(6)确定不同期次温度
将研究区目的层L的每个网格W(x,y)的参数代入温度计算模型公式中:
T=T0+c*(Dep(Ti)-H0)
计算得到目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度;
(7)确定不同期次压力
将研究区目的层L的每个网格W(x,y)的参数代入地层压力计算模型公式:
Pf=a*Dep(Li)^2+b*Dep(Li)+c
PH=h*PW*g
Figure FDA0003314532440000081
计算得到目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置异常压力,其中压力包括静水压力、地层压力、异常压力;
(8)计算溶蚀相
将目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度代入上述溶蚀相模型E中,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置溶蚀相;
(9)计算胶结相
将目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置地层温度代入上述胶结相模型B中,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置胶结相;
(10)计算压实相
a.根据步骤3)第(8)小步的溶蚀相确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的溶蚀相;
b.根据步骤3)第(9)小步的胶结相确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的胶结相;
c.确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的压力地质参数;
压力系数αp计算公式如下:
Figure FDA0003314532440000091
其中,Pf为地层压力,PH为静水压力;
d.确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的刚性地质参数;刚性地质参数根据研究区“沉积相—原始物质”来确定;
f(Sedimentary facies)=f(Vi,Mi)
其中:Sedimentary facies为沉积相,指沉积环境及其在该环境中形成的沉积岩特征的综合;Vi为刚性颗粒强度数据库,Mi为矿物类型数据库;
e.根据a、b、c、d确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的压实相;
压实级别系数总和计算公式:
Figure FDA0003314532440000092
其中,Gi为不同地质参数R的压实级别系数,EI为碎屑岩储层压实级别系数;
当10≥EI>5,Di=机械弱压实相D1-3;
当5≥EI>2,Di=机械中压实相D1-2
当2≥EI,Di=机械强压实相D1-1;
(11)确定成岩相
根据上述计算的压实相、胶结相和溶蚀相,确定目的层L的每个网格W(x,y)在不同时期、不同深度、不同位置的成岩相;
成岩相=压实相+胶结相+溶蚀相。
2.根据权利要求1所述碎屑岩储层埋藏过程中成岩相演化的恢复方法,其特征在于:所述步骤1)中第(1)小步中,沉积相类型为:
冲积扇-旱扇-扇根Ⅰ-A-a、冲积扇-旱扇-扇中Ⅰ-A-b、冲积扇-旱扇-扇缘Ⅰ-A-c、冲积扇-湿扇-扇根Ⅰ-B-a、冲积扇-湿扇-扇中Ⅰ-B-b、冲积扇-湿扇-扇缘Ⅰ-B-c、河流相-曲流河-河床亚相-河床滞留Ⅱ-A-a-1、河流相-曲流河-河床亚相-边滩Ⅱ-A-a-2、河流相-曲流河-堤岸亚相-天然堤Ⅱ-A-b-1、河流相-曲流河-堤岸亚相-决口扇Ⅱ-A-b-2、河流相-曲流河-河漫亚相-河漫滩Ⅱ-A-c-1、河流相-曲流河-泛滥盆地-河漫湖泊Ⅱ-A-d-1、河流相-曲流河-河漫沼泽Ⅱ-A-e、河流相-辫状河-牛轭湖Ⅱ-B-a、河流相-辫状河-河床滞留Ⅱ-B-b、河流相-辫状河-心滩、河道Ⅱ-B-c、河流相-辫状河-泛滥平原Ⅱ-B-d、湖泊相-断陷型-湖成三角洲Ⅲ-A-a、湖泊相-断陷型-滨湖Ⅲ-A-b、湖泊相-断陷型-浅湖Ⅲ-A-c、湖泊相-断陷型-半深湖Ⅲ-A-d、湖泊相-断陷型-深湖Ⅲ-A-e、湖泊相-断陷型-湖湾Ⅲ-A-f、湖泊相-坳陷型-湖成三角洲Ⅲ-B-a、湖泊相-坳陷型-滨湖Ⅲ-B-b、湖泊相-坳陷型-浅湖Ⅲ-B-c、湖泊相-坳陷型-半深湖Ⅲ-B-d、湖泊相-坳陷型-深湖Ⅲ-B-e、湖泊相-坳陷型-湖湾Ⅲ-B-f、湖泊相-前陆型-湖成三角洲Ⅲ-C-a、湖泊相-前陆型-滨湖Ⅲ-C-b、湖泊相-前陆型-浅湖Ⅲ-C-c、湖泊相-前陆型-半深湖Ⅲ-C-d、湖泊相-前陆型-深湖Ⅲ-C-e、湖泊相-前陆型-湖湾Ⅲ-C-f、三角洲相-辫状河三角洲-三角洲平原-分支Ⅳ-A-a-1、三角洲相-辫状河三角洲-三角洲平原-河道Ⅳ-A-a-2、三角洲相-辫状河三角洲-三角洲平原-陆上天然堤Ⅳ-A-a-3、三角洲相-辫状河三角洲-三角洲平原-决口扇Ⅳ-A-a-4、三角洲相-辫状河三角洲-三角洲平原-沼泽Ⅳ-A-a-5、三角洲相-辫状河三角洲-三角洲平原-淡水湖泊Ⅳ-A-a-6、三角洲相-辫状河三角洲-三角洲前缘-水下分支河道Ⅳ-A-b-1、三角洲相-辫状河三角洲-三角洲前缘-水下天然堤Ⅳ-A-b-2、三角洲相-辫状河三角洲-三角洲前缘-支流间湾Ⅳ-A-b-3、三角洲相-辫状河三角洲-三角洲前缘-分支河口砂坝Ⅳ-A-b-4、三角洲相-辫状河三角洲-三角洲前缘-远砂坝Ⅳ-A-b-5、三角洲相-辫状河三角洲-三角洲前缘-前缘席状砂Ⅳ-A-b-6、三角洲相-辫状河三角洲-前三角洲Ⅳ-A-c、三角洲相-扇三角洲-扇三角洲平原-泥石流Ⅳ-B-a-1、三角洲相-扇三角洲-扇三角洲平原-河道充填Ⅳ-B-a-2、三角洲相-扇三角洲-扇三角洲平原-漫滩Ⅳ-B-a-3、三角洲相-扇三角洲-扇三角洲前缘-碎屑流Ⅳ-B-b-1、三角洲相-扇三角洲-扇三角洲前缘-水下分流河道Ⅳ-B-b-2、三角洲相-扇三角洲-扇三角洲前缘-支流间湾Ⅳ-B-b-3、三角洲相-扇三角洲-扇三角洲前缘-河口砂坝Ⅳ-B-b-4、三角洲相-扇三角洲-扇三角洲前缘-远砂坝Ⅳ-B-b-5、三角洲相-扇三角洲-前扇三角洲Ⅳ-B-c。
3.根据权利要求1所述碎屑岩储层埋藏过程中成岩相演化的恢复方法,其特征在于:所述步骤1)中第(2)小步中,
矿物类型包括:石英M1、长石M2、白云石M3、方解石M4、伊利石M5、高岭石M6、蒙脱石M7、绿泥石M8、沸石M9、白云母M10、黑云母M11。
4.根据权利要求1所述碎屑岩储层埋藏过程中成岩相演化的恢复方法,其特征在于:所述步骤1)中第(4)小步中,刚性颗粒强度数据库Vi包括超强刚性颗粒V1,刚性颗粒比例>75;强刚性颗粒V2,刚性颗粒比例>60且≤75;中刚性颗粒V3刚性颗粒比例>45且≤60;弱刚性颗粒V4,刚性颗粒比例≤45。
CN201810116782.3A 2018-02-06 2018-02-06 碎屑岩储层埋藏过程中成岩相演化的恢复方法 Active CN108376189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810116782.3A CN108376189B (zh) 2018-02-06 2018-02-06 碎屑岩储层埋藏过程中成岩相演化的恢复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810116782.3A CN108376189B (zh) 2018-02-06 2018-02-06 碎屑岩储层埋藏过程中成岩相演化的恢复方法

Publications (2)

Publication Number Publication Date
CN108376189A CN108376189A (zh) 2018-08-07
CN108376189B true CN108376189B (zh) 2022-03-15

Family

ID=63017380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810116782.3A Active CN108376189B (zh) 2018-02-06 2018-02-06 碎屑岩储层埋藏过程中成岩相演化的恢复方法

Country Status (1)

Country Link
CN (1) CN108376189B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009179B (zh) * 2019-10-23 2022-01-25 上海同继地质科技有限公司 剥蚀厚度的确定方法及装置
CN112149283A (zh) * 2020-08-28 2020-12-29 北京科技大学 一种矿石批量拣选可行性评价的方法
CN112285322B (zh) * 2020-10-12 2022-10-11 湖南科技大学 一种碎屑岩储层成岩过程中成岩阶段精细表征方法
CN113049471B (zh) 2021-03-23 2021-10-08 中国石油大学(北京) 一种碳酸盐岩层序地层的孔隙度演化过程的恢复方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681854A (en) * 1982-05-28 1987-07-21 Phillips Petroleum Company Geochemical oil prospecting method using in situ simulation of diagenetic processes
US6977499B2 (en) * 1999-02-09 2005-12-20 Baker Hughes Incorporated Formation-based interpretation of NMR data for carbonate reservoirs
CN102562048B (zh) * 2010-12-30 2014-08-13 长江大学 一种预测高成岩阶段低孔低渗碎屑岩有效储层的方法
US9164018B2 (en) * 2013-04-01 2015-10-20 Saudi Arabian Oil Company Method for prediction of inhibition durability index of shale inhibitors and inhibitive drilling mud systems
CN103852787B (zh) * 2014-02-24 2016-08-24 长江大学 一种砂岩储层成岩地震相表征方法
CN105651962B (zh) * 2014-11-10 2018-02-02 中国石油天然气股份有限公司 成岩相识别方法
CN105386757A (zh) * 2015-12-21 2016-03-09 中国石油大学(华东) 碎屑岩储层孔隙度正常压实趋势线厘定方法

Also Published As

Publication number Publication date
CN108376189A (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
CN108376189B (zh) 碎屑岩储层埋藏过程中成岩相演化的恢复方法
Mello et al. Development of sediment overpressure and its effect on thermal maturation: Application to the Gulf of Mexico basin
AU2003270963B8 (en) Modelling method for forming a model simulating multilithologic filling of a sedimentary basin
CN111006987B (zh) 一种储层裂缝孔渗参数预测方法
CN109324345A (zh) 叠合盆地油气成藏期岩石孔隙度恢复方法
CN108344854B (zh) 基于成岩过程的碎屑岩储层胶结减孔量的定量预测方法
CN113189675A (zh) 一种砂岩压实作用数值模拟方法
Liu et al. Factors controlling hydrocarbon accumulation in Jurassic reservoirs in the southwest Ordos Basin, NW China
CN108363115A (zh) 一种致密石英砂岩孔隙度恢复模拟方法
Schneider et al. Quantitative HC potential evaluation using 3D basin modelling: application to Franklin structure, Central Graben, North Sea, UK
CN108364096B (zh) 基于过程响应的碎屑岩储层溶蚀增孔量定量预测方法
CN108345963B (zh) 碎屑岩储层胶结减孔量的定量预测方法
Moldabayeva et al. Hydrodynamic modeling of field development using enhanced oil recovery methods
Goro et al. Characterization of a massive sandstone interval: Example from DOKO member of Bida Formation, northern Bida Basin, Nigeria
Nelskamp Structural evolution, temperature and maturity of sedimentary rocks in the Netherlands: results of combined structural and thermal 2D modeling
Li et al. A case study on statistical wireline log parameters in identifying shallow-water delta microfacies of Late Dongying Formation, northern Liaozhong Depression, Bohai Bay Basin
CN108388709A (zh) 基于成岩相预测的储层孔隙度定量模拟方法
Lozano et al. Integrated Geocellular Static Model for Geomechanical and Dynamic Simulations in the Vaca Muerta Formation
Verweij et al. Terschelling Basin and Southern Dutch Central Graben. Burial History, Temperature, Source Rock Maturity and Hydrocarbon Generation–Area 2A
Ochoa-González et al. Modeling the deformation of faulted volcano-sedimentary sequences associated to groundwater withdrawal in the Queretaro Valley, Mexico
CN108388960B (zh) 压实减孔量的定量预测方法
Al-Sudani Evaluation of Petrophysical Properties of Sadi Formation, South of Iraq
Al-Atyah et al. Basin Geohistory Analysis of Mishrif Formation in Southern Iraq
Sagen Spatial reservoir characterisation with focus on distribution of porosity and permeability properties:-A study of the Tarbert and Ness Formations at the Gullfaks Field
Mijnssen et al. Relating sedimentology to production behaviour in deltaic rocks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant