CN108374131A - 一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法 - Google Patents

一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法 Download PDF

Info

Publication number
CN108374131A
CN108374131A CN201810204972.0A CN201810204972A CN108374131A CN 108374131 A CN108374131 A CN 108374131A CN 201810204972 A CN201810204972 A CN 201810204972A CN 108374131 A CN108374131 A CN 108374131A
Authority
CN
China
Prior art keywords
rolling
steel
drafts
passes
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810204972.0A
Other languages
English (en)
Other versions
CN108374131B (zh
Inventor
曹建春
周煌
周晓龙
阴树标
杨银辉
高鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810204972.0A priority Critical patent/CN108374131B/zh
Publication of CN108374131A publication Critical patent/CN108374131A/zh
Application granted granted Critical
Publication of CN108374131B publication Critical patent/CN108374131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种Ti‑Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法,其主要是:本发明采用Ti含量为0.01~0.5%,Mo含量为0.01~0.5%,C含量为0.01~0.5%的Ti‑Mo复合微合金化钢。将上述Ti‑Mo复合微合金化钢加热到1150~1250℃,并保温300s,而后冷却至1100℃~1150℃开始第一道次轧制,应变速率1~10s‑1,压下量30%。间隔1~10s后,进行第二道次轧制,轧制参数为:应变速率1~10s‑1,压下量30%。间隔1~10s后,进行第三道次轧制,轧制参数为:应变速率1~10s‑1,压下量25%。终轧温度控制在1000℃以上,1~50s后迅速喷水冷却至室温。Ti‑Mo复合微合金化钢经三道次不同压下量、不同应变速率的轧制,促发多次完全奥氏体再结晶及第二相析出,使晶粒尺寸从100μm细化到10~20μm,得到均匀的超细化奥氏体晶粒组织。

Description

一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工 艺方法
技术领域
本发明属于轧钢技术领域,特别是涉及一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法。
背景技术
细晶强化是唯一一种在提高材料强度的同时又能提高材料塑性、韧性的方法,因而对于细化晶粒的研究一直都是关注的热点。Ti(钛)微合金化钢的原始奥氏体晶粒度对钢材的屈服强度、韧性和塑性等有很大影响,因而如何在轧制阶段控制奥氏体的晶粒度有着很重要的意义。
目前,各国科研工作者在实验室条件下研发出多种细化晶粒的方法,例如等径角挤压、累积叠轧和高压扭转等方法,但由于这一类方法所要求的大应变量,限制了其在实际生产中的进一步应用。从工业应用的角度考虑,细化晶粒的可行途径就是通过控轧阶段在奥氏体再结晶区进行小压下量、大应变速率变形促使多次奥氏体再结晶,并和形变诱导析出的TiC(碳化钛)可以钉扎奥氏体晶界的作用相结合,来获得细小的奥氏体再结晶晶粒。Mo(钼)元素可以提高TiC的析出形成能,降低析出相与基体之间的总界面能,进而有利于TiC的析出。除此之外,Mo可以抑制高温下位错的消失、增加了位错的密度,为TiC提供了更多的形核位置。有鉴于此,本发明提出一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法。
发明内容
本发明提供了一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法。本发明通过合金成分的设计、不同压下量和不同应变速率的组合轧制、控制各道次之间的组织关系和奥氏体再结晶的过程,从而获得均匀细小的奥氏体晶粒组织。
本发明的一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法的具体步骤如下:
1.本发明采用Ti含量为0.01~0.5%,Mo含量为0.01~0.5%,C含量为0.01~0.5%的Ti-Mo复合微合金化钢。
2.将所述Ti-Mo复合微合金化钢加热到1150~1250℃,并保温300s,而后冷却至1100~1150℃开始第一道次轧制,第一道次轧制参数为:应变速率1~10s-1,压下量30%;
3.间隔1~10s后,进行第二道次轧制,第二道次轧制参数为:应变速率1~10s-1,压下量30%。
4.间隔1~10s后,进行第三道次轧制,第三道次轧制参数为:应变速率1~10s-1,压下量25%。
5.终轧温度控制在1000℃以上,保温1~50s后迅速喷水冷却至室温。
上述工艺方案的工艺原理是通过多次不同压下量和不同应变速率,进而触发多次奥氏体再结晶,并结合形变诱导出的TiC,来阻止再结晶奥氏体的长大,使得奥氏体晶粒得到充分超细化。
本发明与现有的技术相比具有如下优点:
1.通过轧钢过程中的压下量、应变速率、温度和道次间隔时间的控制,使奥氏体达到均匀化的同时,又超细化奥氏体晶粒。
2.Ti-Mo复合微合金化钢经三道次不同压下量、不同应变速率的轧制,促发多次完全奥氏体再结晶,使奥氏体晶粒尺寸从100μm细化到10~20μm,显著细化了奥氏体晶粒尺寸。
附图说明
图1为未进行轧制的Ti-Mo复合微合金化钢奥氏体晶粒组织形貌;
图2为本发明经三道次轧制后的Ti-Mo复合微合金化钢奥氏体晶粒组织形貌。
具体实施方式
将Ti-Mo复合微合金化钢,加热到1200℃,并保温300s,而后冷却至1100℃开始第一道次轧制,应变速率5s-1,压下量30%。间隔10s后,进行第二道次轧制,第二道次轧制参数为:应变速率5s-1,压下量30%。间隔10s后,进行第三道次轧制,第三道次轧制参数为:应变速率5s-1,压下量25%。终轧温度控制在1000℃以上,保温30s后迅速喷水冷却至室温。经上述三道次轧制获得的平均晶粒尺寸约为15μm(如图2所示),其与未轧制组织(如图1所示)相比,晶粒得到显著细化。
其中,Ti-Mo复合微合金化钢成分优选为:Ti含量为0.01~0.5%,Mo含量为0.01~0.5%,C(碳)含量为0.01~0.5%。成分进一步优选为:Ti含量为0.1%,Mo含量为0.05%,C含量为0.05%。
此处,对Ti-Mo复合微合金化钢的形状不做限制,例如圆形、方形钢坯。
需要说明的是加热设备例如可以为加热炉,轧制设备例如可以为四辊双机架轧机。
在高温阶段对Ti-Mo复合微合金化钢进行较大的变形以获得形变储能,为奥氏体再结晶提供了充足的能量。对Ti-Mo复合微合金化钢在奥氏体再结晶区进行不同压下量、不同应变速率变形,使得其在轧制过程中完成多次奥氏体的再结晶,并结合形变诱导析出的TiC能钉扎奥氏体晶界的作用,可以有效的阻止再结晶奥氏体的长大,细化奥氏体晶粒的尺寸。同时,Mo可以抑制高温下位错的消失、增加了位错的密度,为TiC提供了更多的析出位置;也可以提高TiC的析出形成能,降低析出相与基体之间的总界面能,进而有利于TiC的析出。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (1)

1.一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法,其特征在于:
1)提供Ti含量为0.01~0.5%,Mo含量为0.01~0.5%,C含量为0.01~0.5%的Ti-Mo复合微合金化钢;
2)将所述Ti-Mo复合微合金化钢加热到1150~1250℃,并保温300s,而后冷却至1100~1150℃开始第一道次轧制,第一道次轧制参数为:应变速率1~10s-1,压下量30%;
3)间隔1~10s后,进行第二道次轧制,第二道次轧制参数为:应变速率1~10s-1,压下量30%;
4)间隔1~10s后,进行第三道次轧制,第三道次轧制参数为:应变速率1~10s-1,压下量25%;
5)终轧温度控制在1000℃以上,保温1~50s后迅速喷水冷却至室温。
CN201810204972.0A 2018-03-13 2018-03-13 一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法 Active CN108374131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810204972.0A CN108374131B (zh) 2018-03-13 2018-03-13 一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810204972.0A CN108374131B (zh) 2018-03-13 2018-03-13 一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法

Publications (2)

Publication Number Publication Date
CN108374131A true CN108374131A (zh) 2018-08-07
CN108374131B CN108374131B (zh) 2020-11-06

Family

ID=63018621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810204972.0A Active CN108374131B (zh) 2018-03-13 2018-03-13 一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法

Country Status (1)

Country Link
CN (1) CN108374131B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913714A (zh) * 2020-07-08 2022-01-11 中南大学 一种采用阶梯应变速率锻造工艺细化TC18钛合金β晶粒的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243884A (zh) * 1999-06-16 2000-02-09 冶金工业部钢铁研究总院 一种超细组织微合金钢控制轧制方法
JP2005290396A (ja) * 2004-03-31 2005-10-20 Jfe Steel Kk 伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板およびその製造方法
CN1851008A (zh) * 2006-05-30 2006-10-25 江苏大学 一种微合金超细晶粒热轧钢板的制备方法
CN101054621A (zh) * 2007-03-02 2007-10-17 北京科技大学 一种制备高强细晶双相钢的方法
CN102011045A (zh) * 2010-09-20 2011-04-13 南京钢铁股份有限公司 一种超细晶粒钢的制造方法
US20120132323A1 (en) * 2005-10-20 2012-05-31 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
CN103805764A (zh) * 2014-01-23 2014-05-21 燕山大学 一种细化高锰奥氏体钢晶粒的热轧工艺方法
CN104232868A (zh) * 2014-09-04 2014-12-24 东北大学 一种采用超快速冷却控制奥氏体组织的优化控制轧制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243884A (zh) * 1999-06-16 2000-02-09 冶金工业部钢铁研究总院 一种超细组织微合金钢控制轧制方法
JP2005290396A (ja) * 2004-03-31 2005-10-20 Jfe Steel Kk 伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板およびその製造方法
US20120132323A1 (en) * 2005-10-20 2012-05-31 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
CN1851008A (zh) * 2006-05-30 2006-10-25 江苏大学 一种微合金超细晶粒热轧钢板的制备方法
CN101054621A (zh) * 2007-03-02 2007-10-17 北京科技大学 一种制备高强细晶双相钢的方法
CN102011045A (zh) * 2010-09-20 2011-04-13 南京钢铁股份有限公司 一种超细晶粒钢的制造方法
CN103805764A (zh) * 2014-01-23 2014-05-21 燕山大学 一种细化高锰奥氏体钢晶粒的热轧工艺方法
CN104232868A (zh) * 2014-09-04 2014-12-24 东北大学 一种采用超快速冷却控制奥氏体组织的优化控制轧制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913714A (zh) * 2020-07-08 2022-01-11 中南大学 一种采用阶梯应变速率锻造工艺细化TC18钛合金β晶粒的方法
CN113913714B (zh) * 2020-07-08 2022-06-24 中南大学 一种采用阶梯应变速率锻造工艺细化TC18钛合金β晶粒的方法

Also Published As

Publication number Publication date
CN108374131B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN108486496A (zh) 一种Ti-Zr-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法
CN107385329B (zh) 一种大厚度q500gje高强度建筑结构用钢板及其制造方法
CN108531817A (zh) 纳米/超细晶结构超高强塑性奥氏体不锈钢及制备方法
CN106868281B (zh) 一种超细晶铁素体/低温贝氏体双相钢及其制备方法
CN107385324A (zh) 一种大厚度q500gjcd高强度建筑结构用钢板及其制造方法
CN105032958B (zh) 应用道次间冷却工艺控制轧制的即时冷却系统及冷却方法
CN101586182B (zh) 降低轴承钢盘条碳化物网状级别的方法
CN110273095A (zh) 一种抗拉强度1.5GPa中熵合金的制备方法
CN106756618B (zh) 100mm厚Q420GJC/D控轧态高强度结构用钢板
CN105200309B (zh) 一种高强度、高塑性的高锰钢材料及其加工方法
CN106521320B (zh) 特厚q460gjc/d控轧态高强度结构用钢板
CN110205571A (zh) 一种tc18钛合金大尺寸棒材的制备方法
CN104911501B (zh) 一种超高强度高碳位错型马氏体钢及其制备方法
CN109013715A (zh) 一种降低42CrMo热轧态硬度和弯曲度的轧制方法
CN104263889B (zh) 一种提高厚度≥10mm含钛高强钢冲击韧性的方法
CN107779746A (zh) 超高强度高韧性耐蚀耐氧化超细晶合金钢及其制备方法
CN102560039A (zh) 一种大型汽轮机低压转子锻件的锻后预备热处理工艺
CN102643969B (zh) 一种纳米结构超高强塑性低合金钢及其制备方法
CN108374131A (zh) 一种Ti-Mo复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法
CN102337482A (zh) 屈服强度900MPa级贝氏体型高强韧钢板及其制造方法
CN106957995B (zh) 细晶铁素体/低温贝氏体双相低碳钢及其制备方法
CN108486497A (zh) 一种Ti-Zr复合微合金化钢超细化奥氏体晶粒的控轧控冷工艺方法
CN109487063A (zh) 一种Ti-V-N复合微合金化纳米颗粒增强低碳钢的控轧控冷工艺
CN104388840B (zh) 一种hrb400e高强度抗震钢筋及其生产方法
CN110306110A (zh) 一种厚度在60~80mm的HB500级易焊接耐磨钢及生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant