CN108362756B - 一种磁力组装自定位毛细管电泳安培检测池及其制备方法 - Google Patents

一种磁力组装自定位毛细管电泳安培检测池及其制备方法 Download PDF

Info

Publication number
CN108362756B
CN108362756B CN201810010284.0A CN201810010284A CN108362756B CN 108362756 B CN108362756 B CN 108362756B CN 201810010284 A CN201810010284 A CN 201810010284A CN 108362756 B CN108362756 B CN 108362756B
Authority
CN
China
Prior art keywords
electrode
capillary
stainless steel
silicon rubber
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810010284.0A
Other languages
English (en)
Other versions
CN108362756A (zh
Inventor
陈刚
毛华
田珍玉
张鲁雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201810010284.0A priority Critical patent/CN108362756B/zh
Publication of CN108362756A publication Critical patent/CN108362756A/zh
Application granted granted Critical
Publication of CN108362756B publication Critical patent/CN108362756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44786Apparatus specially adapted therefor of the magneto-electrophoresis type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明属毛细管电泳技术领域,具体为一种磁力组装自定位毛细管电泳安培检测池及其制备方法。穿有圆棒状电极体的不锈钢引导管通过热压封装在两片有机玻璃片间,片体中部棒状电极体和不锈钢管连接点处加工含有圆盘电极和不锈钢管口的方形小孔,分离毛细管从不锈钢引导管穿入,实现其与圆盘电极的同轴自准直,其底部贴有硅橡胶浸渍无纺布密封片,置于一方形磁铁上,在其小孔上方放置一底部有硅橡胶密封层且带绝缘漆的钢制螺母,借助磁铁对螺母的磁力吸引完成各部件的组装,得到磁力组装自定位毛细管电泳安培检测池,石英分离毛细管出口和圆盘电极间的距离由已知厚度的涤纶膜进行调节。本发明具有集成度高、制作简便、成本低廉、操作方便等优点。

Description

一种磁力组装自定位毛细管电泳安培检测池及其制备方法
技术领域
本发明属毛细管电泳技术领域,具体涉及一种磁力组装自定位毛细管电泳安培检测池及其制备方法。
背景技术
毛细管电泳又称高效毛细管电泳,一种以高压电场为驱动力,以毛细管为分离通道,依据样品中各组分之间淌度和分配行为上的差异而实现分离分析的微柱高效液相分离检测方法。该技术包含电泳、色谱及其交叉内容,使分析化学得以从微升水平进入纳升水平,并使单细胞分析,乃至单分子分析成为可能。长期困扰生物医学研究的蛋白质、核酸、多肽等生物大分子分离分析也因此有了新的转机[1]。上个世纪末“人类基因测序”被认为是一项像人类登月一样的伟大工程,在该工程面临进展缓慢的困难时期,是分析化学家对毛细管电泳分析方法的重大革新,使这项伟大的工程得以提前完成,从而揭开了后基因时代的序幕。2003年4月14日,美国联邦国家人类基因组研究项目负责人弗朗西斯·柯林斯博士隆重宣布,人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现,其中使用的最重要的关键技术是毛细管电泳技术中的毛细管凝胶电泳[2,3]。
自从1981年Joegenson和Luckas首次提出毛细管电泳以来[1],该技术以其高效、快速、分离度高、灵敏度高、试剂用量少、低耗及集成度高等优点引起了国内外分析和生命科学界有关专家的广泛关注,在生物医学研究、食品药品分析、临床诊断、环境监测等领域获得了广泛的应用[1-3]。毛细管电泳按分离原理和分离介质不同可分为毛细管区带电泳、胶束电泳毛细管电色谱、毛细管等电聚焦电泳、毛细管凝胶电泳、毛细管电色谱、毛细管等速电泳、亲和毛细管电泳、非水毛细管电泳等[2,3]。
毛细管电泳仪器系统主要包括电泳分离毛细管、高压直流电源、缓冲溶液池、检测器、数据记录和处理单元等,由于毛细管尺寸微小,常用内径在25-75微米,需要高灵敏度的检测方法。目前毛细管电泳常用的检测技术包括紫外吸收检测法、激光诱导荧光检测法、质谱检测法和电化学检测法等。其中电化学检测具有灵敏度高、耗电少、死体积小、电极及控制仪器小巧易集成等优点,是毛细管电泳理想的检测技术,近年来得到了越来越广泛的重视。
毛细管电泳电化学检测包括安培、电导和电位三种检测方法,其中安培检测法是毛细管电泳电化学检测中最常用的技术。安培检测常用离柱检测[4]和柱端检测[5]两种检测模式,对于离柱安培检测,分离毛细管和检测毛细管间需用多孔连接点隔离分离电压,制作难度大,较少使用;而对于端柱电化学检测,微盘检测电极位于毛细管出口处,是常用的毛细管电泳安培检测方式,其中分离毛细管和检测电极间的精确定位是制约其广泛应用的主要因素[3-5]。目前,通常采用三维可调微操纵器来使检测电极与分离毛细管出口准直对齐,由于每次手工调节的重现性差,影响毛细管电泳分析的准确度和精密度。常用的三维可调微操纵器体积较大,集成度不高,抗震性能不佳,定位操作复杂、费时,需要专业的操作人员,严重制约了毛细管电泳安培检测技术的推广[3-5]。故开发操作简便、成本低廉、定位重现性和精度高的毛细管电泳检测电极定位装置,对毛细管电泳安培检测技术的发展和应用具有重要意义。
本发明将穿有圆棒状电极体的不锈钢细管通过热压封装在两片有机玻璃片间,在片体中部电极体和不锈钢管连接点处加工含有圆盘电极和不锈钢管口的长方形小孔,分离毛细管可从不锈钢细管穿入,实现其与圆盘电极的同轴自准直。其底部贴上硅橡胶浸渍无纺布密封片,置于一方形磁铁上,在其小孔上方放置一底部有硅橡胶密封层的带绝缘漆的钢制螺母,由于磁铁的磁力吸引作用完成各部件的组装,得新型自准直安培检测池,分离毛细管出口和圆盘电极间的距离借助已知厚度的涤纶膜进行调节。该新型磁力组装自准直毛细管电泳安培检测池具有制作简便、成本低廉、高集成度、定位重现性和精度高、拆卸和组装方便等优点,并可与微流控芯片、微柱液相色谱、微流动注射等技术联用,在食品药品分析、临床诊断、环境监测和生物医学研究等领域有良好的应用前景。
参考文献
[1] Jorgenson, J.W., Lukacs, K.D., Anal. Chem. 1981, 53, 1298-1302.
[2] Yu, H., Xu, X.Y., Sun, J.Y., You, T.Y., Cent. Eur. J. Chem. 2012,10, 639-651.
[3] Chen, G., Zhu, Y.Z., Wang, Y.F., Xu, X.J., Lu, T., Current Med.Chem. 2006, 13, 2467-2485.
[4] O’Shea, T.J., Lunte, S.M., Anal. Chem. 1993, 65, 948-951.
[5] Zhang, L.Y.; Zhang, W.; Chen, W.L.; Chen, G., J. Pharm. Biomed.Anal. 2016, 131, 107-112.。
发明内容
本发明的目的在于提出一种制作简便、成本低廉、定位重现性好、检测精度高的磁力组装自定位毛细管电泳安培检测池及其制备方法。
本发明提出的磁力组装自定位毛细管电泳安培检测池,其结构如图4和图5所示,由长方体形磁铁27、硅橡胶浸渍无纺布密封片26、底部有硅橡胶密封层的带绝缘漆的钢制螺母24、毛细管固定用硅橡胶圆片23、熔融石英毛细管22、含有同轴准直圆盘状电极体2和不锈钢引导管(细直管)1的自准直检测电极板25,以及带有铂丝接地电极28、铂丝辅助电极29和Ag/AgCl参比电极30的塑料内塞31盖组成;其中,自准直检测电极板25的板体由上、下两块有机玻璃经热压封装组成,板体中间部位开有长方形溶液孔5,所述圆盘状电极体2和不锈钢引导管1分别封装在两块有机玻璃中间,并位于溶液孔5的相对两侧,即所述圆盘状电极体2端部在长方形溶液孔5的一侧,圆盘状电极体2的后端部引出电极板外,不锈钢引导管1的一端口位于长方形溶液孔5的相对应另一侧,不锈钢引导管1的另一端口引出电极板外,圆盘状电极体2与不锈钢引导管1同轴准直;所述硅橡胶浸渍无纺布密封片26与自准直检测电极板25的尺寸匹配,紧贴于自准直检测电极板25的下方,用于支撑与密封;所述硅橡胶浸渍无纺布密封片26与自准直检测电极板25位于所述长方体形磁铁27之上;所述不锈钢引导管1穿出自准直检测电极板25的板体外的末端口与所述熔融石英毛细管22的一端通过硅橡胶圆片23同轴固定,且毛细管22可沿不锈钢引导管1内壁移动,使熔融石英毛细管22与圆盘状电极体2同轴准直;毛细管22的该端口与圆盘电极2间的距离借助已知厚度的涤纶膜(厚度为10-500微米)进行调节;所述底部有硅橡胶密封层的带绝缘漆的钢制螺母24,置于所述自准直检测电极板25中部的溶液孔5上方,由长方体形磁铁27的磁力,将上下部件固定,并形成形成由螺母24内腔体和自定位电极板25中部的长方体形溶液孔5组成的安培检测池;所述钢制螺母24腔体内加入电泳分离溶液后,带有铂丝接地电极28、铂丝辅助电极29和Ag/AgCl参比电极30的塑料内塞盖31盖在钢制螺母24上,其中铂丝接地电极28、铂丝辅助电极29和Ag/AgCl参比电极30浸没在电泳缓冲溶液中。
本发明中,所述内塞盖31下部的内塞部分直径与钢制螺母24的内径一致。
本发明中,所述长方体形磁铁27可为钕铁硼磁铁、铁氧体磁铁或磁钢。
本发明中,所述圆棒状电极体2的材质可为铜、铂、镍、石墨以及碳基复合材料等。
本发明中,所述硅橡胶浸渍无纺布密封片26 ,由一块与所述自准直检测电极板25的板体长宽一致的长方形无纺布用硅酮胶浸渍后于空气中固化得到。
本发明中,所述底部有硅橡胶密封层且带绝缘漆24,由内径略大于所述长方体形溶液孔5的长边长度的钢制螺母,经喷涂聚氨酯或丙烯酸绝缘漆后,底部涂一层密封硅酮胶,并于室温固化得到。
本发明中,各部件的优选尺寸为:不锈钢引导管1内径为0.35-0.6毫米,外径0.6-1毫米,长20-50毫米;棒状电极体2的直径为0.2-0.5毫米,长20-50毫米;有机玻璃片3尺寸为(20-60毫米)×(10-30毫米)×(1-3毫米);自准直电极板中部长方形溶液孔5的尺寸为(3-10毫米)×(2-5毫米)×(2-6毫米);熔融石英毛细管22内径为10-320微米,外径为320-450微米,长度为5-100厘米;固定毛细管用硅橡胶圆片23直径为4-8毫米,厚度为2-4毫米,中部有针刺的自封孔;钢制螺母24内径为6-12毫米,高度为5-12毫米;自准直检测电极板25的尺寸为(20-60毫米)×(10-30毫米)×(2-6毫米);硅橡胶浸渍无纺布密封片26尺寸为(20-60毫米)×(10-30毫米)×(0.3-1毫米),长方体形磁铁27尺寸为(20-40毫米)×(10-30毫米)×(5-30毫米);塑料内塞盖31内塞直径为6-12毫米,内塞高度3-6毫米。
本发明中,磁力组装自定位毛细管电泳安培检测池的操作过程包括以下步骤:
(1)用金相砂纸将自准直检测电极板25中的圆盘状检测电极表面抛光为镜片,并用水清洗干净;
(2)将熔融石英毛细管22的一端穿入硅橡胶圆片23中部针刺的自封孔中,露出10-40毫米,露出部分长度需小于不锈钢引导管1的长度,然后将露出部分插入自准直检测电极板25中,直至不锈钢引导管1末端刺入硅橡胶圆片23中部的自封孔中1-3毫米。毛细管22的该端口与圆盘状检测电极2间的距离借助已知厚度的涤纶膜(常用厚度为12.5、25、50、75、100微米)进行调节,具体方法为:先使毛细管22出口远离圆盘状检测电极2,然后将宽度(2-8毫米)小于自准直电极板中部长方体形溶液孔5长边的不同厚度涤纶膜插入孔中并贴紧圆盘电极2的表面,向涤纶膜推进毛细管22直至其端部紧密接触涤纶膜后,垂直抽出涤纶膜,毛细管22端口和圆盘电极2表面间的距离即为涤纶膜的厚度;
(3)将与自准直检测电极板25尺寸一致的硅橡胶浸渍无纺布密封片26紧贴于其下方,置于一长方体形磁铁27上,将所述底部有硅橡胶密封层且带绝缘漆的钢制螺母24置于电极板25中部的溶液孔上方,借助长方体形磁铁27对钢制螺母24的磁力,将上下部件固定;
(4)向所述由螺丝孔和电极板上的长方体形溶液孔组成的安培检测池中加入电泳分离溶液,将带有接地电极28、辅助电极29和参比电极30的塑料内塞盖31盖在钢制螺母24上,其中三支电极的下端需浸没在电泳缓冲溶液中。然后由检测池外的毛细管一端通过注射器注入电泳分离溶液,毛细管检测池外的一端插入一带有铂丝高压电极的电泳缓冲溶液小管中,将接地电极和高压电极连接高压直流电源,并将圆盘检测电极2、辅助电极29和参比电极30连接安培检测器,即可进行毛细管电泳安培检测。
本发明中,磁力组装自定位毛细管电泳安培检测池的工作原理:
(1)自准直电极板25含有同轴准直的不锈钢引导管1和圆盘检测电极2,电泳分离用毛细管22可穿过不锈钢引导管1,完成毛细管22与圆盘检测电极2的自准直;
(2)自准直检测电极板25上不锈钢引导管1检测池外的一端与石英毛细管22的一端通过硅橡胶圆片23同轴固定,硅橡胶圆片23中部的自封孔允许毛细管22前后移动,可借助已知厚度的涤纶膜控制检测池外内的毛细管端口与圆盘电极间的距离;
(3)本发明为了安装自准直检测电极板25,利用了磁铁27和钢制螺母的磁力吸引,实现了检测池中螺母24、电极板24、密封片26、磁铁底座27等各部件的磁力自组装,磁力组装自定位毛细管电泳安培检测池具有操作方便、组装和拆卸简便快速等优点。磁铁底座27还可为该检测池在操作台上的磁力固定提供便利。
本发明还提出上述磁力组装自定位毛细管电泳安培检测池的制备方法,包括以下步骤:
(1)将穿有圆棒状电极体的不锈钢引导管通过远红外线辅助热压法封装在两片有机玻璃片间,使圆棒状电极体和不锈钢引导管的连接点位于板体中部;
(2)在封装后板体的中间部位开设一个长方形溶液孔,使所述圆棒状电极体端部的圆盘电极在长方形溶液孔的一侧,不锈钢细管的一端口位于长方形溶液孔的相对应另一侧,圆盘电极与不锈钢引导管同轴准直;
(3)将所述穿出自准直检测电极板的不锈钢引导管的末端与所述石英毛细管的一端通过硅橡胶圆片同轴固定,使石英毛细管与圆棒状电极体同轴准直;并借助已知厚度的涤纶膜(厚度为10-500微米)调节毛细管的该端口与圆盘电极间的距离;
(4)将所述与自准直检测电极板尺寸匹配的硅橡胶浸渍无纺布密封片紧贴于自准直检测电极板的下方,用于支撑与密封;并将所述硅橡胶浸渍无纺布密封片与自准直检测电极板置于所述长方体形磁铁之上;
(5)将所述底部有硅橡胶密封层且带绝缘漆的钢制螺母置于所述自准直检测电极板中部的溶液孔上方,由长方体形磁铁的磁力,将上下部件固定,并形成由螺母内腔体和自准直检测电极板中部的长方体形溶液孔组成的安培检测池;
(6)向所述安培检测池中加入电泳分离溶液后,将带有接地电极、辅助电极和参比电极的塑料内塞盖盖在钢制螺母上,其中接地电极、辅助电极和参比电极的下端浸没在电泳缓冲溶液中。
本发明中,所述远红外线辅助热压法采用弹簧驱动远红外线辅助热压装置进行热压封装,制备自准直检测电极板;所述弹簧驱动远红外线辅助热压装置由保温箱,以及设置在其中的两只弹簧驱动压力装置、两块玻璃压板和远红外线灯泡组成;所述远红外线辅助热压法包括以下步骤:
(1)将穿有圆棒状电极体的不锈钢引导管夹于两片有机玻璃片间;再将所述有机玻璃片夹于两片玻璃片间,得到受压件;
(2)将所述受压件置于由远红外线灯泡预热至100-120℃的弹簧驱动远红外线辅助热压装置中,并夹于两块玻璃压板间,使受压件与远红外线灯泡表面的距离为10-15厘米;
(3)所述弹簧驱动压力装置通过玻璃压板向受压件施加4-8公斤/平方厘米的压强,热压封装2-4分钟;使两片有机玻璃片软化,穿有圆棒状电极体的不锈钢细管被键合封装在两片有机玻璃片间。
本发明中,所述弹簧驱动远红外线辅助热压装置中还包括热电偶、温度控制器和风扇;所述热电偶设置在保温箱内,与保温箱外的温度控制器相连;所述保温箱上还设有通气孔,所述风扇设置在保温箱的任意面上,紧贴通气孔;所述热电偶、温度控制器和风扇形成反馈控制回路,控制弹簧驱动远红外线辅助热压装置中的温度。
本发明中,所述借助已知厚度的涤纶膜控制石英毛细管出口和圆盘电极表面间距离的方法为:先使毛细管出口远离圆盘电极,然后将厚度为10-500微米的涤纶膜插入长方体形溶液孔中,并紧贴圆盘电极的表面;将毛细管推向涤纶膜直至紧密接触,然后垂直抽出涤纶膜,毛细管出口和圆盘电极表面间的距离即为涤纶膜的厚度。
本发明的有益效果在于:
(1)结构简单、加工简便、成本低、集成度高、容易操作、定位精度和定位重现性高,毛细管电泳分离用石英毛细管和圆盘电极的准直定位,无需使用结构复杂且稳定性差的三维操纵仪;
(2)采用了一体化设计,安培检测池、检测电极支架、不锈钢材质的毛细管引导管均集成在同一自准直电极板上,底座的震动和位置的移动不会造成准直后的毛细管出口与圆盘电极间相对位置的改变,大幅增强了整个系统的稳定性和重现性;
(3)用途广泛,可用于毛细管电泳、流动注射分析、微流控芯片和液相色谱等的电化学检测,在食品药品分析、环境监测、临床诊断、生物医学研究等领域有广阔的应用前景。
附图说明
图1为磁力组装自定位毛细管电泳安培检测池的自准直检测电极板的制备流程图。其中,(A)将圆棒状电极体插入不锈钢细管中;(B)将插有圆棒状电极体的不锈钢细管夹于两片有机玻璃片间;(C)将两片有机玻璃片夹于两片玻璃片间;(D)热压封装得到未开孔的自准直检测电极板;(E)在未开孔的自准直检测电极板的中间开长方体形小孔得到自准直检测电极板。
图2为弹簧驱动远红外线辅助热压装置中弹簧驱动压力装置和玻璃压板的结构示意图。
图3为弹簧驱动远红外线辅助热压装置的整体结构示意图。
图4为未安装塑料内塞盖的磁力组装自定位毛细管电泳安培检测池的拆解示意图。
图5为安装了塑料内塞盖的磁力组装自定位毛细管电泳安培检测池的组装示意图。
图6为安装有石英毛细管的自准直检测电极板的实物照片。
图7为安装有石英毛细管的自准直检测电极板上长方体形溶液孔的显微镜照片。
图8为自准直检测电极板中铜圆盘电极放大50倍的显微镜照片。
图9为安装有铂丝接地电极、铂丝辅助电极和Ag/AgCl参比电极的聚丙烯内塞盖的磁力组装自定位毛细管电泳安培检测池的实物照片。
图10为使用磁力组装自定位毛细管电泳安培检测池检测甘露醇(a)、蔗糖(b)、葡萄糖(c)和果糖(d)标准混合溶液(浓度均为0.5毫摩尔/升)的毛细管电泳图谱。
图11为用磁力组装自定位毛细管电泳安培检测池分离检测甘露醇和果糖标准混合溶液峰电流与定位次数关系曲线。
图12为用磁力组装自定位毛细管电泳安培检测池检测电极与分离毛细管出口间的距离对0.5毫摩尔/升葡萄糖峰高和半峰宽的影响曲线。
图13为使用磁力组装自定位毛细管电泳安培检测池检测小黄姜提取液的毛细管电泳图谱。
图中标号:1为不锈钢引导管;2为圆棒状电极体;3为有机玻璃片;4为玻璃片;5为长方体形溶液孔;6为蝴蝶螺母,7为钢制上夹板,8为螺栓,9为弹簧推动钢制夹板,10为压力弹簧,11为硅橡胶凸形上压头,12为硅橡胶凸形下压头,13为钢制下夹板,14为玻璃上压板,15为玻璃下压板,16为带透气孔的保温箱,17为远红外线灯泡,18为弹簧驱动远红外线辅助热压装置,19为风扇,20为热电偶,21为温度控制器,22为石英毛细管,23为硅橡胶圆片,24为底部有硅橡胶密封层且带绝缘漆的钢制螺母,25为自准直检测电极板,26为硅橡胶浸渍无纺布密封片,27为长方体形磁铁,28为铂丝接地电极,29为铂丝辅助电极,30为Ag/AgCl参比电极,31为塑料内塞盖。
具体实施方式
下面通过实施例和附图进一步描述本发明:
实施例1:制备具有铜丝检测电极的磁力组装自定位毛细管电泳安培检测池
(1)制备铜丝检测电极的自准直检测电极板
如图1所示,将直径为300微米和长度为70毫米的铜丝电极2插入外径为700微米、内径为400微米、长度为40毫米的不锈钢细管1中,置于一片40毫米×20毫米×1.5毫米的有机玻璃片3上并盖上另一片同尺寸有机玻璃片3后,夹于两片76.2毫米×25.4毫米×1毫米的玻璃片4间,置于110℃的图3所示的弹簧驱动远红外线辅助热压装置18中。通过图2所示弹簧驱动远红外线辅助热压装置18中的弹簧驱动压力装置10和玻璃压板14,15热压封装3分钟,施加的压力为6公斤/平方厘米,受压件与远红外线灯泡17表面的距离约为12厘米。在远红外线的加热下,两片有机玻璃片3软化,穿有铜丝电极体2的不锈钢细管1被键合封装在两片有机玻璃片3间。热压封装结束后,冷却夹具取出未开孔的自准直检测电极板,然后在片子中部铜丝电极体2和不锈钢管1连接点处钻孔,用锉刀锉成含有铜圆盘检测电极和不锈钢细管口的6毫米×4毫米×3毫米的长方体形溶液孔5,铜丝电极体2端部的圆盘电极在长方形溶液孔5的一侧,不锈钢细管1的一端口位于长方形溶液孔5的相对应另一侧,圆盘电极与不锈钢细管同轴准直,可得自准直检测电极板25。
如图4、图5和图6所示,不锈钢细管1穿出自准直检测电极板25的板体,其末端与所述石英分离毛细管22的一端通过硅橡胶圆片23同轴固定,使石英毛细管22与圆棒电极体2同轴准直;毛细管22的该端口与圆盘电极间的距离借助已知厚度的涤纶膜(厚度为12.5、25、50、75、100、125、150、200、250、300、350、400、500微米)进行调节,具体方法为:先使毛细管22出口远离铜圆盘电极,然后将不同厚度的宽度为3毫米的涤纶膜插入长方体形溶液孔5中并贴紧圆盘电极的表面,向涤纶膜推进毛细管22直至紧密接触,然后垂直抽出涤纶膜,毛细管22出口和圆盘电极表面间的距离即为涤纶膜的厚度,抽出涤纶膜时可以滴加少量溶液起到润滑的作用。
如图7所示显示了长方体形溶液孔5处石英毛细管22和圆盘电极准直的情况,显然二者同轴准直,图中二者距离为50微米。如图8所示为长方体形溶液孔5侧壁上铜圆盘电极的显微镜照片,显然铜丝电极体2在构成自准直检测电极板25的两块有机玻璃片3间包埋封装良好,与有机玻璃片3间无缝隙。此外,构成自准直检测电极板25的两片有机玻璃片3完全融合,表明远红外辅助热压封装良好,断面无裂缝,保证了电极的防水性和稳定性。
(2)组装具有铜丝检测电极的磁力组装自定位毛细管电泳安培检测池
如图4和图5所示,在自准直检测电极板25底部贴上30毫米×20毫米×0.4毫米的硅橡胶浸渍无纺布密封片26,置于30毫米×20毫米×10毫米的方形铷铁硼磁铁27上,在其上方放置一内孔直径10毫米,高8毫米的底部有硅橡胶密封层且带绝缘漆的钢制螺母24,借助长方体形磁铁27对钢制螺母24的吸引作用完成各部件的磁力组装。在磁力作用下,钢制螺母24底部的硅橡胶密封涂层和硅橡胶浸渍无纺布密封片26发生形变起到密封作用,形成了由螺母内腔体和自准直检测电极板25中部的长方体形溶液孔5组成的安培检测池。
在安培检测池内加入电泳分离溶液75毫摩尔/升NaOH水溶液后,将带有直径500微米,长70毫米的铂丝接地电极28、直径500微米,长70毫米的铂丝辅助电极29和直径500微米,长70毫米的Ag/AgCl参比电极30的内塞直径10毫米,内塞高度4毫米的聚丙烯内塞盖31盖在钢制螺母24上,得到如图9所示的磁力组装自定位毛细管电泳安培检测池,其中铂丝接地电极28、铂丝辅助电极29和Ag/AgCl参比电极30的下端需浸没在电泳缓冲溶液中。
(3)具有铜丝检测电极的磁力组装自定位毛细管电泳安培检测池的测试
为测试本发明研制的磁力组装自定位毛细管电泳安培检测池的性能,将其与毛细管区带电泳联用,检测甘露醇、蔗糖、葡萄糖和果糖等几种糖类化合物。选用长40厘米、内径25微米、外径370微米的熔融石英毛细管作为电泳分离毛细管22,电泳分离溶液为75毫摩尔/升NaOH水溶液,圆棒状检测电极2的表面与石英毛细管22的出口的距离为50微米。毛细管电泳的分离电压为9千伏,检测电极电位为+0.65伏(相对于Ag/AgCl参比电极),获得的甘露醇、蔗糖、葡萄糖和果糖标准混合溶液(浓度均为0.5毫摩尔/升)的毛细管电泳图谱如图10所示。可见四种糖类物质在13分钟内完全分离,峰形良好。四个峰瘦长尖锐,半峰宽窄,具有较高的分辨率和分离度,说明本发明提出的磁力组装自定位毛细管电泳安培检测池的性能良好,具有实用性和可行性。
对于毛细管电泳安培检测技术来说,检测定位的重复性对样品峰电流的重现性至关重要。如图11为用毛细管电泳和磁力组装自定位毛细管电泳安培检测池分离检测甘露醇和果糖标准混合溶液(浓度均为0.5毫摩尔/升)峰电流与定位次数关系曲线,重复定位15次,每次检测电极与检测电极表面距离均为50微米。甘露醇和果糖峰电流的平均值为57.41和43.27纳安,对应的相对标准偏差分别为4.2%和3.9%,结果表明磁力组装自定位安培检测池能实现检测铜圆盘电极2和分离毛细管22出口的可重复定位,重复性良好,说明其可用于实际样品的毛细管电泳分离和检测。
图12显示了铜丝检测电极2与石英分离毛细管22出口间的距离对0.5毫摩尔/升葡萄糖峰高和半峰宽的影响,通过选用厚度为12.5、25、50、75、和100微米的涤纶膜来控制毛细管22出口和检测电极2表面间的距离。结果表明随距离的上升,葡萄糖峰电流从59.8纳安下降到26.1纳安,而半峰宽从5.1秒上升到16.9秒,峰形变得矮胖。当分离毛细管22出口和检测电极2表面间的距离小于50微米,尽管峰电流快速上升,但基线噪音显著增大,且基线不稳定。当分离毛细管22出口和检测电极2表面间的距离大于50微米,峰严重展宽,峰高下降。综合考虑灵敏度、半峰宽、基线稳定性和噪音,优化的分离毛细管2出口和检测电极2表面间的距离为50微米。
本实施例1研制的具有铜丝检测电极的磁力组装自定位毛细管电泳安培检测池与毛细管区带电泳联用,检测了小黄姜饮片提取液中甘露醇、蔗糖、葡萄糖和果糖的含量,以测试其在实际中药样品分析中的性能。如图13为获得的小黄姜提取液中糖类化合物的毛细管电泳图谱,可见样品中甘露醇、蔗糖、葡萄糖和果糖获得了良好分离,峰形瘦长尖锐。由于使用的电化学检测技术仅对样品提取液中有电化学活性的成分有电流响应,所以电泳图谱在一定程度上得到简化。测得小黄姜饮片中甘露醇、蔗糖、葡萄糖和果糖的含量分别为11.5、14.8、22.3和25.6毫克/克,结果令人满意。
实施例2:制备具有铂丝检测电极的磁力组装自定位毛细管电泳安培检测池
制备流程图如附图1所示,将直径为300微米和长度为70毫米的铂丝电极2插入外径为700微米、内径为400微米、长度为40毫米的不锈钢细管1中,置于一片40毫米×20毫米×1.5毫米的有机玻璃片3上,并盖上另一片同尺寸有机玻璃片3后,夹于两片76.2毫米×25.4毫米×1毫米的玻璃片4间,置于110℃的图3所示的弹簧驱动远红外线辅助热压装置18中。通过图2所示弹簧驱动远红外线辅助热压装置18中的弹簧驱动压力装置10和玻璃压板14,15热压封装3分钟,施加的压力为6公斤/平方厘米,受压件与远红外线灯泡17表面的距离约为12厘米。热压封装结束后,冷却夹具取出封装的未开孔的自准直检测电极板,然后在片子中部铂丝电极体2和不锈钢管1连接点处钻孔,用锉刀锉成含有铂圆盘电极和不锈钢毛细管口的6毫米×4×3毫米的长方形溶液孔5,可得自准直检测电极板25。
具有铂丝检测电极的磁力组装自定位毛细管电泳安培检测池的组装和测试同实施例1。
实施例3:采用弹簧驱动远红外线辅助热压装置进行热压封装
本发明中压制自准直检测电极板25使用的可控温的弹簧驱动远红外线辅助热压装置,由带通气孔的保温箱16、热电偶20、温度控制器21、风扇19和远红外线灯泡17组成,可以控制箱内温度在100-120℃之间。远红外线灯泡17工作的时候,对箱体内的物体进行加热,当温度超过120℃,电扇19开始工作,鼓入冷空气,使温度降低,当箱内温度低于100℃,电扇19停止工作,远红外线灯泡17持续加热使箱内温度上升。
如图2所示,弹簧驱动远红外线辅助热压装置18包括两个弹簧驱动压力装置和两块玻璃压板14,15;每个弹簧驱动压力装置由蝴蝶螺母6、钢制上夹板7、螺栓8、弹簧推动钢制夹板9、压力弹簧10、硅橡胶凸形上压头11、硅橡胶凸形下压头12和钢制下夹板13构成。单个弹簧驱动压力装置可提供最高100公斤的压力。旋紧蝴蝶螺母6后,其推动钢制上夹板7向下移动,从而压缩压力弹簧10产生压力,通过弹簧推动钢制夹板9、硅橡胶凸形上压头11和玻璃上压板14施加在受压件的有机玻璃片3上,完成两片有机玻璃片3的热压封装以及穿有圆棒状电极体2的不锈钢细管1的同步包埋。

Claims (10)

1.一种磁力组装自定位毛细管电泳安培检测池,其特征在于,由长方体形磁铁、硅橡胶浸渍无纺布密封片、底部有硅橡胶密封层的带绝缘漆的钢制螺母、毛细管固定用硅橡胶圆片、熔融石英毛细管、含有同轴准直圆棒状电极体和不锈钢引导管的自准直检测电极板,以及带有铂丝接地电极、铂丝辅助电极和Ag/AgCl参比电极的塑料内塞盖组成;其中,自准直检测电极板的板体由上、下两块有机玻璃片经热压封装组成,板体中间部位开有长方形溶液孔,所述圆棒状电极体和不锈钢引导管分别封装在两块有机玻璃片中间,并位于溶液孔的相对两侧,即所述圆棒状电极体端部在长方形溶液孔的一侧,圆棒状电极体的后端部引出电极板外,不锈钢引导管的一端口位于长方形溶液孔的相对应另一侧,不锈钢引导管的另一端口引出电极板外,圆棒状电极体与不锈钢引导管同轴准直;所述硅橡胶浸渍无纺布密封片与自准直检测电极板的尺寸匹配,紧贴于自准直检测电极板的下方,用于支撑与密封;所述硅橡胶浸渍无纺布密封片与自准直检测电极板位于所述长方体形磁铁之上;所述不锈钢引导管穿出自准直检测电极板的板体外的末端口与所述熔融石英毛细管的一端通过硅橡胶圆片同轴固定,且毛细管可沿不锈钢引导管内壁移动,使熔融石英毛细管与圆棒状电极体同轴准直;毛细管的该端口与圆棒电极间的距离借助已知厚度的涤纶膜进行调节;所述底部有硅橡胶密封层的带绝缘漆的钢制螺母,置于所述自准直检测电极板中部的溶液孔上方,由长方体形磁铁的磁力,将上下部件固定,并形成由螺母内腔体和自准直检测电极板中部的长方形溶液孔组成的安培检测池;所述钢制螺母腔体内加入电泳分离溶液后,带有铂丝接地电极、铂丝辅助电极和Ag/AgCl参比电极的塑料内塞盖盖在钢制螺母上,其中铂丝接地电极、铂丝辅助电极和Ag/AgCl参比电极浸没在电泳分离溶液中。
2.根据权利要求1所述的磁力组装自定位毛细管电泳安培检测池,其特征在于,各部件的尺寸为:不锈钢引导管内径为0.35-0.6毫米,外径0.6-1毫米,长20-50毫米;圆棒状电极体的直径为0.2-0.5毫米,长20-50毫米;有机玻璃片尺寸为(20-60毫米)×(10-30毫米)×(1-3毫米);自准直检测电极板中部长方形溶液孔的尺寸为(3-10毫米)×(2-5毫米)×(2-6毫米);熔融石英毛细管内径为10-320微米,外径为320-450微米,长度为5-100厘米;毛细管固定用硅橡胶圆片直径为4-8毫米,厚度为2-4毫米,中部有针刺的自封孔;钢制螺母内径为6-12毫米,高度为5-12毫米;自准直检测电极板的尺寸为(20-60毫米)×(10-30毫米)×(2-6毫米);硅橡胶浸渍无纺布密封片尺寸为(20-60毫米)×(10-30毫米)×(0.3-1毫米),长方体形磁铁尺寸为(20-40毫米)×(10-30毫米)×(5-30毫米);塑料内塞盖内塞直径为6-12毫米,内塞高度3-6毫米。
3.根据权利要求1所述的磁力组装自定位毛细管电泳安培检测池,其特征在于,所述长方体形磁铁为钕铁硼磁铁、铁氧体磁铁或磁钢。
4.根据权利要求1所述的磁力组装自定位毛细管电泳安培检测池,其特征在于,所述圆棒状电极体的材质为铜、铂、镍、石墨或碳基复合材料。
5.根据权利要求1所述的磁力组装自定位毛细管电泳安培检测池,其特征在于,所述硅橡胶浸渍无纺布密封片由一块与所述自准直检测电极板的板体长宽一致的长方形无纺布用硅酮胶浸渍后于空气中固化得到。
6.根据权利要求1所述的磁力组装自定位毛细管电泳安培检测池,其特征在于,所述底部有硅橡胶密封层的带绝缘漆的钢制螺母,由内径略大于所述长方形溶液孔的长边长度的钢制螺母,经喷涂聚氨酯或丙烯酸绝缘漆后,底部涂一层密封硅酮胶,并于室温固化得到。
7.一种如权利要求1-6之一所述的磁力组装自定位毛细管电泳安培检测池的制备方法,其特征在于,包括以下步骤:
(1)将穿有圆棒状电极体的不锈钢引导管通过远红外线辅助热压法封装在两片有机玻璃片间,使圆棒状电极体和不锈钢引导管的连接点位于板体中部;
(2)在封装后板体的中间部位开设一个长方形溶液孔,使所述圆棒状电极体端部的圆棒电极在长方形溶液孔的一侧,不锈钢引导管的一端口位于长方形溶液孔的相对应另一侧,圆棒电极与不锈钢引导管同轴准直;
(3)将所述穿出自准直检测电极板的不锈钢引导管的末端口与所述石英毛细管的一端通过硅橡胶圆片同轴固定,使石英毛细管与圆棒状电极体同轴准直;并借助已知厚度的涤纶膜调节毛细管出口与圆棒电极间的距离;
(4)将所述与自准直检测电极板尺寸匹配的硅橡胶浸渍无纺布密封片紧贴于自准直检测电极板的下方,用于支撑与密封;并将所述硅橡胶浸渍无纺布密封片与自准直检测电极板置于所述长方体形磁铁之上;
(5)将所述底部有硅橡胶密封层的带绝缘漆的钢制螺母置于所述自准直检测电极板中部的溶液孔上方,由长方体形磁铁的磁力,将上下部件固定,并形成由螺母内腔体和自准直检测电极板中部的长方形溶液孔组成的安培检测池;
(6)向所述安培检测池中加入电泳分离溶液后,将带有接地电极、辅助电极和参比电极的塑料内塞盖盖在钢制螺母上,其中接地电极、辅助电极和参比电极的下端浸没在电泳分离溶液中。
8.根据权利要求7所述的磁力组装自定位毛细管电泳安培检测池的制备方法,其特征在于,所述远红外线辅助热压法采用弹簧驱动远红外线辅助热压装置进行热压封装,制备自准直检测电极板;所述弹簧驱动远红外线辅助热压装置由保温箱,以及设置在其中的两只弹簧驱动压力装置、两块玻璃压板和远红外线灯泡组成;所述远红外线辅助热压法包括以下步骤:
(1)将穿有圆棒状电极体的不锈钢引导管夹于两片有机玻璃片间;再将所述有机玻璃片夹于两片玻璃片间,得到受压件;
(2)将所述受压件置于由远红外线灯泡预热至100-120℃的弹簧驱动远红外线辅助热压装置中,并夹于两块玻璃压板间,使受压件与远红外线灯泡表面的距离为10-15厘米;
(3)所述弹簧驱动压力装置通过玻璃压板向受压件施加4-8公斤/平方厘米的压强,热压封装2-4分钟;使两片有机玻璃片软化,穿有圆棒状电极体的不锈钢引导管被键合封装在两片有机玻璃片间。
9.根据权利要求8所述的磁力组装自定位毛细管电泳安培检测池的制备方法,其特征在于,所述弹簧驱动远红外线辅助热压装置中还包括热电偶、温度控制器和风扇;所述热电偶设置在保温箱内,与保温箱外的温度控制器相连;所述保温箱上还设有通气孔,所述风扇设置在保温箱的任意面上,紧贴通气孔;所述热电偶、温度控制器和风扇形成反馈控制回路,控制弹簧驱动远红外线辅助热压装置中的温度。
10.根据权利要求7所述的磁力组装自定位毛细管电泳安培检测池的制备方法,其特征在于,所述借助已知厚度的涤纶膜调节毛细管出口与圆棒电极间的距离的方法为:先使毛细管出口远离圆棒电极,然后将厚度为10-500微米的涤纶膜插入长方形溶液孔中,并紧贴圆棒电极的表面;将毛细管推向涤纶膜直至紧密接触,然后垂直抽出涤纶膜,毛细管出口和圆棒电极表面间的距离即为涤纶膜的厚度。
CN201810010284.0A 2018-01-05 2018-01-05 一种磁力组装自定位毛细管电泳安培检测池及其制备方法 Active CN108362756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810010284.0A CN108362756B (zh) 2018-01-05 2018-01-05 一种磁力组装自定位毛细管电泳安培检测池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810010284.0A CN108362756B (zh) 2018-01-05 2018-01-05 一种磁力组装自定位毛细管电泳安培检测池及其制备方法

Publications (2)

Publication Number Publication Date
CN108362756A CN108362756A (zh) 2018-08-03
CN108362756B true CN108362756B (zh) 2020-07-28

Family

ID=63010990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810010284.0A Active CN108362756B (zh) 2018-01-05 2018-01-05 一种磁力组装自定位毛细管电泳安培检测池及其制备方法

Country Status (1)

Country Link
CN (1) CN108362756B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797986B (zh) * 2021-10-11 2023-05-26 苏州美翎生物医学科技有限公司 一种可微调毛细管同轴排列的微流控芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605317A (en) * 1994-03-21 1997-02-25 Sapphire Engineering, Inc. Electro-magnetically operated valve
CN2447788Y (zh) * 2000-08-11 2001-09-12 上海医大仪器厂 自定位毛细管电泳电化学检测池
CN2541842Y (zh) * 2002-05-23 2003-03-26 复旦大学 一种毛细管电泳电化学检测芯片
CN101769894A (zh) * 2008-12-31 2010-07-07 中山大学 毛细管电泳同轴型磁导检测法及其装置
CN103245708A (zh) * 2013-04-26 2013-08-14 复旦大学 一种基于磁铁的毛细管电泳电化学检测电极定位装置
CN104280434A (zh) * 2014-09-09 2015-01-14 安徽科技学院 一种同轴定位毛细管电泳-电化学集成检测装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630063B1 (en) * 1999-10-06 2003-10-07 I. Reich Family Limited Partnership Uniform laser excitation and detection in capillary array electrophoresis system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605317A (en) * 1994-03-21 1997-02-25 Sapphire Engineering, Inc. Electro-magnetically operated valve
CN2447788Y (zh) * 2000-08-11 2001-09-12 上海医大仪器厂 自定位毛细管电泳电化学检测池
CN2541842Y (zh) * 2002-05-23 2003-03-26 复旦大学 一种毛细管电泳电化学检测芯片
CN101769894A (zh) * 2008-12-31 2010-07-07 中山大学 毛细管电泳同轴型磁导检测法及其装置
CN103245708A (zh) * 2013-04-26 2013-08-14 复旦大学 一种基于磁铁的毛细管电泳电化学检测电极定位装置
CN104280434A (zh) * 2014-09-09 2015-01-14 安徽科技学院 一种同轴定位毛细管电泳-电化学集成检测装置

Also Published As

Publication number Publication date
CN108362756A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
US4705616A (en) Electrophoresis-mass spectrometry probe
EP1482840B1 (en) Micro-devices for investigation of biological systems
EP0687905B1 (en) Automated capillary electrophoresis apparatus
US8080407B2 (en) Calibration procedures and devices for investigation biological systems
US5358612A (en) Electrophoresis with chemically suppressed detection
US10000789B2 (en) Cellular probe device, system and analysis method
CN108603828A (zh) 用于样品表征的装置和方法
US9595428B2 (en) Cellular probe device, system and analysis method
EP3226993B1 (en) Apparatus and method for separating molecules
US20080135410A1 (en) Non-Fluidic Microdetection Device and Uses Thereof
CN108362756B (zh) 一种磁力组装自定位毛细管电泳安培检测池及其制备方法
CA1322221C (en) Automated capillary electrophoresis apparatus
WO2002056004A2 (en) Thin film electrophoresis apparatus and method
Ma et al. Integrated isotachophoretic preconcentration with zone electrophoresis separation on a quartz microchip for UV detection of flavonoids
Xu et al. Interfacing capillary gel microfluidic chips with infrared laser desorption mass spectrometry
US20220283126A1 (en) Electrospray assisted capillary device for processing ultra low-volume samples
WO2015093282A1 (ja) 生体分子分析装置
CN110412104A (zh) 一种温度控制毛细管电泳-化学发光联用的接口及其制作方法
JP2011196914A (ja) サンプル分離吸着器具
Chen et al. Combination of flow injection with electrophoresis using capillaries and chips
Kitagawa et al. Manipulation of a single cell with microcapillary tubing based on its electrophoretic mobility
CN218331348U (zh) 一种便于快速调节的质谱检测平台
JP2000009690A (ja) キャピラリ電気泳動用溶液充填装置
US20030132117A1 (en) Thin film electrophoresis apparatus and method
CN209559815U (zh) 一种醋酸纤维薄膜电泳点样组件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant