CN108360068A - 铥、镥双掺杂的铝酸钙钆晶体及其制备方法和应用 - Google Patents

铥、镥双掺杂的铝酸钙钆晶体及其制备方法和应用 Download PDF

Info

Publication number
CN108360068A
CN108360068A CN201810271319.6A CN201810271319A CN108360068A CN 108360068 A CN108360068 A CN 108360068A CN 201810271319 A CN201810271319 A CN 201810271319A CN 108360068 A CN108360068 A CN 108360068A
Authority
CN
China
Prior art keywords
crystal
lutetium
calcium aluminate
thulium
codope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810271319.6A
Other languages
English (en)
Inventor
潘忠奔
苑华磊
戴晓军
张衍
居佳
袁浩
蔡华强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Material of CAEP
Original Assignee
Institute of Chemical Material of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Material of CAEP filed Critical Institute of Chemical Material of CAEP
Priority to CN201810271319.6A priority Critical patent/CN108360068A/zh
Publication of CN108360068A publication Critical patent/CN108360068A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1631Solid materials characterised by a crystal matrix aluminate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种铥、镥双掺杂的铝酸钙钆晶体,晶体的分子式为TmxCaGd1‑x‑yLuyAlO4,其中x=0~0.1,y=0~0.4。本发明还公开了所述铥、镥双掺杂的铝酸钙钆晶体的制备方法和所述铥、镥双掺杂的铝酸钙钆晶体的应用。本发明的铥、镥双掺杂的铝酸钙钆晶体具有较低的声子能量,有利于2微米激光输出。Lu3+的掺杂进一步的增宽Tm3+的光谱,有利于超短脉冲激光产生。

Description

铥、镥双掺杂的铝酸钙钆晶体及其制备方法和应用
技术领域
本发明属于激光晶体材料领域,具体涉及一种铥、镥双掺杂的铝酸钙钆晶体及其制备方法,以及在固体激光器中的应用。
背景技术
在全固态激光器中,受到泵浦源、实验装置等一些条件的限制,连续激光已经不能满足人们对于激光器的需求。调Q和锁模技术的发展使得脉冲激光得到了飞速发展,通过调Q技术,可以实现短至纳秒(10-9~10-12)量级的脉冲,而锁模技术可以实现皮秒至飞秒量级(10-12~10-15)的超短脉冲输出。
超快脉冲(脉宽为10-12~10-15s)具有极短持续时间,极高峰值功率、极宽光谱等特点,在工业、军事、环境、能源、通讯等众多领域得到了广泛应用。目前已成为激光研究50年发展历程中最活跃的方向之一。激光材料的发射谱(荧光谱)的宽度决定了该材料可实现的激光脉冲的长短,要获得短脉冲的激光输出,基质材料需具有平滑的、宽的荧光光谱。传统的基质材料主要有晶体、陶瓷及玻璃等,而晶体是研究最为广泛的一类基质材料。传统晶体受限于光谱带宽的限制,很难获得飞秒量级的脉冲激光输出。
有这样一类晶体,与传统有序晶体相比,其在结构上存在一定的无序,我们称之为无序晶体。所谓无序晶体,一般是指具有不同化合价的阳离子随机分布在相同的晶格点上,形成多种激活离子中心,导致晶格场的无序分布,进而使得荧光光谱的宽度得到了非均匀加宽。此外,与已经商业化的激光玻璃相比,无序激光晶体兼具传统晶体大的热导率的特性,可应用于高功率激光器中。因此积极探寻综合性能优异,且易于生长出高质量、大尺寸的无序激光晶体料是目前发展超快激光技术的一个重要方向。
发明内容
本发明的目的是提供一种产生2微米超短脉冲激光的激光晶体材料,晶体的无序性更大,光谱的非均匀性加宽得到增强有利于获得更宽的吸收和发射谱,通过锁模技术更有利于产生超短的脉冲激光。
本发明是这样实现的:
一种铥、镥双掺杂的铝酸钙钆晶体,所述的晶体的分子式为TmxCaGd1-x-yLuyAlO4,其中x=0~0.1,y=0~0.4,Tm3+的掺杂浓度为0~5at%,x、y以及Tm3+的掺杂浓度均不为0,at%的含义为原子数百分比含量,是与Gd的原子数相比的百分比含量。经多次试验x=0~0.05,y=0~0.4所生长的晶体质量和光学性能最好,Tm3+的掺杂浓度一般在0at%~5at%。铥、镥双掺杂铝酸钙钆晶体属于四方晶系。
本发明还提供了所述的铥、镥双掺杂的铝酸钙钆晶体的制备方法,所述的晶体由下述原料通过固相反应得到多晶料后再采用拉提法制备而成:
原料:纯度为99.99%的CaCO3、纯度为99.99%的Gd2O3、纯度为99.99%的Al2O3、纯度为99.99%的Lu2O3、纯度为99.99%的Tm2O3
固相反应化学式:
进一步的技术方案是,固相反应的步骤如下:将原料混合后在温度1000℃~1100℃下固相反应22~28h;取出研磨成粉状、混合、压片后,再于温度1150~1200℃下固相反应28~35h得到多晶料。
进一步的技术方案是,所述的拉提法的步骤为将固相反应后的多晶料置于单晶炉中,生长过程中提拉速度为1~2mm/h,籽晶杆旋转速度为8rpm。
进一步的技术方案是,所述的固相反应的步骤如下:将原料混合后在温度1050℃下固相反应24h;取出研磨成粉状、混合、压片后,再于温度1150℃下固相反应30h得到多晶料。
本发明还提供了所述的铥、镥双掺杂的铝酸钙钆晶体的应用,所述的晶体用于在固体锁模激光器中产生2微米波段超短脉冲激光。
下面对本发明做进一步的解释和说明。
铥、镥双掺杂的铝酸钙钆晶体可以简写为Tm,Lu:CaGdAlO4,属于四方晶系,具有无序结构,Lu3+的掺杂使得激活离子Tm3+的光谱在原有基础之上得到了进一步的非均匀加宽。
本发明与现有技术相比,具有以下的有益效果:铥、镥双掺杂的铝酸钙钆晶体具有较低的声子能量,有利于2微米激光输出。Lu3+的掺杂进一步的增宽Tm3+的光谱,有利于超短脉冲激光产生。
附图说明
图1为本发明铥、镥双掺杂铝酸钙钆晶体Tm,Lu:CaGdAlO4的XRD衍射图样。
图2为本发明铥、镥双掺杂铝酸钙钆晶体Tm,Lu:CaGdAlO4的偏振荧光谱。
具体实施方式
下面结合本发明的实施例对本发明作进一步的阐述和说明。
实施例1
按照下列化学式:
x=0.05,y=0.1按照下列化学式:
将CaCO3、Gd2O3、Lu2O3、Tm2O3、Al2O3配重称量好并混合后在马弗炉中于温度1050℃下进行固相反应24小时;取出后重新研磨成成粉状、混合、压片,再于马弗炉中于温度1150℃固相反应30小时后取出备用得到多晶料.
多晶料采用单晶炉提拉法制备单晶。将多晶料放入铱金坩埚中,为防止铱金坩埚氧化,先抽真空后冲入氮气作为保护气。设置单晶炉的升温程序中频功率为6000w使多晶料完全融化。之后用籽晶提拉生长,生长过程中提拉速度为1~2mm/h,籽晶杆旋转速度为8rpm,直至生长得到尺寸Ф25×65mm3的单晶。之后设置退火程序使晶体温度降到室温。
此实例生长的晶体化学表达式为Tm0.05CaGd0.85Lu0.1AlO4,Tm3+掺杂浓度为5at%,Lu3+掺杂浓度为10at%。
实施例2
与实施例1基本相同,所不同的是x=0.05,y=0.2。按照化学反应式:
将CaCO3、Gd2O3、Lu2O3、Tm2O3、Al2O3配重称量好并混合后在马弗炉中于温度1050℃下进行固相反应24小时;取出后重新研磨成成粉状、混合、压片,再于马弗炉中于温度1150℃固相反应30小时后取出备用得到多晶料.
多晶料采用单晶炉提拉法制备单晶。将多晶料放入铱金坩埚中,为防止铱金坩埚氧化,先抽真空后冲入氮气作为保护气。设置单晶炉的升温程序中频功率为6000w使多晶料完全融化。之后用籽晶提拉生长,生长过程中提拉速度为1~2mm/h,籽晶杆旋转速度为8rpm,直至生长得到尺寸Ф25×65mm3的单晶。之后设置退火程序使晶体温度降到室温。
此实例生长的晶体化学表达式为Tm0.05CaGd0.75Lu0.2AlO4,Tm3+掺杂浓度为5at%,Lu3+掺杂浓度为20at%。
实施例3
与例1基本相同,所不同的是x=0.05,y=0.3。按照化学反应式:
将CaCO3、Gd2O3、Lu2O3、Tm2O3、Al2O3配重称量好并混合后在马弗炉中于温度1050℃下进行固相反应24小时;取出后重新研磨成成粉状、混合、压片,再于马弗炉中于温度1150℃固相反应30小时后取出备用得到多晶料.
多晶料采用单晶炉提拉法制备单晶。将多晶料放入铱金坩埚中,为防止铱金坩埚氧化,先抽真空后冲入氮气作为保护气。设置单晶炉的升温程序中频功率为6000w使多晶料完全融化。之后用籽晶提拉生长,生长过程中提拉速度为1~2mm/h,籽晶杆旋转速度为8rpm,直至生长得到尺寸Ф25×65mm3的单晶。之后设置退火程序使晶体温度降到室温。
此实例生长的晶体化学表达式为Tm0.05CaGd0.65Lu0.3AlO4,Tm3+掺杂浓度为5at%,Lu3+掺杂浓度为30at%。
实施例4
将实施例1生长好的晶体取样研磨成粉末。测量其XRD衍射图样,并计算其晶胞参数为Z=2。
测量晶体中各元素的分凝系数(表1),可以看出激活离子Tm3+的分凝系数为1.32,Lu3+的分凝系数为1.86,说明二者都比较掺入铝酸钙钆晶体,其它各元素分凝系数接近于标样。
图1示出了掺铥镥铝酸钙钆晶体示例1所生长的Tm0.05CaGd0.85Lu0.1AlO4晶体的XRD衍射图样,表1给出了相应各元素的分凝系数。
表1 Tm0.05CaGd0.85Lu0.1AlO4晶体中的分凝系数
将实施例1生长好的晶体加工将实施例1生长好的晶体加工成6mm*6mm*2mm的样品。测量其偏振荧光光谱(图2),并将其与未掺杂Lu3+的晶体进行对比。
图2示出了为本发明Tm0.05CaGd0.85Lu0.1AlO4晶体的偏振荧光光谱,通过与未掺杂Lu3+的Tm0.05CaGd0.95AlO4晶体对比,可以发现,本发明Tm0.05CaGd0.85Lu0.1AlO4晶体的荧光光谱在两个偏振方向上都有不同程度的明显加宽。此结果说明,通过在Tm0.05CaGd0.85Lu0.1AlO4晶体中引入Lu3+,可以使得晶体得无序度加大,非均匀加宽增强,更加有利于超短脉冲激光的产生。该晶体可以通过795nm的激光器作为泵浦源,以本发明Tm0.05CaGd0.85Lu0.1AlO4晶体为基质,获得2μm波段的超短脉冲激光。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (8)

1.一种铥、镥双掺杂的铝酸钙钆晶体,其特征在于所述的晶体的分子式为TmxCaGd1-x- yLuyAlO4,其中x=0~0.1,y=0~0.4。
2.根据权利要求1所述的铥、镥双掺杂的铝酸钙钆晶体,其特征在于所述的晶体中由Tm3 +和Lu3+离子共同取代Gd3+
3.根据权利要求1所述的铥、镥双掺杂的铝酸钙钆晶体,其特征在于:
所述铥、镥双掺杂的铝酸钙钆晶体为四方晶系,晶胞参数为 Z=2;激活离子Tm3+的分凝系数为1.32,Lu3+的分凝系数为1.86。
4.权利要求1或2或3所述铥、镥双掺杂的铝酸钙钆晶体的制备方法,其特征在于:
所述的铥、镥双掺杂的铝酸钙钆晶体由下述原料通过固相反应得到多晶料后再采用拉提法制备而成:
原料:纯度为99.99%的CaCO3、纯度为99.99%的Gd2O3、纯度为99.99%的Al2O3、纯度为99.99%的Lu2O3、纯度为99.99%的Tm2O3
固相反应化学式如下:
2CaCO3+(1-x-y)Gd2O3+xTm2O3+yLu2O3+Al2O3
5.根据权利要求4所述铥、镥双掺杂的铝酸钙钆晶体的制备方法,其特征在于:
所述固相反应的步骤如下:将原料混合后在温度1000℃~1100℃下固相反应22~28h;取出研磨成粉状、混合、压片后,再于温度1150~1200℃下固相反应28~35h得到多晶料。
6.根据权利要求5所述铥、镥双掺杂的铝酸钙钆晶体的制备方法,其特征在于:
所述的固相反应的步骤如下:将原料混合后在温度1050℃下固相反应24h;取出研磨成粉状、混合、压片后,再于温度1150℃下固相反应30h得到多晶料。
7.根据权利要求4所述铥、镥双掺杂的铝酸钙钆晶体的制备方法,其特征在于:
所述的拉提法的步骤为将固相反应后的多晶料置于单晶炉中,生长过程中提拉速度为1~2mm/h,籽晶杆旋转速度为8rpm。
8.权利要求1或2或3所述铥、镥双掺杂的铝酸钙钆晶体的应用,其特征在于所述的晶体用于在2微米固体锁模激光器中产生超快激光脉冲。
CN201810271319.6A 2018-03-29 2018-03-29 铥、镥双掺杂的铝酸钙钆晶体及其制备方法和应用 Pending CN108360068A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810271319.6A CN108360068A (zh) 2018-03-29 2018-03-29 铥、镥双掺杂的铝酸钙钆晶体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810271319.6A CN108360068A (zh) 2018-03-29 2018-03-29 铥、镥双掺杂的铝酸钙钆晶体及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN108360068A true CN108360068A (zh) 2018-08-03

Family

ID=63001265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810271319.6A Pending CN108360068A (zh) 2018-03-29 2018-03-29 铥、镥双掺杂的铝酸钙钆晶体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108360068A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364920A (zh) * 2019-07-22 2019-10-22 深圳大学 一种掺铥块状固体激光器
CN112941630A (zh) * 2021-01-18 2021-06-11 枣庄学院 一种镝镥铝三掺的镓酸镧钙中红外激光晶体及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882522A (zh) * 2014-03-21 2014-06-25 中国科学院上海光学精密机械研究所 离子掺杂铝酸钙钆激光晶体的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882522A (zh) * 2014-03-21 2014-06-25 中国科学院上海光学精密机械研究所 离子掺杂铝酸钙钆激光晶体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIANGQIANG HU, ET AL.: "Crystal growth and spectral broadening of a promising Yb:CaLuxGd1−xAlO4 disordered crystal for ultrafast laser application", 《CRYSTENGCOMM》 *
ZHIPENG QIN, ET AL.: "Diode-Pumped Passively Mode-Locked Tm:CaGdAlO4 Laser at 2-μm Wavelength", 《IEEE PHOTONICS JOURNAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364920A (zh) * 2019-07-22 2019-10-22 深圳大学 一种掺铥块状固体激光器
CN112941630A (zh) * 2021-01-18 2021-06-11 枣庄学院 一种镝镥铝三掺的镓酸镧钙中红外激光晶体及其制备方法和应用

Similar Documents

Publication Publication Date Title
Lupei et al. Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation
Kolesnikov et al. Eu3+ concentration effect on luminescence properties of YAG: Eu3+ nanoparticles
Li et al. Luminescent properties in relation to controllable phase and morphology of LuBO3: Eu3+ nano/microcrystals synthesized by hydrothermal approach
Qi et al. Spectroscopy of individual silicon nanowires
Jiang et al. Enhanced upconversion in Ho3+-doped transparent glass ceramics containing BaYbF5 nanocrystals
Lin et al. Tuning of structure and enhancement of upconversion luminescence in NaLuF 4: Yb 3+, Ho 3+ crystals
Gupta et al. Nanoparticles of Sr0. 995Gd0. 005ZrO3-gel-combustion synthesis, characterization, fluorescence and EPR spectroscopy
Xu et al. Growth and optical properties of thulia-doped cubic yttria stabilized zirconia single crystals
Córdova-Martınez et al. Nanocrystalline tetragonal zirconium oxide stabilization at low temperatures by using rare earth ions: Sm3+ and Tb3+
Parganiha et al. Synthesis and luminescence study of BaZrO3: Eu3+ phosphor
Di et al. Crystal growth, polarized spectra, and laser performance of Yb: CaGdAlO4 crystal
CN108360068A (zh) 铥、镥双掺杂的铝酸钙钆晶体及其制备方法和应用
Hu et al. Spectral conversion from green to red in Yb3+/Ho3+: Sr2GdF7 glass ceramics via Ce3+ doping
Li et al. Growth phase diagram and upconversion luminescence properties of NaLuF 4: Yb 3+/Tm 3+/Gd 3+ nanocrystals
HUANG et al. Fabrication and characterizations of Yb: YAG transparent ceramics using alcohol-water co-precipitation method
He et al. Growth and characterization of Tm x Y 1− x COB single crystals for nonlinear optical applications
Effendy et al. Synthesis and green luminescence of low cost Er2O3 doped zinc silicate glass-ceramics as laser materials
Huang et al. Growth and spectra properties of Nd3+-doped PbWO4 single crystal
Lojpur et al. Yb3+, Er3+ doped Y2O3 nanoparticles of different shapes prepared by self-propagating room temperature reaction method
Wang et al. Size/morphology induced tunable luminescence in upconversion crystals: ultra-strong single-band emission and underlying mechanisms
CN108456925A (zh) 掺镱铝酸锶镧晶体及其制备方法和应用
CN106676634B (zh) 掺镱钙钠铌石榴石晶体及其制备方法和应用
Lipinska et al. Nanopowders and crystals in (Y1− xNdx) 3Al5O12 system: Preparation and properties
Shan et al. Growth and spectroscopic properties of Tb3+-doped Na3La9O3 (BO3) 8 crystal
Kruk Impact of Sm ions on microstructure and magneto-optical effects of Y2O3 ceramics obtained by arc plasma melting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180803

RJ01 Rejection of invention patent application after publication