CN108359939B - 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法 - Google Patents

一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法 Download PDF

Info

Publication number
CN108359939B
CN108359939B CN201810180973.6A CN201810180973A CN108359939B CN 108359939 B CN108359939 B CN 108359939B CN 201810180973 A CN201810180973 A CN 201810180973A CN 108359939 B CN108359939 B CN 108359939B
Authority
CN
China
Prior art keywords
film
band gap
entropy alloy
hardness
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810180973.6A
Other languages
English (en)
Other versions
CN108359939A (zh
Inventor
李晓娜
王辰玉
程肖甜
利助民
于庆潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810180973.6A priority Critical patent/CN108359939B/zh
Publication of CN108359939A publication Critical patent/CN108359939A/zh
Application granted granted Critical
Publication of CN108359939B publication Critical patent/CN108359939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法,属半导体材料技术领域。这种薄膜具有如下通式:(Al y CoCrFeNi)1‑ x O x x=0.3~0.7,y=0~1.0,磁控溅射靶材Al:Co:Cr:Fe:Ni的原子比为y:1:1:1:1;薄膜呈纳米晶或非晶态,整体氧化。通过调整xy可使带隙宽度在2.20~4.20 eV区间、硬度在7~20 Gpa区间、电阻率在1×107~1×1019μΩ·cm区间连续变化,且在不同基体上生长的薄膜呈现透明或不同颜色。磁控溅射法制备薄膜方法成熟,可获得纳米晶或非晶态结构,整体氧化、薄膜均匀致密且表面平整。该薄膜灵活选择改变金属元素或改变氧分压来大范围调整,又可以带来性能(带隙宽度、硬度、电阻率、颜色等)的大范围调整,拓宽了薄膜的应用领域,可应用于光学、微电子器件、高硬耐磨及装饰薄膜等领域。

Description

一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其 制备方法
技术领域
本发明涉及一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法,其属半导体材料技术领域。
背景技术
高熵合金相对于传统合金存在以下优点:①高熵合金中每种元素均为主要元素,原子百分比在5%~35%,不同于传统合金中的添加元素,合金的性质由所有元素集体主导;②由于多元素混合后产生的高熵效应,高熵合金倾向于多种元素互相固溶而形成结构单一的固溶体,避免了传统合金由于少量添加元素而易产生金属间化合物硬脆相的缺点;③高熵合金结构和性能的变化随着元素含量的改变有着较大的敏感性,可通过小范围改变元素含量而有效地调节合金的性能。已经有研究表明在对高熵合金进行氧化的研究中发现:合金发生整体氧化而非生成每个金属元素单独氧化物的集合,但是高熵氧化物是宽带隙半导体还没有报道。在此基础上,高熵合金氧化物相对于单元素金属氧化物存在如下优势:①可通过改变高熵合金中的任一组元而轻易改变其氧化物的体系和性能;②氧化物薄膜的制备方法简易,磁控溅射可以灵活改变靶材成分和氧分压,调整薄膜成分从而获得不同的性能。
构成高熵合金的组元如Al、Ni等,其氧化物多数是半导体,例如,Al2O3带隙宽度在4.0 eV左右,硬度在10 Gpa左右,电阻率为3×1019 μΩ·cm,Al2O3薄膜在红外和可见光波段具有良好的透过性,可作为光学仪器所需的红外波段窗口材料,Al2O3薄膜还具有良好的绝缘性,可应用于半导体器件中的阻挡层;NiO带隙宽度在3.5 eV左右,电阻率为2×1014 μΩ·cm,NiO薄膜在透明的基础上具有相对小的电阻率,是一种透明导电薄膜。这种单一金属氧化物薄膜是成分比较固定的半导体,如果要调整半导体性能只能进行掺杂,调整范围却十分有限。而高熵合金是多组元的,发生的是整体氧化,经我们前期研究可以明确,无需采用掺杂的方式,只需微量调整高熵合金各组元的配比,高熵氧化薄膜的性能就可以在较大范围内调节。
为解决现有单一金属氧化物薄膜,需要通过掺杂进行调整半导体性能,且调整范围比较小的问题;制备带隙覆盖面更广的更容易调整的宽带隙半导体材料。
发明内容
针对上述内容,本发明拟获得成分和性能可大范围调整的高熵合金氧化物的薄膜,通过磁控溅射方法在不同基体上制备可变带隙的高熵合金氧化物半导体薄膜。
本发明采用的技术方案是:一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜具有如下通式:(Al y CoCrFeNi)1-x O x x=0.3~0.7,y=0~1.0,磁控溅射靶材Al:Co:Cr:Fe:Ni的原子比为y:1:1:1:1;薄膜呈纳米晶或非晶态,整体氧化。通过调整xy可使薄膜带隙宽度在2.20~4.20 eV区间、硬度在7~20 Gpa区间、电阻率在1×107~1×1019 μΩ·cm区间连续变化,且在不同基体上生长的薄膜呈现透明或不同颜色。该薄膜性能可从半导体过渡到绝缘体,可应用于光学、微电子器件、高硬耐磨及装饰薄膜等领域。
所述的AlCoCrFeNi高熵合金氧化物半导体薄膜的制备方法采用下列步骤:
(一)制备合金溅射靶材,其步骤如下:
靶材金属组元的纯度均不低于99.9%,合金靶材可采用两种方式制备:①直接熔炼合金靶:按所需配比称取各组元进行真空熔炼,可通过调整溅射参数以及靶材金属组元的配比改变薄膜成分;②拼接靶:采用单质金属组元直接拼接镶嵌成靶,可通过调整各金属单质所占靶面积改变薄膜成分。
(二)制备可变带隙的AlCoCrFeNi高熵合金氧化物薄膜,其步骤如下:
①制备和清洗薄膜生长所需的基片,如单晶Si、单晶Al2O3和精抛304不锈钢基片:所有基片需依次经适合的有机溶剂和去离子水超声清洗,清洗时间各为10分钟;如果是Si基片还需放入5%的氢氟酸中浸没2~3分钟,取出后再用去离子水将表面残留的酸冲洗干净;清洗完毕后,用N2吹干放入真空室;
②磁控溅射制备薄膜:抽真空至4.0×10-4Pa以下,按所需成分先设定氧气和高纯氩气的比例,然后充入真空室至气压稳定,调整溅射参数(电源类型(射频电源或直流电源)、工作气压、溅射功率、基片温度及靶基距等),然后起辉,设定溅射时间,正式溅射。溅射完毕后,设备冷却30 min后可取出薄膜样品。
采用上述技术方案制备的可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜,呈纳米晶或非晶态,整体氧化。薄膜的O元素含量可通过改变氧气分压进行调节,金属元素含量可根据选用不同的靶材以及采用不同的溅射参数调节,薄膜易制备,成分易调控。
本发明的有益效果是:这种可变带隙的AlCoCrFeNi高熵合金氧化物的成分可以灵活选择改变金属元素或改变氧分压来大范围调整,由成分变化又可以带来性能(带隙宽度、硬度、电阻率、颜色等)的大范围调整,拓宽了薄膜的应用领域。磁控溅射法制备薄膜方法成熟,可获得纳米晶或非晶态结构,整体氧化、薄膜均匀致密且表面平整。
该薄膜在以下方面具有明显优势:①光学性能:带隙的变化范围较宽,可对光透过或吸收的波段进行大范围的调整,从而拓宽了薄膜在光学领域的应用。例如光学仪器的窗口材料、太阳能选择吸收材料、光学探测器等;②电学领域:电阻率变化范围大,增大电阻率可获得很好的绝缘性,在薄膜透明的基础上尽可能减小电阻率,可应用在在透明导电薄膜领域。③表面改性领域:高熵合金氧化膜在硬度、高温稳定性、化学稳定性等方面性能优异,可应用在高硬耐磨和耐蚀等领域。
附图说明
图1是高熵合金氧化物薄膜(Al0.66CoCrFeNi)O0.70的(αE)2 - E关系曲线。
图2是高熵合金氧化物薄膜(Al0.69CoCrFeNi)O0.69的(αE)2 - E关系曲线。
图1、2中,横坐标是能量E,单位为eV,纵坐标是(αE)2,由图可知本发明制备的高熵合金氧化物薄膜(Al0.66CoCrFeNi)O0.70和(Al0.69CoCrFeNi)O0.69的带隙宽度分别为3.25 eV和3.10 eV。
具体实施方式
下面结合技术方案详细叙述本发明的具体实施例。
实施例1:磁控溅射方法制备(Al0.66CoCrFeNi)O0.70薄膜
(一)制备合金溅射靶材,其步骤如下:
制备合金靶:按照Al:Co:Cr:Fe:Ni原子百分比0.57:1:1:1:1称取各金属组元质量熔炼成靶材,各金属组元纯度不低于99.9%;
(二)制备可变带隙的AlCoCrFeNi高熵合金氧化物薄膜,其步骤如下:
①制备和清洗薄膜生长所需的Si(100)、Al2O3(0001)和精抛304不锈钢基片:其中,Si(100)和Al2O3(0001)基片需依次经丙酮、酒精和去离子水超声清洗,清洗时间各为10分钟;另外Si(100)基片在超声清洗后还需放入5%的氢氟酸中浸没2~3分钟,取出后再用去离子水将表面残留的酸冲洗干净;精抛304不锈钢基片依次经酒精和去离子水超声清洗各10分钟;清洗完毕后,三种基片均用N2吹干后放入真空室;
③磁控溅射制备薄膜:抽真空至4.0×10-4Pa以下,设定氧气和高纯氩气的比例为10%,然后充入真空室至气压稳定,选用射频电源,工作气压为1.4 Pa,溅射功率为100 W,靶基距为10 cm,基片温度为室温,起辉后,溅射时间为60 min,进行正式溅射。溅射完毕后,设备冷却30min后可取出薄膜样品。
(三)分析
采用日本岛津公司的EPMA-1600电子探针分析仪测定薄膜成分,选用Si(100)基片上沉积的薄膜,这样可以有效避免304不锈钢基体对膜层中Fe含量的影响。薄膜成分按原子百分比为:Al:4.30 %,Co:6.83 %,Cr:6.28 %,Fe:6.27 %,Ni:6.85 %,O:69.47 %。带隙宽度由UV3600型紫外-可见-近红外分光光度计进行分析,由图1所示的(αE)2 - E关系曲线得此成分下的薄膜带隙宽度为3.25 eV。硬度由MTS XP纳米压痕仪进行测试,以Si(100)作为基底,此成分下的薄膜硬度为17.5 Gpa。电阻率由Radiant铁电测试仪进行分析,此成分下的薄膜电阻率为4.573×1011 μΩ·cm。薄膜在Al2O3(0001)基底上呈透明状态,在304不锈钢基底上产生粉色的反射光。
实施例2:磁控溅射方法制备(Al0.69CoCrFeNi)O0.69薄膜
制备过程与与实施例1相同,仅增大氧气和高纯氩气的比例至30 %,其成分、微观结构和性能的测量方法与实施例1相同。测试结果为:薄膜成分按原子百分比为:Al:4.54%,Co:6.76 %,Cr:6.22 %,Fe:6.48 %,Ni:6.82 %,O:69.18 %,Al和Fe的含量较实施例1的薄膜略有升高。紫外-可见-近红外分光光度计测量结果如图2所示的(αE)2 - E关系曲线所示,薄膜带隙宽度为3.10 eV,硬度为20 Gpa,电阻率为1.001×1016 μΩ·cm,可见,薄膜微小的成分改变即可明显改变其性能。薄膜在Al2O3(0001)基底上呈透明状态,在304不锈钢基底上产生粉色的反射光。

Claims (1)

1.一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜,其特征在于:该薄膜具有如下成分:Al4.30Co6.83Cr6.28Fe6.27Ni6.85O69.47(at%)或Al4.54Co6.76Cr6.22Fe6.48Ni6.82O69.18(at%),该薄膜的带隙宽度分别为3.25 eV和3.10 eV,电阻率分别为4.573×1011μΩ•cm和1.001×1016μΩ•cm; AlCoCrFeNi整体氧化,所述薄膜应用于光学、微电子器件、高硬耐磨及装饰薄膜。
CN201810180973.6A 2018-03-06 2018-03-06 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法 Active CN108359939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810180973.6A CN108359939B (zh) 2018-03-06 2018-03-06 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810180973.6A CN108359939B (zh) 2018-03-06 2018-03-06 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108359939A CN108359939A (zh) 2018-08-03
CN108359939B true CN108359939B (zh) 2020-10-13

Family

ID=63003327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810180973.6A Active CN108359939B (zh) 2018-03-06 2018-03-06 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108359939B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106490B (zh) * 2019-06-12 2021-01-05 大连理工大学 一种耐高温高熵合金NbMoTaWV薄膜及其制备方法
CN110195208B (zh) * 2019-06-12 2021-03-19 大连理工大学 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法
CN112662928A (zh) * 2020-12-16 2021-04-16 西安交通大学 一种非晶包裹纳米晶双相高强高熵合金薄膜及其制备方法
CN114959613A (zh) * 2022-06-15 2022-08-30 西安热工研究院有限公司 一种增强中熵合金CoCrNi薄膜耐腐蚀性的方法
CN116180124B (zh) * 2023-03-22 2023-12-12 哈尔滨工业大学 核壳结构高熵合金电催化电极的制备方法及其应用
CN116288219B (zh) * 2023-05-19 2023-08-11 西南交通大学 一种FeCoNiCu高熵合金掺杂非晶碳薄膜及制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201043574A (en) * 2009-06-09 2010-12-16 Nat Univ Chung Hsing Optoelectronic semiconductor composed of multicomponent high-entropy alloy oxide and preparing method thereof
CN103789745A (zh) * 2014-01-26 2014-05-14 山东大学 一种带隙宽度可调的铝铟氧化物薄膜材料及其制备方法
CN104532184A (zh) * 2013-11-28 2015-04-22 康雪慧 一种耐高温太阳能选择性涂层及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201043574A (en) * 2009-06-09 2010-12-16 Nat Univ Chung Hsing Optoelectronic semiconductor composed of multicomponent high-entropy alloy oxide and preparing method thereof
CN104532184A (zh) * 2013-11-28 2015-04-22 康雪慧 一种耐高温太阳能选择性涂层及其制备方法
CN103789745A (zh) * 2014-01-26 2014-05-14 山东大学 一种带隙宽度可调的铝铟氧化物薄膜材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AlCoCrCu0.5NiFe高熵合金氧化物薄膜光学特性的研究;黄元盛 等;《表面技术》;20160229;第45卷(第2期);第129-133页 *

Also Published As

Publication number Publication date
CN108359939A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
CN108359939B (zh) 一种可变带隙的AlCoCrFeNi高熵合金氧化物半导体薄膜及其制备方法
Chen et al. Surface characterization of transparent conductive oxide Al-doped ZnO films
Mugwang’a et al. Optical characterization of Copper Oxide thin films prepared by reactive dc magnetron sputtering for solar cell applications
Zeggar et al. Solution flow rate influence on properties of copper oxide thin films deposited by ultrasonic spray pyrolysis
Li et al. Photovoltaic enhancement by Au surface-plasmon effect for La doped BiFeO 3 films
CN110195208B (zh) 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法
Gorrie et al. Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered gallium-doped zinc oxide
Hamelmann Thin film zinc oxide deposited by CVD and PVD
Feng et al. Fabrication and characterization of Cu2ZnSnS4 thin films for photovoltaic application by low-cost single target sputtering process
David et al. Electro-optical and structural properties of thin ZnO films, prepared by filtered vacuum arc deposition
US20170040473A1 (en) Nanostructured Hybrid-Ferrite Photoferroelectric Device
Ho et al. Fabrication of highly oriented (002) ZnO film on glass by sol–gel method
Rockett et al. Growth of CuInSe2 by two magnetron sputtering techniques
Bhorde et al. Room temperature synthesis of transparent and conducting indium tin oxide films with high mobility and figure of merit by RF-magnetron sputtering
Wei et al. Low-temperature deposition of µc-Si: H thin films by a low-frequency inductively coupled plasma for photovoltaic applications
Tian et al. Effects of thermal treatment on the MgxZn1− xO films and fabrication of visible-blind and solar-blind ultraviolet photodetectors
Zhitomirsky et al. Filtered vacuum arc deposition of transparent conducting Al-doped ZnO films
Guang-Pu et al. Investigation on SnS film by RF sputtering for photovoltaic application
Wang et al. Enhancing β-Ga2O3-film ultraviolet detectors via RF magnetron sputtering with seed layer insertion on c-plane sapphire substrate
Rafique et al. Study on the effect of varying film thickness on the transparent conductive nature of aluminum doped zinc oxide deposited by dip coating
Zhou et al. Structure and electronic properties of SiC thin-films deposited by RF magnetron sputtering
Guo et al. Synthesis, metal–insulator transition, and photoresponse characteristics of VO 2 nanobeams via an oxygen inhibitor-assisted vapor transport method
Li et al. Effects of Zn ratio tuning on the structural and transport properties of amorphous indium zinc tin oxide thin films
Rahman et al. A comprehensive optical and electrical properties analysis of Mg doped ZnO nanocrystalline thin-films for optoelectronic applications
RU2758150C1 (ru) Способ изготовления поляризационно-чувствительной нанокомпозитной плёнки на основе селенида меди

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant