CN108358245A - 一种玫瑰状MoS2纳米花的制备方法 - Google Patents

一种玫瑰状MoS2纳米花的制备方法 Download PDF

Info

Publication number
CN108358245A
CN108358245A CN201810469624.6A CN201810469624A CN108358245A CN 108358245 A CN108358245 A CN 108358245A CN 201810469624 A CN201810469624 A CN 201810469624A CN 108358245 A CN108358245 A CN 108358245A
Authority
CN
China
Prior art keywords
solution
nano flower
preparation
mos
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810469624.6A
Other languages
English (en)
Inventor
吴会杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN201810469624.6A priority Critical patent/CN108358245A/zh
Publication of CN108358245A publication Critical patent/CN108358245A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明涉及一种玫瑰状MoS2纳米花的制备方法。它依次包括以下制备步骤:(1)将四水合钼酸铵溶于去离子水中配成溶液A;将硫代乙酰胺溶于去离子水中配成溶液B;(2)将溶液A和B混合作为反应溶液,于反应釜中进行水热反应。本发明方法具有原料易得、设备简易、成本低廉、操作简单、稳定性好、易于控制、高效快捷等特点,适合大规模工业化生产。

Description

一种玫瑰状MoS2纳米花的制备方法
技术领域
本发明涉及纳米材料的制备,尤其涉及一种玫瑰状MoS2纳米花的制备方法。
背景技术
二硫化钼(MoS2)纳米粉体是一种重要的过渡金属纳米材料。它是由Mo原子和S原子通过共价键组成的层状晶体,两个六边形结构的S原子层中夹着一层Mo原子层形成一个MoS2分子层,呈现“三明治”结构,而每个S-Mo-S三原子层之间则通过范德华力堆叠在一起。由于层与层之间的范德华力较弱,所以MoS2的摩察系数很低,具有较强的润滑特性。纳米尺寸的MoS2具有比表面积大、吸附能力强、反应活性高、能带宽度大、易修饰等优点,除了用作固体润滑剂外,近年来在纳米电子学、光电子学、传感、催化、能量存储与转化、超级电容器和锂离子电池等方面引起了广泛的关注。
目前,MoS2纳米粉体材料的制备方法有很多,如微波辐射法、高温固相还原法、溶胶-凝胶法、微乳液法、水热合成法、喷雾热解法和超声合成法等。这些方法在一定程度上都存在不足,譬如产物尺寸、形貌难于控制;颗粒分散性不好、易团聚;产率不高;高温反应条件苛刻或是制备过程比较复杂、成本相对较高等。因此,如何制备高产率、高分散、尺寸可控、形貌规整的MoS2纳米材料仍然是一个关键的问题。
发明内容
本发明的目的在于提供一种玫瑰状MoS2纳米花的制备方法,该制备方法可制得形貌规整、粒径均一、分散性好、产率高、稳定性好的玫瑰状MoS2纳米花。
本发明的目的通过以下技术方案来实现:
一种玫瑰状MoS2纳米花的制备方法,其特征在于,依次包括以下制备步骤:
(1)将四水合钼酸铵溶于去离子水中配成溶液A;将硫代乙酰胺溶于去离子水中配成溶液B;
(2)将溶液A和B混合作为反应溶液,于反应釜中进行水热反应,即得到玫瑰状MoS2纳米花。
作为进一步明确,上述溶液A中四水合钼酸铵的摩尔浓度为0.01~0.05 mol/L。
作为进一步明确,上述溶液B中硫代乙酰胺的摩尔浓度为0.1~0.5 mol/L。
作为进一步明确,上述水热反应的温度为160~190℃,反应时间为15~17小时。
作为进一步优化,上述反应溶液中,四水合钼酸铵与硫代乙酰胺的摩尔比为1: 5~15。
作为进一步优化,上述玫瑰状MoS2纳米花的制备方法,还依次包括以下步骤:
(3)将上述水热反应后所得的反应液进行离心分离,然后分别用去离子水和无水乙醇洗涤沉淀物;
(4)将沉淀物放在真空干燥箱内40~60℃下干燥,烘干时间为4~6小时,最终得到黑色二硫化钼粉末。
本发明的有益效果在于:
本发明提供了一种玫瑰状MoS2纳米花的制备方法,它具有原料易得、设备简易、成本低廉、操作简单、稳定性好、易于控制、高效快捷等特点,适合大规模工业化生产。尤其是,它通过选择搭配特定的原料及其用量配比,并结合特定的工艺方法和工艺条件,制得了综合性能优异的产物:
(1)产物为形貌规整的玫瑰状纳米花,其粒径均一(粒径为250~550nm)、尺寸可控;
(2)产物颗粒分布均匀、分散性好、不易团聚;
(3)玫瑰状MoS2纳米花表面积大,具有优异的光催化性能,具有超级电容性能,吸附性好;
(4)产物的产率高(产率高达97%以上)、杂质少、稳定性好。
本发明方法所制得的产物综合性能优异,在纳米电子学、光电子学、传感、催化、能量存储与转化、超级电容器和锂离子电池等诸多领域具有广阔的应用前景。
附图说明
图1为本发明实施例1中所制备的玫瑰状MoS2纳米花的扫描电镜图。
图2为本发明实施例2中所制备的玫瑰状MoS2纳米花的扫描电镜图。
图3为本发明实施例3中所制备的玫瑰状MoS2纳米花的扫描电镜图。
图4为本发明实施例4中所制备的玫瑰状MoS2纳米花的扫描电镜图。
图5为本发明实施例1中所制备的玫瑰状MoS2纳米花作为催化剂在双氧水存在下,对亚甲基蓝溶液的可见光催化降解率测试效果图。
图6为本发明实施例1中所制备的玫瑰状MoS2纳米花作为催化剂在双氧水存在下,对亚甲基蓝溶液的可见光催化降解率的循环测试效果图。
具体实施方式
下面将结合本发明的实施例,对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。
实施例 1
一种玫瑰状MoS2纳米花的制备方法,依次包括以下制备步骤:
(1)称取1.236g四水合钼酸铵溶于20ml去离子水中配成溶液A;称取0.75g硫代乙酰胺溶于20ml去离子水中配成溶液B;
(2)将溶液A和B混合作为反应溶液,转移到反应釜中进行水热反应,反应温度为170℃,反应时间为15小时,即得到含玫瑰状MoS2纳米花的悬浊反应液;
(3)将所得悬浊反应液进行离心分离,然后分别用去离子水和无水乙醇洗涤沉淀物;
(4)将沉淀物放在真空干燥箱内50℃下干燥,烘干时间为5小时,最终得到黑色二硫化钼粉末,经检测其产率高达97.2%。
本例中所制得的玫瑰状MoS2纳米花的扫描电镜图如图1所示,可知其形貌规整,粒度分布均匀,粒径约为350~450nm,使用性能较好。
将本实施例1中所制备得到的玫瑰状MoS2纳米花作为催化剂进行可见光催化反应:
1)亚甲基蓝的液相光降解
该反应是在石英管中于可见光照射下进行的,实验步骤如下:
首先,称量10mg所述MoS2粉末,加入到100ml的浓度为20mg/L的亚甲基蓝溶液中,搅拌均匀得到悬浮液;然后,在悬浮液中加入0.5ml质量分数为30%的双氧水。在可见光照射之前,将此悬浮液进行30min暗反应确保建立吸附-解吸平衡。最后,在磁力搅拌器的不断搅拌下,将石英管暴露在可见光下进行照射。每隔10min取3ml样品并离心,完全去除MoS2催化剂。利用分光光度计,测试亚甲基蓝溶液的吸光度。公式1-C/C0为亚甲基蓝溶液的降解率。其中,C0为在可见光照射之前亚甲基蓝溶液的浓度。C为每隔一段时间照射后亚甲基蓝溶液的浓度。其测试效果图见附图5。
2)利用同样的MoS2催化剂,重复五次同样条件的光催化反应,研究MoS2催化剂的循环稳定性。其循环测试效果图见附图6。
从图5可以看出,MoS2催化剂和双氧水存在下,在120min可见光照射下,亚甲基蓝的降解率高达94%,所制备的玫瑰状MoS2花状球显示出优异的可见光催化活性。从图6可以看出,经过5次循环测试后,MoS2催化剂的光催化活性没有明显损失。这表明MoS2催化剂没有失活,并具有优异的稳定性和可回收性,可用于工业污水净化。
实施例 2
一种玫瑰状MoS2纳米花的制备方法,依次包括以下制备步骤:
(1)称取1.236g四水合钼酸铵溶于20ml去离子水中配成溶液A;称取0.15g硫代乙酰胺溶于20ml去离子水中配成溶液B;
(2)将溶液A和B混合作为反应溶液,转移到反应釜中进行水热反应,反应温度为160℃,反应时间为17小时,即得到含玫瑰状MoS2纳米花的悬浊反应液;
(3)将所得悬浊反应液进行离心分离,然后分别用去离子水和无水乙醇洗涤沉淀物;
(4)将沉淀物放在真空干燥箱内50℃下干燥,烘干时间为5小时,最终得到黑色二硫化钼粉末,经检测其产率高达98.0%。
本例中所制得的玫瑰状MoS2纳米花的扫描电镜图如图2所示,可知其形貌规整,粒度分布均匀,其粒径约为300~550nm,使用性能较好。
实施例 3
一种玫瑰状MoS2纳米花的制备方法,依次包括以下制备步骤:
(1)称取0.2472g四水合钼酸铵溶于20ml去离子水中配成溶液A;称取0.15g硫代乙酰胺溶于20ml去离子水中配成溶液B;
(2)将溶液A和B混合作为反应溶液,转移到反应釜中进行水热反应,反应温度为190℃,反应时间为15小时,即得到含玫瑰状MoS2纳米花的悬浊反应液;
(3)将所得悬浊反应液进行离心分离,然后分别用去离子水和无水乙醇洗涤沉淀物;
(4)将沉淀物放在真空干燥箱内45℃下干燥,烘干时间为5.5小时,最终得到黑色二硫化钼粉末,经检测其产率高达97.6%。
本例中所制得的玫瑰状MoS2纳米花的扫描电镜图如图3所示,可知其形貌规整,粒度分布均匀,其粒径约为280~550nm,使用性能较好。
实施例 4
一种玫瑰状MoS2纳米花的制备方法,依次包括以下制备步骤:
(1)称取0.618g四水合钼酸铵溶于20ml去离子水中配成溶液A;称取0.75g硫代乙酰胺溶于20ml去离子水中配成溶液B;
(2)将溶液A和B混合作为反应溶液,转移到高压釜中进行水热反应,反应温度为180℃,反应时间为16小时,即得到含玫瑰状MoS2纳米花的悬浊反应液;
(3)将所得悬浊反应液进行离心分离,然后分别用去离子水和无水乙醇洗涤沉淀物;
(4)将沉淀物放在真空干燥箱内40℃下干燥,烘干时间为6小时,最终得到黑色二硫化钼粉末,经检测其产率高达97.7%。
本例中所制得的玫瑰状MoS2纳米花的扫描电镜图如图4所示,可知其形貌规整,粒度分布均匀,其粒径约为250~450nm,使用性能较好。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域的普通技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离所附权利要求书所限定的本发明的精神和范围。

Claims (6)

1.一种玫瑰状MoS2纳米花的制备方法,其特征在于,依次包括以下制备步骤:
(1)将四水合钼酸铵溶于去离子水中配成溶液A;将硫代乙酰胺溶于去离子水中配成溶液B;
(2)将溶液A和B混合作为反应溶液,于反应釜中进行水热反应。
2.如权利要求1所述玫瑰状MoS2纳米花的制备方法,其特征在于:所述溶液A中四水合钼酸铵的摩尔浓度为0.01~0.05 mol/L。
3.如权利要求1或2所述玫瑰状MoS2纳米花的制备方法,其特征在于:所述溶液B中硫代乙酰胺的摩尔浓度为0.1~0.5 mol/L。
4.如权利要求1至3任一所述玫瑰状MoS2纳米花的制备方法,其特征在于:所述水热反应的温度为160~190℃,反应时间为15~17小时。
5.如权利要求1至4任一所述玫瑰状MoS2纳米花的制备方法,其特征在于:所述反应溶液中,四水合钼酸铵与硫代乙酰胺的摩尔比为1: 5~15。
6.如权利要求1至5任一所述玫瑰状MoS2纳米花的制备方法,其特征在于,它还依次包括以下步骤:
(3)将所述水热反应后所得的反应液进行离心分离,然后分别用去离子水和无水乙醇洗涤沉淀物;
(4)将沉淀物放在真空干燥箱内40~60℃下干燥,烘干时间为4~6小时。
CN201810469624.6A 2018-05-16 2018-05-16 一种玫瑰状MoS2纳米花的制备方法 Pending CN108358245A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810469624.6A CN108358245A (zh) 2018-05-16 2018-05-16 一种玫瑰状MoS2纳米花的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810469624.6A CN108358245A (zh) 2018-05-16 2018-05-16 一种玫瑰状MoS2纳米花的制备方法

Publications (1)

Publication Number Publication Date
CN108358245A true CN108358245A (zh) 2018-08-03

Family

ID=63011914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810469624.6A Pending CN108358245A (zh) 2018-05-16 2018-05-16 一种玫瑰状MoS2纳米花的制备方法

Country Status (1)

Country Link
CN (1) CN108358245A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019616A (zh) * 2018-09-30 2018-12-18 江南大学 一种二氧化硅/二硫化钼三维杂化材料的制备及应用
CN109637838A (zh) * 2019-01-16 2019-04-16 郑州轻工业学院 一种丝瓜瓤状中空二硫化钼材料的制备方法和应用
CN109638345A (zh) * 2018-12-18 2019-04-16 福州大学 一步水热法合成分等级结构空心球的方法及其在钠离子电池中的应用
CN110614104A (zh) * 2019-07-29 2019-12-27 西安工程大学 一种高效处理污水的光催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006739A (zh) * 2016-05-15 2016-10-12 武汉理工大学 一种纳米二硫化钼粉体的制备方法
CN106803589A (zh) * 2017-02-26 2017-06-06 桂林理工大学 一种单分散类花球状MoS2粉体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006739A (zh) * 2016-05-15 2016-10-12 武汉理工大学 一种纳米二硫化钼粉体的制备方法
CN106803589A (zh) * 2017-02-26 2017-06-06 桂林理工大学 一种单分散类花球状MoS2粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马清璇: ""纳米二硫化钼的制备及电化学析氢性能研究"", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109019616A (zh) * 2018-09-30 2018-12-18 江南大学 一种二氧化硅/二硫化钼三维杂化材料的制备及应用
CN109638345A (zh) * 2018-12-18 2019-04-16 福州大学 一步水热法合成分等级结构空心球的方法及其在钠离子电池中的应用
CN109638345B (zh) * 2018-12-18 2021-08-31 福州大学 一步水热法合成分等级结构空心球的方法及其在钠离子电池中的应用
CN109637838A (zh) * 2019-01-16 2019-04-16 郑州轻工业学院 一种丝瓜瓤状中空二硫化钼材料的制备方法和应用
CN109637838B (zh) * 2019-01-16 2020-09-29 郑州轻工业学院 一种丝瓜瓤状中空二硫化钼材料的制备方法和应用
CN110614104A (zh) * 2019-07-29 2019-12-27 西安工程大学 一种高效处理污水的光催化剂的制备方法

Similar Documents

Publication Publication Date Title
Meng et al. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst
Su et al. Ultrathin mesoporous g-C3N4/NH2-MIL-101 (Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance
Fan et al. Mechanochemical preparation and application of graphdiyne coupled with CdSe nanoparticles for efficient photocatalytic hydrogen production
Wang et al. Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation
Liu et al. Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced photoredox water splitting
CN108358245A (zh) 一种玫瑰状MoS2纳米花的制备方法
Gu et al. Morphology modulation of hollow-shell ZnSn (OH) 6 for enhanced photodegradation of methylene blue
CN103480398B (zh) 一种微纳结构石墨烯基复合可见光催化材料及其制备方法
Xin et al. Synthesis of ZnS@ CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method
CN111151302B (zh) 一种共价有机框架材料掺杂棒状硫化镉复合光催化剂的制备方法
CN105013511B (zh) 一种以聚乙烯吡咯烷酮为分散剂的硫化镉量子点/碳纳米管光催化剂的制备方法
Wang et al. Pn heterostructured TiO2/NiO double-shelled hollow spheres for the photocatalytic degradation of papermaking wastewater
Ji et al. Hydrothermal synthesis of Li9Fe3 (P2O7) 3 (PO4) 2 nanoparticles and their photocatalytic properties under visible-light illumination
Sun et al. Fabrication of hollow g-C3N4@ α-Fe2O3/Co-Pi heterojunction spheres with enhanced visible-light photocatalytic water splitting activity
Zhang et al. In situ fluorine migration in ZIF-67/F-TiO2 Z-type heterojunction and its photocatalytic degradation mechanism of tetracycline hydrochloride
Jiang et al. Self-assembled synthesis of porous sulfur-doped g-C3N4 nanotubes with efficient photocatalytic degradation activity for tetracycline
Wang et al. Synthesis of Ni-silicate superficially modified CdS and its highly improved photocatalytic hydrogen production
CN106587166A (zh) 一种氧化铁介晶纳米粒子及其合成方法和应用方法
Wei et al. Carbon dots with different energy levels regulate the activity of metal-free catalyst for hydrogen peroxide photoproduction
Wang et al. Construction of an S-scheme TiOF2/HTiOF3 heterostructures with abundant OVs and OH groups: Performance, kinetics and mechanism insight
Ren et al. One-pot fabrication of porous nitrogen-deficient g-C3N4 with superior photocatalytic performance
CN115069262A (zh) 一种氧空位修饰的MoO3-x/Fe-W18O49光催化剂及其制备和固氮中的应用
Zhang et al. Fluorescein supramolecular nanosheets: A novel organic photocatalyst for visible-light-driven H2 evolution from water
Wang et al. All-in-one photocatalysis device for one-step high concentration H2O2 photoproduction
Dong et al. Construction of novel MoS 2@ COF-Ph heterojunction photocatalysts for boosted photocatalytic efficiency and hydrogen production performance under sunlight

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180803

RJ01 Rejection of invention patent application after publication